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SUPPLEMENTAL ITEMS

Table S1: The number of samples, slides, and patches in each TCGA cohort. Each patient has only
one tumor sample and one normal sample if available. Note that “tumor slide” and “normal slides” refer to the
slides of tumor samples and normal samples, respectively. Similarly, “tumor patches” and “normal patches”
refer to patches cropped over “tumor slides” and “normal slides”, respectively. Related to Table 1.

# samples # slides # patches

normal tumor total normal tumor total normal tumor total

BRCA 133 929 1,062 312 1,280 1,592 84,196 710,446 794,642
GBM 0 474 474 0 917 917 0 618,649 618,649
KIRC 364 435 799 454 841 1295 466,883 655,625 1,122,508
LGG 0 454 454 0 625 625 0 347,065 347,065
LUAD 171 446 617 200 694 894 108,876 490,401 599,277
LUSC 220 453 673 333 714 1,047 166,181 544,778 710,959
OV 84 516 600 142 1,031 1,173 72,385 1,122,620 1,195,005
PRAD 111 428 539 111 535 646 75,798 338,120 413,918
THCA 83 428 511 83 443 526 30,234 199,275 229,509
UCEC 32 449 481 34 589 623 17,359 314,624 331,983

Table S2: The number of samples in different genomic tumor purity and percent tumor nuclei groups
(<10% , 10-25%, 25-50%, and ≥50%). Related to Table 1.

genomic tumor purity percent tumor nuclei

<10% 10-25% 25-50% ≥50% <10% 10-25% 25-50% ≥50%

BRCA 1 44 247 637 0 0 10 919
GBM 0 6 43 425 1 0 4 469
KIRC 0 7 158 270 0 0 0 435
LGG 0 10 54 390 0 0 3 451
LUAD 1 40 225 180 0 0 5 441
LUSC 0 40 188 225 0 0 5 448
OV 0 1 28 487 0 0 0 516
PRAD 0 24 117 287 0 0 7 421
THCA 0 3 50 375 0 0 0 428
UCEC 0 6 43 400 0 0 6 443
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Figure S1: Violin plots of genomic tumor purity values (obtained using ABSOLUTE1) in the training,
validation, and test sets of each TCGA cohort. Related to Table 1.
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Figure S2: Violin plots of percent tumor nuclei values (collected from TCGA data portal) in each
TCGA cohort’s training, validation, and test sets. Related to Table 1.

Table S3: Comparison of methods based on Spearman’s correlation coefficients in the test sets of
different cohorts. Spearman’s correlation coefficients between genomic tumor purity values and MIL
predictions (ρmil) and genomic tumor purity values and pathologists’ percent tumor nuclei estimates (ρpath)
in the test sets of different cohorts are calculated for only the tumor samples. Then, they are compared
using the method in Meng et al.2. The number of tumor samples (n), Spearman’s correlation coefficients
together with calculated p-values (Pρmil and Pρpath ) and 95% confidence intervals (CIρmil and CIρpath ), and
calculated p-values in statistical tests (Pcomp) are presented. Note that if the calculated correlation in any
method is not significant (i.e., Pρmil > 5.0e− 02 or Pρpath > 5.0e− 02), the statistical test is not conducted. It
is indicated by ‘x’. The best methods are highlighted in bold. Related to Figure 2 and Figure 3A.

MIL prediction Pathologist’s estimate Comparison

n ρmil Pρmil CIρmil ρpath Pρpath CIρpath Pcomp

BRCA 185 0.655 4.6e-24 0.547 - 0.743 0.299 3.6e-05 0.162 - 0.429 1.4e-07
GBM 94 0.572 1.7e-09 0.389 - 0.721 0.104 3.2e-01 -0.102 - 0.309 x
LGG 90 0.418 4.1e-05 0.226 - 0.574 0.201 5.7e-02 -0.029 - 0.392 x
LUAD 90 0.515 2.1e-07 0.320 - 0.660 0.255 1.5e-02 0.036 - 0.448 1.2e-02
LUSC 90 0.467 3.5e-06 0.280 - 0.627 0.324 1.8e-03 0.118 - 0.503 1.7e-01
OV 103 0.581 1.3e-10 0.429 - 0.711 0.328 7.1e-04 0.132 - 0.518 9.4e-03
PRAD 85 0.424 5.3e-05 0.224 - 0.597 0.293 6.5e-03 0.074 - 0.504 2.0e-01
UCEC 89 0.579 2.7e-09 0.408 - 0.720 0.344 9.8e-04 0.139 - 0.531 2.6e-02



Table S4: Spearman’s correlation coefficients. Spearman’s correlation coefficients between (i) genomic
tumor purity values from ABSOLUTE1 (ABS) and MIL predictions (MIL), (ii) genomic tumor purity values
from ESTIMATE3 (EST) and MIL predictions, and (iii) genomic tumor purity values from ABSOLUTE and
genomic tumor purity values from ESTIMATE are calculated for the tumor samples having corresponding
values in the test sets. The number of tumor samples (n), correlation coefficients (ρ) together with calculated
p-values (P ) and 95% confidence intervals (CI) are presented.

ABS vs. MIL EST vs. MIL EST vs ABS

n ρ P CI ρ P CI ρ P CI

BRCA 186 0.655 4.6e-24 0.547 - 0.743 0.519 4.0e-14 0.401 - 0.615 0.611 2.4e-20 0.496 - 0.709
GBM 22 0.610 3.3e-03 0.162 - 0.882 0.528 1.4e-02 0.112 - 0.821 0.732 1.6e-04 0.439 - 0.898
LGG 91 0.418 4.1e-05 0.226 - 0.574 0.139 1.9e-01 -0.076 - 0.333 0.352 6.6e-04 0.142 - 0.531
LUAD 91 0.515 2.1e-07 0.320 - 0.660 0.546 2.5e-08 0.391 - 0.674 0.645 6.7e-12 0.468 - 0.779
LUSC 88 0.447 1.4e-05 0.264 - 0.611 0.350 8.9e-04 0.150 - 0.524 0.628 7.5e-11 0.466 - 0.752
OV 52 0.596 3.9e-06 0.360 - 0.768 0.579 8.5e-06 0.323 - 0.763 0.708 6.2e-09 0.532 - 0.824
PRAD 86 0.424 5.3e-05 0.224 - 0.597 0.319 3.0e-03 0.109 - 0.496 0.447 1.8e-05 0.241 - 0.634
UCEC 40 0.574 1.3e-04 0.284 - 0.788 0.400 1.2e-02 0.057 - 0.695 0.580 1.1e-04 0.291 - 0.789

Table S5: Comparison of methods based on absolute errors in the test sets of different cohorts.
Absolute errors between genomic tumor purity values and MIL predictions (emil) and genomic tumor purity
values and pathologists’ percent tumor nuclei estimates (epath) in the test sets of different cohorts are
calculated for only the tumor samples. Then, they are compared using the Wilcoxon signed-rank test4. The
number of tumor samples (n), mean absolute errors (µemil and µepath) together with standard deviations
(σemil and σepath), median absolute errors (memil and mepath) together with interquartile ranges (IQRemil
and IQRepath ), and calculated p-values in the statistical tests (Pcomp) are presented. The best methods are
highlighted in bold. Related to Figure 2 and Figure 3A.

MIL prediction Pathologist’s estimate Comp.

n µemil σemil memil IQRemil µepath σepath mepath IQRepath Pcomp

BRCA 185 0.116 0.097 0.104 0.043 - 0.159 0.220 0.147 0.200 0.105 - 0.310 2.5e-13
GBM 94 0.113 0.106 0.074 0.046 - 0.142 0.195 0.158 0.145 0.080 - 0.260 2.1e-07
LGG 90 0.136 0.119 0.105 0.052 - 0.188 0.152 0.122 0.130 0.060 - 0.200 5.4e-02
LUAD 90 0.132 0.109 0.112 0.060 - 0.175 0.280 0.151 0.275 0.170 - 0.395 3.9e-09
LUSC 90 0.148 0.122 0.125 0.054 - 0.196 0.266 0.150 0.250 0.140 - 0.375 5.8e-06
OV 103 0.105 0.091 0.086 0.043 - 0.127 0.136 0.126 0.110 0.030 - 0.190 1.6e-02
PRAD 85 0.173 0.154 0.130 0.068 - 0.240 0.204 0.141 0.180 0.090 - 0.285 1.4e-02
UCEC 89 0.109 0.120 0.072 0.027 - 0.142 0.132 0.124 0.100 0.040 - 0.170 1.4e-02



Note S1: Singapore Cohort

Singapore cohort consists of 179 lung adenocarcinoma patients having East Asian ancestry. Each patient
has one tumor sample, and one slide is prepared from each tumor sample (except one sample in the training
set). The slides are prepared from formalin-fixed paraffin-embedded sections (FFPE). On the contrary
to FFPE sections in the Singapore cohort, slides in the TCGA cohorts are prepared from fresh-frozen
sections. These two tissue preservation methods are quite different from each other. While the FFPE method
preserves morphology better and is the routine in histopathology, the fresh-frozen method preserves nucleic
acids better and is preferred for molecular analysis5. The number of samples, slides and patches in the
training, validation and test sets of the Singapore cohort are presented below.

Singapore cohort: the number of samples, slides, and patches. Note that each patient has only one
tumor sample. Related to Table 1.

# samples # slides # patches

dataset normal tumor total normal tumor total normal tumor total
training 0 107 107 0 108 108 0 525,961 525,961
validation 0 36 36 0 36 36 0 190,971 190,971
test 0 36 36 0 36 36 0 182,383 182,383
all 0 179 179 0 180 180 0 899,315 899,315
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Figure S3: Singapore cohort: genomic tumor purity histograms for (a) training, (b) validation, and
(c) test sets. Related to Table 1.



(a) TCGA LUAD: Fresh-frozen - Normal (b) Singapore LUAD: FFPE - Normal

(c) TCGA LUAD: Fresh-frozen - Cancerous (d) Singapore LUAD: FFPE - Cancerous

Figure S4: Example patches cropped from slides of fresh-frozen and formalin-fixed paraffin-
embedded (FFPE) sections. (a, c) A normal patch and a cancerous patch cropped from slides of fresh-
frozen sections in the TCGA LUAD cohort. (b, d) A normal patch and a cancerous patch cropped from slides
of FFPE sections in the Singapore LUAD cohort. Related to Figure 4.
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Figure S5: External validation on Singapore cohort. We checked the performance of the TCGA LUAD
model directly on the Singapore LUAD cohort (with n=179 tumor samples) used as an external validation set.
Scatter plot of genomic tumor purity vs. MIL model prediction. Diagonal red dotted line shows the y=x line.



Table S6: Statistics of the absolute difference between the predictions of a tumor sample’s top and
bottom slides. In the test set of each cohort, for a tumor sample with two slides, the absolute difference
(dabs) between the tumor purity predictions of the slides is calculated. Then, the number of tumor samples
with two slides (n), the mean absolute difference (µdabs), the standard deviation of the absolute difference
(σdabs ), the median absolute difference (mdabs ), and the interquartile range (IQRdabs ) are presented. Related
to Figure 3C.

n µdabs σdabs mdabs IQRdabs

BRCA 73 0.101 0.106 0.063 0.031 - 0.115
GBM 90 0.090 0.083 0.068 0.016 - 0.141
LGG 31 0.086 0.089 0.054 0.023 - 0.139
LUAD 44 0.100 0.110 0.059 0.023 - 0.125
LUSC 52 0.106 0.123 0.062 0.030 - 0.144
OV 102 0.125 0.156 0.080 0.032 - 0.150
PRAD 21 0.144 0.189 0.086 0.027 - 0.134
UCEC 23 0.063 0.056 0.042 0.021 - 0.089

Table S7: Comparing the absolute errors of sample-level predictions and the expected value of the
absolute errors of slide-level predictions in the test sets of different cohorts. In the test set of each
cohort, for a tumor sample with two slides, the absolute errors between genomic tumor purity values and
sample-level MIL predictions (esmpl) and the expected value of absolute errors between genomic tumor
purity values and slide-level MIL predictions (esld) are calculated. Then, the number of samples with two
slides (n), the mean absolute errors (µesmpl and µesld) together with standard deviations (σesmpl and σesld),
the median absolute errors (mesmpl and mesld) together with interquartile ranges (IQResmpl and IQResld),
and the calculated p-values in the statistical tests (Pcomp) are presented. Note that the PRAD (n=21) and
UCEC (n=23) cohorts were excluded from this study due to few samples with two slides. The best methods
are highlighted in bold. Related to Figure 3D.

Sample level Slide level

n µesmpl σesmpl mesmpl IQResmpl µesld σesld mesld IQResld Pcomp

BRCA 73 0.114 0.082 0.092 0.043 - 0.166 0.126 0.073 0.129 0.060 - 0.171 2.8e-03
GBM 90 0.115 0.107 0.076 0.046 - 0.145 0.118 0.096 0.089 0.062 - 0.161 7.1e-01
LGG 31 0.178 0.149 0.146 0.100 - 0.218 0.168 0.152 0.106 0.067 - 0.198 5.6e-01
LUAD 44 0.118 0.102 0.084 0.050 - 0.168 0.138 0.102 0.121 0.067 - 0.181 3.7e-04
LUSC 52 0.124 0.092 0.109 0.039 - 0.168 0.150 0.096 0.143 0.085 - 0.201 1.7e-03
OV 102 0.106 0.091 0.086 0.043 - 0.128 0.135 0.100 0.105 0.073 - 0.176 5.0e-03

Table S8: Spearman’s correlation coefficients between absolute errors in MIL predictions and per-
cent necrosis values (ρ) are calculated in the test set of each cohort. The number of samples (n),
correlation coefficients together with calculated p-values (P) and 95% confidence intervals (95% CI) are
presented for tumor samples only. There is no significant correlation (P>0.05) in any cohorts except LUSC,
in which the correlation is 0.253 (P=1.6e-02 < 0.05). The LGG cohort is excluded from analysis since all
samples have percent necrosis of 0.

n ρ 95% CI P

BRCA 185 0.089 -0.054, 0.236 2.3e-01
GBM 94 -0.040 -0.232, 0.150 7.0e-01
LUAD 90 0.034 -0.187, 0.267 7.5e-01
LUSC 90 0.253 0.062, 0.432 1.6e-02
OV 103 0.044 -0.157, 0.236 6.6e-01
PRAD 85 -0.050 -0.262, 0.170 6.5e-01
UCEC 89 -0.023 -0.230, 0.187 8.3e-01
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Figure S6: Tumor purity map for A186 in the Singapore Cohort. Genomic tumor purity was 0.340 and
our MIL model predicted tumor purity as 0.339, so the absolute error was 0.001. Related to Figure 4.
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Figure S7: Tumor purity map for A537 in the Singapore Cohort. Genomic tumor purity was 0.420 and
our MIL model predicted tumor purity as 0.380, so the absolute error was 0.04. Related to Figure 4.
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Figure S8: Tumor purity map for A143 in the Singapore Cohort. Genomic tumor purity was 0.240 and
our MIL model predicted tumor purity as 0.339, so the absolute error was 0.099. Related to Figure 4.
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Figure S9: Tumor purity map for A219 in the Singapore Cohort. Genomic tumor purity was 0.410 and
our MIL model predicted tumor purity as 0.584, so the absolute error was 0.174. Related to Figure 4.



3.0 mm

0.2 0.4 0.6 0.8
Tumor Purity

1

23

1

23

1 2 3

0.2 mm 0.2 mm 0.2 mm

Figure S10: Tumor purity map for A126 in the Singapore Cohort. Genomic tumor purity was 0.160 and
our MIL model predicted tumor purity as 0.527, so the absolute error was 0.367. Related to Figure 4.



SUPPLEMENTAL EXPERIMENTAL PROCEDURES

MIL Framework

Problem formulation and notation

Let D be a MIL dataset such that for each (X,Y ) ∈ D, X = {x1, x2, · · · , xN} ⊆ I and Y ∈ Y , where I is the
instance space, and Y is the bag label space. Note that we fix the number of instances in a bag to N for
clarity of notation, yet our formulation is also valid for bags with the variable number of instances.

Given any pair (X,Y ) ∈ D, our objective is to predict bag label Y for a given bag of instances X. Here, a
bag label Y is the genomic tumor purity of a sample, and a bag X is a collection of cropped patches over the
sample’s slides. Let Ŷ be the predicted bag label of X. To obtain Ŷ , we designed a novel MIL framework
consisting of three stages.

The first stage is a feature extractor module θfeature : I → F , where F is the feature space. For each
xi ∈ X, the feature extractor module takes xi as input, extracts J features and outputs a feature vector:
fxi = θfeature(xi) = [f1xi , f

2
xi , · · · , f

J
xi ] ∈ F , where f jxi ∈ R is the jth feature value and F = RJ . Let

FX = [fx1 ,fx2 , · · · ,fxN ] ∈ RJN be feature matrix constructed from extracted feature vectors such that ith

column corresponds to fxi .
The second stage is a MIL pooling filter module θfilter : RJN → H, where H is the bag-level representation

space. The MIL pooling filter module takes the feature matrix FX as input and aggregates the extracted
feature vectors to obtain a bag-level representation: hX = θfilter(FX) ∈ H.

The last stage is a bag-level representation transformation module θtransform : H → Y. It transforms the
bag-level representation into the predicted bag label: Ŷ = θtransform(hX).

We use neural networks to implement θfeature and θtransform so that we can fully parameterize the learning
process. For θfilter, we use our novel ‘distribution’ pooling filter. This system of neural networks is end-to-end
trainable.

Distribution Pooling Filter

Our previous study6 defined the family of distribution-based pooling filters as: Given a feature matrix
FX = [f jxi |f

j
xi ∈ R, i = 1, 2, · · · , N and j = 1, 2, · · · , J ] obtained from a bag X = {x1, x2, · · · , xN}, its

bag level representation is obtained by estimating a marginal distribution over each extracted feature. Let
p̃jX : R→ R+ ∪ {0} be the estimated marginal distribution obtained over jth extracted feature and p̃jX ∈ P
where P is the set of all possible marginal distributions. p̃jX is calculated by using kernel density estimation7,
which employs a Gaussian kernel with standard deviation σ, as shown in the Eq. 1. Each instance has two
attention based weights, feature weight αi and kernel weight βi, obtained from neural network modules.
Hence, the bag level representation hX = [p̃jX |p̃

j
X ∈ P, j = 1, 2, · · · , J ] ∈ H where H = PJ . Note that the

estimated marginal distributions are uniformly binned during training neural network models for computational
purposes.

p̃jX(v) =

N∑
i=1

βi
1√
2πσ2

e−
1

2σ2
(v−αifjxi)

2

∀j=1,2,··· ,J (1)

Our previous study formally proved that the distribution-based pooling filters are more expressive than the
point estimate-based counterparts (like max and mean pooling) regarding the amount of information captured
while obtaining bag-level representations6. Then, we empirically showed that models with distribution-based
pooling filters perform equal or better than that with point estimate-based pooling filters on distinct real-world
MIL tasks.

In this study, we used standard deviation of σ = 0.05 and the estimated marginal distributions were
uniformly binned into 21 bins. Note that attention weights in ‘distribution’ pooling were fixed to αi = 1 ∀i and
βi =

1
N ∀i where N is the number of instances per bag.



Neural network architectures and hyper-parameters

We used a ResNet188 model as the feature extractor module and a three-layer multi-layer-perceptron as the
bag-level representation transformation module.

During the training of the models, we prepared bags on the go. A bag was created by randomly sampling
200 patches (instances) from all available patches previously cropped over a sample’s slides. The patch size
was 512× 512. Data augmentation (random cropping with a size of 299× 299 and random horizontal/vertical
flipping) was also applied on the patches. We extracted 128 features for each instance inside the bag.

The architecture and list of hyper-parameters used in MIL models are given below.

Neural network architecture and list of hyper-parameters used in the MIL models.

input - 299× 299× 3
ResNet18 (128 nodes in the last fc layer)

‘distribution’ pooling
Dropout(0.5)

fc-384 + ReLU
Architecture Dropout(0.5)

fc-192 + ReLU
Dropout(0.5)

fc-1 (regression)

patch size 512× 512
random crop size 299× 299
# instances per bag (N ) 200
# features (J) 128
# bins in ‘distribution’ filters 21
σ in Gaussian kernel 0.05
Optimizer ADAM
Learning rate 1e− 4
L2 regularization weight decay 0.0005
batch size 1

Segmentation of Histopathology Slides in The TCGA LUAD Cohort

In the TCGA LUAD cohort, for each patient with a matching normal sample, we used the trained feature
extractor module of our MIL model to extract features of patches cropped over the slides of the tumor and
normal samples of the patient. Then, we clustered the patches by using hierarchical clustering over the
extracted feature vectors. We determined the distance threshold in hierarchical clustering such that there
were 4 clusters among the patches from slides of the normal sample. This made our clustering approach
robust against patient-to-patient variations. Indeed, this was why we decided to use both tumor and normal
samples of the patient. In other words, instead of determining a global distance threshold for all patients, we
calculated patient-specific distance threshold values to capture inter-patient variations.

Each cluster can be assigned one of two labels: cancerous or normal. Ideally, a cluster with a cancerous
label can contain patches only from slides of the tumor sample. On the other hand, a cluster with a normal
label can contain patches from slides of both the tumor and the normal samples since the tumor sample
may also contain normal tissue components. As a post-processing step, we analyzed normal clusters. If the
number of patches from slides of the normal sample in a normal cluster was less than 10%, we split this
cluster into two such that patches from slides of the tumor sample were assigned to a new cancerous cluster.
Finally, we created segmentation masks for slides of the tumor sample by using cluster labels assigned to
the patches.
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