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In brief

Selecting a sample with sufficient tumor

content is crucial for the proper operation

of sequencing methods. This study

developed a deep learning model

predicting the percentage of cancer cells

(tumor purity) within a tissue section from

its digital histopathology slides to

support pathologists in sample selection

for genomic sequencing. The model

successfully predicted tumor purity in

eight different cancers and produced

tumor purity maps showing the spatial

variation within sections without requiring

pixel-level annotations from pathologists

during training.
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THE BIGGER PICTURE Given some big data and coarse-level labels, extracting fine-level information is a
demanding yet rewarding challenge in data science. This study develops a machine learning model utilizing
bigdataandexploitingcoarse-level labels to revealfine-leveldetailswithin thedata.Although it canbeapplied
to different data science tasks with enormous data and coarse labels, we applied it to a computational histo-
pathology task with gigapixel histopathology slides and sample-level labels. Specifically, the model revealed
spatial resolution of tumor purity within histopathology slides using only sample-level genomic tumor purity
values during training. This can also be extended to other omics features, providing precious information
about cancer biology and promising personalized, precision medicine. Such studies are of great clinical
importance in discovering imaging biomarkers and better understanding the tumor microenvironment.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
Tumor purity is the percentage of cancer cells within a tissue section. Pathologists estimate tumor purity to
select samples for genomic analysis by manually reading hematoxylin-eosin (H&E)-stained slides, which is
tedious, time consuming, and prone to inter-observer variability. Besides, pathologists’ estimates do not
correlate well with genomic tumor purity values, which are inferred from genomic data and accepted as ac-
curate for downstream analysis. We developed a deepmultiple instance learningmodel predicting tumor pu-
rity from H&E-stained digital histopathology slides. Our model successfully predicted tumor purity in eight
The Cancer Genome Atlas (TCGA) cohorts and a local Singapore cohort. The predictions were highly consis-
tent with genomic tumor purity values. Thus, our model can be utilized to select samples for genomic anal-
ysis, which will help reduce pathologists’ workload and decrease inter-observer variability. Furthermore, our
model provided tumor purity maps showing the spatial variation within sections. They can help better under-
stand the tumor microenvironment.
This is an open access article under the CC BY-N
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INTRODUCTION

High-throughput genomic analysis has become an indispens-

able tool for cancer research and has enabled precision

oncology.1,2 One of the crucial factors affecting the quality of

genomic analysis is the proportion of cancer cells in the sam-

ples.3 Tumors consist of a complex mixture of cells, such as

cancer cells, normal epithelial cells, stromal cells, and infiltrating

immune cells.4 The proportion of cancer cells in a section can

significantly influence the accuracy of not only sequencing ex-

periments but also precision oncology. The subjective estimates

of the percentage of cancer cells within a tissue section—or tu-

mor purities—are routinely evaluated by pathologists.5

The tumor purity affects both high-throughput data acquisition

and analysis. To detect genetic variations of a tumor sample by

next-generation sequencing, the sample needs to have sufficient

cancer cells.6–8 Therefore, an accurate tumor purity estimation is

of great clinical importance. A sample with low tumor purity, for

example, may lead to a false-negative test result, potentially re-

sulting in missed therapeutic opportunities.6 Besides, the

genomic analysis should incorporate the tumor purity to account

for normal cell contamination, which can have confounding ef-

fects on analysis results.5,9–14 A novel immunotherapy gene

signature missed by traditional methods, for example, was

discovered using a differential expression analysis incorporating

tumor purity.5 The tumor purity is also associated with clinical

variables.15–17 Low tumor purity, for instance, was associated

with poor prognosis in glioma,15 colon cancer,16 and gastric can-

cer.17 Moreover, tumor purity was a promising predictor for ther-

apeutic response in colon cancer16 and gastric cancer.17

A pathologist estimates tumor purity by reading hematoxylin

and eosin (H&E)-stained histopathology slides. Essentially, the

pathologist counts the percentage of tumor nuclei over a region

of interest (ROI) in the slide. The tumor purity estimated in this

way is referred to as percentage tumor nuclei in this study. The

percentage tumor nuclei estimates are usually used for sample

selection and interpretation of results in the molecular analysis.

The pathologist can read any H&E-stained slide and estimate

percentage tumor nuclei based on a cellular-level analysis.

Thus, this approach is widely applicable, and it has a cellular-

level resolution. However, counting tumor nuclei is tedious and

time consuming. More importantly, there exists inter-observer

variability between pathologists’ estimates.6,18

Tumor purity can also be inferred from different types of

genomic data, such as somatic copy number19–25 and muta-

tions,26–31 gene expression data,32–35 and DNA methylation

data.36–39 The tumor purity obtained from these methods will

be referred to as genomic tumor purity in this study. Genomic tu-

mor purity values are usually used in genomics analysis to miti-

gate confounding effects of normal cell contamination40–42 and

in correlational studies to investigate the associations between

tumor purity and clinical variables.43 Nowadays, genomic

tumor purity is accepted as ‘‘accurate’’ for downstream

analysis.19,26,28,32,35 Genomic methods generally produce

consistent values on different cancer datasets in The Cancer

Genome Atlas (TCGA).5 However, they do not work well for the

low-tumor-content samples. Furthermore, genomic methods

cannot provide information on the spatial organization of the

tumor microenvironment. Hence, both genomics methods and
2 Patterns 3, 100399, February 11, 2022
pathologists’ slide reading approach have different strengths

and limitations.

Pathologists routinely estimate percentage tumor nuclei in tis-

sue sections. However, besides previously stated challenges,

pathologists’ estimates do not correlate well with genomic tumor

purity values.5,13 To assist pathologists, this study develops ama-

chine learning model that predicts the tumor purity from H&E-

stainedhistopathology slides such that thepredictions are consis-

tent with the genomic tumor purity values. In addition to giving ac-

curate tumor purity measurements, our model is cost-effective

compared with genomics methods. It also provides information

about the spatial organization of the tumor microenvironment.

Two types of machine learning models can be utilized to pre-

dict tumor purity from digital histopathology slides: patch-based

models and multiple instance learning (MIL) models. The patch-

based models require pathologists’ pixel-level annotations

showing whether each pixel is cancerous or normal. Although

different studies employed this approach for tumor purity predic-

tion,44–49 they had limited coverage since pixel-level annotations

are rarely available, expensive, and tedious. On the other hand,

the MIL models do not require pixel-level annotations. Instead,

they use sample-level labels, which are weak labels providing

only aggregate information rather than pixel-level information.

However, they can easily be collected from pathology reports,

electronic health records, or different data modalities. The MIL

models were successfully used in various digital pathology

tasks,50–52 whereas this is the first study using the MIL approach

to predict tumor purity. This study uses sample-level genomic tu-

mor purity values as labels during training and does not require

tedious pixel-level annotations by pathologists.

We formulate predicting tumor purity of a sample from its H&E-

stained histopathology slides as an MIL task (Figure 1A). The

sample’s top and bottom slides are cropped into many patches,

and these patches are collected to form a bag. Then, the task is

to predict the bag-level label of tumor purity. To achieve this

task, we developed a novel MILmodel with a ‘‘distribution’’ pool-

ing filter (see experimental procedures for details).

Our MIL models successfully predicted sample-level tumor

purity in different TCGA cohorts and a local Singapore cohort.

The predictions were consistent with genomic tumor purity

values (Figure 2). Besides, we obtained spatially resolved tumor

purity maps showing the variation of tumor purity over the slides

(Figures 1B and 4). We also showed that our MIL models learned

discriminant features for cancerous versus normal histology (Fig-

ures 1C and 5) and classified samples into tumor versus normal

almost perfectly in all cohorts (Figures 1D and 3B).

RESULTS

In this study, there were 10 different TCGA cohorts and a local

Singapore cohort. Each TCGA cohort had more than 400 pa-

tients, and the Singapore cohort had 179 lung adenocarcinoma

patients, such that each patient had both histopathology slides

and corresponding genomic sequencing data (Table 1, see

also Tables S1 and S2). The histopathology slides in each cohort

were randomly segregated at the patient level into training, vali-

dation, and test sets (Figures S1 and S2). We trained our MIL

model on the training set and chose the best set of model

weights based on validation set performance. Finally, we
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Figure 1. A novel MIL model predicts sample-level tumor purity from H&E-stained digital histopathology slides

(A) Our model accepts a bag of patches randomly cropped from the top and bottom slides of a sample as input and predicts the sample’s tumor purity at its

output. The feature extractor module extracts a feature vector for each patch inside the bag. The MIL pooling filter, namely distribution pooling, summarizes

extracted features into a bag-level representation by estimating marginal feature distributions. Finally, the bag-level representation transformation module

predicts the sample-level tumor purity. We use tumor purity values inferred from genomic sequencing data by ABSOLUTE19 as ground-truth labels during

training.

(B) We obtain a spatial tumor purity map for a slide by inferring tumor purity over each 1-mm2 ROI within the slide in a sliding window fashion. The map shows the

variation of tumor purity over the slide.

(C) Our MIL model learned discriminant features for cancerous versus normal histology from sample-level genomic tumor purity labels without requiring

exhaustive annotations from pathologists. We used discriminant features to obtain cancerous versus normal segmentationmaps for tumor slides. Trained feature

extractor module extracts features of patches from tumor and normal slides of a patient. Then, segmentation maps are obtained by hierarchical clustering over

the extracted feature vectors.

(D) Our MIL model successfully classifies samples into tumor versus normal.
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evaluated the performance of our trained MIL model on the data

of completely unseen patients in the hold-out test set. Each pa-

tient in the test set was like a new patient walking into the clinic.54

MIL models’ tumor purity predictions correlate
significantly with genomic tumor purity values
Ourmodels’ performance in 10 different TCGA cohorts was eval-

uated by correlation analyses between genomic tumor purity
values obtained from ABSOLUTE19 and our MIL models’ predic-

tions. The performance metric was Spearman’s rank correlation

coefficient.

We obtained significant correlations (p < 0.05) in eight cohorts,

namely breast invasive carcinoma (BRCA), glioblastoma multi-

forme (GBM), brain lower grade glioma (LGG), lung adenocarci-

noma (LUAD), lung squamous cell carcinoma (LUSC), ovarian

serous cystadenocarcinoma (OV), prostate adenocarcinoma
Patterns 3, 100399, February 11, 2022 3
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Figure 2. The MIL model’s tumor purity predictions correlate significantly with genomic tumor purity values

(A–I) A scatterplot of genomic tumor purity versus theMILmodel’s prediction is given for only tumor samples in the test set of each cohort: (A) BRCA, (B) GBM, (C)

LGG, (D) LUAD, (E) LUSC, (F) OV, (G) PRAD, (H) UCEC, and (I) LUAD_SG. Correlation coefficients with 95%CIs are given at the top of each plot. Note that the red

dotted line in each plot shows the diagonal (i.e., y = x line). All data points would align on the diagonal line in case of zero prediction error.

(legend continued on next page)
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A Performance metrics B Receiver operating characteristic curves

C Top and bottom slides are different in tumor purity

D Using top and bottom slides together gives better tumor purity predictions

Figure 3. Performance analysis of MIL

models

(A and B) MIL models perform better than percent-

age tumor nuclei estimates and successfully

classify samples into tumor versus normal. (A)

Spearman’s correlation coefficient versus mean-

absolute-error plot is given for MIL models’ tumor

purity predictions (represented by triangles) and

pathologists’ percentage tumor nuclei estimates

(represented by circles) in the test sets of different

cohorts (showed in different colors). MIL models’

predictions achieve lower mean absolute error and

higher Spearman’s correlation coefficient than

percentage tumor nuclei estimates. See also Tables

S3 and S5. (B) ROC curve analysis overMILmodels’

predictions for tumor versus normal sample classi-

fication. The area under curve values with 95% CIs

are given in the legend. MIL models successfully

classified samples into tumor versus normal in all

cohorts.

(C and D) The top and bottom slides of a tumor

sample are different in tumor purity. In the test set of

each cohort, for a tumor sample having top and

bottom slides, we conducted two experiments. (C)

The trained MIL model’s predictions from the top

and bottom slides of a sample are statistically

compared using Wilcoxon signed-rank test.53 Each

box plot summarizes the p values obtained in a

cohort. For at least 95% of the samples in each

cohort, the top and bottom slides are significantly

different (p < 0.05) in tumor purity. The dashed line

shows p = 0.05. See also Table S6. (D) For each

sample, the absolute error between genomic tumor

purity value and the MIL model’s prediction using

both slides and the expected value of absolute er-

rors between genomic tumor purity value and the

MIL model’s predictions over individual slides are

calculated. Box plots summarize the absolute errors

in two approaches. They are statistically compared

using Wilcoxon signed-rank test,53 and the results

are presented on top of the plots such that p > 0.05

(ns, not significant), *p % 0.05, **p % 0.01, and

***p% 0.001. See also Table S7. Whiskers show 5th

and 95th percentiles, and red lines show median

values. n, number of tumor samples with two slides.
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(PRAD), and uterine corpus endometrial carcinoma (UCEC)

(Figures 2A–2H and Table S3). While the minimum Spearman’s

rmil = 0.418 (p = 4.1 3 10�5; 95% confidence interval [CI],

0.226–0.574) was in the LGG cohort, the maximum Spearman’s

rmil = 0.655 (p = 4.6 3 10�24; 95% CI, 0.547–0.743) was in the

BRCA cohort. We compared our MIL models’’ predictions with

tumor purity values obtained from ESTIMATE32 as well and

observed similar performance (Table S4).

We repeated the correlation analyses between genomic tu-

mor purity values and pathologists’ percentage tumor nuclei

estimates (Figure 2J and Table S3). While the minimum Spear-

man’s rpath = 0.240 (p = 2.7 3 10�2; 95% CI, 0.009–0.446) was

in the thyroid carcinoma (THCA) cohort, the maximum Spear-

man’s rpath = 0.344 (p = 9.8 3 10�4; 95% CI, 0.139–0.531)

was in the UCEC cohort. There was no significant correlation
(J) Violin plots summarize genomic tumor purity values and pathologists’ percenta

are given at the top. Red lines show median values. ns, not significant; n, the nu

See also Tables S3 and S5.
in the GBM and LGG cohorts. Hence, the minimum correlation

with MIL predictions (rmil = 0.418 in the LGG cohort) was higher

than the maximum correlation with pathologists’ percentage tu-

mor nuclei estimates (rpath = 0.344 in the UCEC cohort). This

implies that MIL predictions are more consistent with genomic

tumor purity values than the pathologists’ percentage tumor

nuclei estimates.

Moreover, we conducted statistical tests on correlation coef-

ficients to compare our MIL models’ predictions and patholo-

gists’ percentage tumor nuclei estimates. We used the Fisher’s

z transformation-based method of Meng et al.55 Two methods

were compared only when there was a significant correlation

for both methods in a cohort (Table S3). MIL predictions were

significantly better than pathologists’ estimates in all cohorts

except LUSC and PRAD. For these cohorts, two methods
ge tumor nuclei estimates in the test set of each cohort. Correlation coefficients

mber of tumor samples.

Patterns 3, 100399, February 11, 2022 5
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performed on par (pcomp = 1.7 3 10�1 > 0.05 for the LUSC and

pcomp = 2.0 3 10�1 > 0.05 for the PRAD) in the test sets.

MILmodels’ predictions have lowermean absolute error
than percentage tumor nuclei estimates
Apart from Spearman’s correlation coefficients, we also

checked the mean absolute errors between genomic tumor pu-

rity values and MIL models’ predictions, and between genomic

tumor purity values and pathologists’ percentage tumor nuclei

estimates (Table S5).

In the analyses ofMIL predictions, theminimum andmaximum

mean-absolute-error values of memil
= 0.105 (standard deviation

semil
= 0.091) and memil

= 0.173 (semil
= 0.154) were obtained in

the OV cohort and the PRAD cohort, respectively. On the other

hand, in the analyses of pathologists’ percentage tumor nuclei

estimates, the minimum and maximum mean-absolute-error

values of mepath = 0.132 (sepath = 0.124) and mepath = 0.280 (sepath =

0.151) were obtained in the UCEC cohort and the LUAD cohort,

respectively. In all cohorts, pathologists’ estimates were gener-

ally higher than genomic tumor purity values (Figure 2J).

Similar to our comparison in correlation analyses, we

compared two methods based on absolute errors in the test

sets of different cohorts. We used the Wilcoxon signed-rank

test53 on absolute error values for tumor samples in the test

sets (Table S5). Absolute error values in MIL predictions were

significantly lower than those in pathologists’ percentage tumor

nuclei estimates in all cohorts except the LGG cohort. Two

methods performed similarly (pcomp = 5.4 3 10�2 > 0.05) in the

test set of the LGG cohort.

Figure 3A summarizes correlation and absolute error analyses.

We observed thatMIL predictions had lowermean absolute error

and higher Spearman’s correlation coefficient than pathologists’

percentage tumor nuclei estimates.

MIL model predicts tumor purity from H&E-stained
slides of FFPE sections in the Singapore cohort
Our MIL models successfully predicted tumor purity from H&E-

stained digital histopathology slides of fresh-frozen sections in

different TCGA cohorts. Besides, we evaluated their perfor-

mance on slides of formalin-fixed paraffin-embedded (FFPE)

sections in a local Singapore cohort consisting of 179 lung

adenocarcinoma patients (see Note S1 for details). Similar to

TCGA cohorts, we segregated data at the patient level (Table 1

and Figure S3).

We used transfer learning and initialized the model with the

weights of the MIL model trained on the TCGA LUAD cohort.

Then, we froze the weights of all layers in the network except

the first convolutional layer in the feature extractor module

(Figure 1A). This helped the network adapt the first layer
Figure 4. Incorrect size and selection of ROI might cause overestimat

(A–H) For a slide of a fresh-frozen section in the TCGA LUAD cohort, (A) shows the

patch (z1mm2 at the specimen level). Tumor purity corresponding to the patch is

Similarly, (D) shows a slide of a FFPE section in the LUAD_SG cohort, and (E) s

cropped from cancerous regions in the slides shown in (A) and (D), respectively. (G

percentage tumor nuclei estimates, we conducted error analyses over the slides

tumor purity as the average of top-k%of the patches with the highest scores (k = 0

In different cohorts, we plotted mean absolute error versus top-k% of the patche

tumor nuclei estimates in (G) and slides’ predictions and genomic tumor purity v
weights to learn the tissue morphology in FFPE sections,

which were different from fresh-frozen sections (Figure S4).

Note that, while the FFPE method preserves morphology

better and is the routine in histopathology, the fresh-frozen

method preserves nucleic acids better and is preferred for mo-

lecular analysis.56

Similar to the performance in the TCGA LUAD cohort, we ob-

tained a Spearman’s rmil = 0.554 (p = 4.63 10�4; 95%CI, 0.283–

0.745) and the mean absolute error of memil
= 0.120 (semil

= 0.091)

in the test set of the Singapore LUAD (LUAD_SG) cohort (Figures

2I and 3A). There were substantial differences between the

TCGA and LUAD_SG cohorts, such as tissue preservation

method (fresh-frozen versus FFPE) and ancestry of patients

(European versus East Asian). However, our MILmodel success-

fully predicted tumor purity from slides of FFPE sections using

transfer learning with minimal training only in the first convolu-

tional layer of the feature extractor module. The results

suggested that our MILmodels learned robust features for tumor

purity prediction tasks at the higher levels of the network. We

also checked the performance of the TCGA LUADmodel directly

on the LUAD_SG cohort used as an external validation set (Fig-

ure S5). Nevertheless, we did not get a significant correlation

(rmil = 0.141; p = 0.06 > 0.05), which highlighted the necessity

of adapting the weights of the first layer in feature extractor to

FFPE slides using transfer learning.

For pathologists’ estimates, we obtained a Spearman’s rpath =

0.361 (p = 3.03 10�2; 95%CI, 0.029–0.644) and themean abso-

lute error of mepath = 0.202 (sepath = 0.105) in the test set of the

LUAD_SG cohort (Figure 2J). We statistically compared the

MILmodel’s predictions and percentage tumor nuclei estimates.

While the difference was not significant (pcomp,r = 2.3 3 10�1 >

0.05) in terms of correlation coefficient, it was significant

(pcomp,abs = 7.3 3 10�4 < 0.05) in terms of absolute error.

Tumor purity varies spatially within a sample: Top and
bottom slides of a sample are different in tumor purity
Intra-tumor heterogeneity is a well-known phenomenon in solid

cancers.57–61 It results in therapeutic failure and drug resis-

tance.62 We checked whether it is observable from tumor purity

predictions of the trained MIL model on the top and bottom

slides of a sample. For each slide of a tumor sample with both

top and bottom slides in a cohort, 100 bags are created from

the slide’s patches and predictions are obtained from the trained

MIL model. Then, the predictions of two slides are statistically

compared using the Wilcoxon signed-rank test.53

Figure 3C shows the box plot of p values obtained from the

statistical tests in each cohort’s test set. There is a significant dif-

ference between the MIL predictions on the top and bottom

slides of the same tumor sample. In all cohorts, at least 75% of
ion in percentage tumor nuclei estimates

ROI centered on a patch and consisting of 16 closest patches to that particular

predicted over the ROI. (B) The tumor purity map for all patches within the slide.

hows its corresponding tumor purity map. (C) and (F) show example patches

andH) To investigate the effect of the size and selection of ROI on pathologists’

’ tumor purity values by gradually extending the ROI. We calculated the slide’s

, $$$, 100) in the tumor purity map (k = 0: the patchwith the highest tumor purity).

s for error analyses between slides’ predictions and pathologists’ percentage

alues in (H). See also Figures S4 and S6–S10.
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Figure 5. Cancerous versus normal segmentation maps

obtained by performing a clustering over the features ex-

tracted by the trained MIL model’s feature extractor mod-

ule are consistent with LUAD histopathology

(A and B) We show H&E-stained slides, color-coded segmentation

maps, and example zoom-in areas for two slides in the test set of

LUAD cohort: (A) TCGA-73-4675-01A-01-TS1, and (B) TCGA-50-

6590-01A-01-BS1. See also supplemental experimental proced-

ures for details.
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Table 1. The TCGA and Singapore cohorts

Tumor samples Normal samples

Cohorts Train Validation Test Train Validation Test

BRCA 559 185 185 76 27 30

GBM 285 95 94 0 0 0

KIRC 261 85 89 220 71 73

LGG 273 91 90 0 0 0

LUAD 266 90 90 101 37 33

LUSC 273 90 90 132 41 47

OV 310 103 103 53 13 18

PRAD 258 85 85 72 15 24

THCA 258 85 85 48 18 17

UCEC 270 90 89 18 4 10

LUAD_SG 107 36 36 0 0 0

In each cohort, a patient has only one tumor sample and one matching

normal sample, if available. The numbers of tumor and matching normal

samples in training, validation, and test sets are presented for each

cohort. The data are segregated at the patient level. See also Tables

S1 and S2, Figures S1–S3, and Note S1.
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samples have p value p < 1.03 10�8 and at least 95%of samples

have p value p < 0.05. Hence, we conclude that there is a varia-

tion in tumor purity between the top and bottom sections of a tu-

mor sample; i.e., tumor purity varies spatially within the sample.

The degree of spatial variation in tumor purity is different for

different cancer types (Table S6). The UCEC, LGG, and GBM co-

horts had the lowest mean absolute differences (mdabs) between

top and bottom slides’ predictions (mdabs % 0.090); i.e., they

were the most spatially homogeneous cancers among all co-

horts. On the other hand, the PRAD cohort had the highest

mean absolute difference (mdabs = 0.144); i.e., it was the most

spatially heterogeneous cancer in tumor purity.

Predicting a sample’s tumor purity using both top and
bottom slides is better than using only one slide
We checked if there is a significant difference between predict-

ing a sample’s tumor purity by using both slides (top and bottom)

and using only one slide. For a tumor sample with two slides in a

cohort, let psmpl be genomic tumor purity value of the sample;
bpsmpl be tumor purity prediction obtained from trainedMILmodel

by using both of the slides together; bpsld1 and bpsld2 be tumor pu-

rity predictions obtained from trained MIL model for individual

slides. We compared the absolute error of sample-level predic-

tion esmpl = | bpsmpl - psmpl| and the expected value of absolute

errors of slide-level predictions esld = 0.5 * (| bpsld1 - psmpl| + |
bpsld2 - psmpl|). We used the Wilcoxon signed-rank test53 on the

difference of esmpl � esld (Table S7). Note that the PRAD (n =

21) and UCEC (n = 23) cohorts were excluded from this study

due to few samples with two slides.

In the test sets of BRCA, LUAD, LUSC, and OV cohorts, using

both slides for tumor purity prediction gave better results in

terms of absolute error (Figure 3D). However, in the test sets of

GBM and LGG cohorts, there was no significant difference using

both slides or one slide alone. Indeed, this is not surprising since

they had the lowest mean absolute differences between the

slides’ predictions (Table S6); i.e., the most spatially homoge-
neous tumors. In fact, when both slides are the same, sample-

level prediction and slide predictions would be the same.

We conclude that predicting a sample’s tumor purity using

both the top and bottom slides together is better than using

only one of them whenever possible.

Spatial tumor purity map analysis reveals the probable
cause of pathologists’ high percentage tumor nuclei
estimates
Pathologists’ percentage tumor nuclei estimates were generally

higher than genomic tumor purity values for all TCGA cohorts in

our analysis (Figure 2J and see also Figures S1 and S2). Previous

studies also stated that,5,13 but the reasons remain unclear. We

hypothesized that incorrect size and selection of ROI might be

the cause. We obtained tumor purity maps by our trained MIL

models in different TCGA cohorts and conducted error analysis

over them to test our hypothesis.

We followed the same procedure as in Smits et al.6 to simulate

pathologists’ percentage tumor nuclei estimation. Tumor purity

is predicted over an ROI of 1 mm 3 1 mm around each patch

in a slide, which corresponds to 16 patches at 203 zoom level

(each patch is around 256 mm 3 256 mm at the specimen level)

(Figure 4A). Then, the predicted value is assigned to the patch

in the tumor purity map (Figure 4B). We also obtained tumor pu-

rity maps for slides in the Singapore cohort (Figures 4D, 4E, and

S6–S10).

We observed that a tumor purity map shows variation within

the slide, which implies that ROI selection is crucial in patholo-

gists’ percentage tumor nuclei estimation. Since tumor purity

was higher in pathologists’ percentage tumor nuclei estimates,

we investigated whether pathologists might have selected high

tumor content regions over the slides for percentage tumor

nuclei estimation. The highest prediction in a slide’s tumor purity

map was used as the slide’s tumor purity value. Then, error an-

alyses were conducted over the slides’ tumor purity values

compared with pathologists’ percentage tumor nuclei estimates

and genomic tumor purity values. The error analyses were

repeated by gradually extending the ROI such that a slide’s

tumor purity was calculated as the average of top-k% of the

patches with the highest scores (k = 0, $$$, 100) in the slide’s tu-

mor purity map.

We discovered that the mean absolute error between the

slides’ predictions and pathologists’ percentage tumor nuclei

estimates increases as we extend the ROI to cover the lower

tumor purity regions (Figure 4G). These observations suggested

that pathologists may tend to select high-tumor-content re-

gions to estimate percentage tumor nuclei. The LGG and

UCEC cohorts may look exceptional with almost constant

mean-absolute-error plots. However, this is expected since

these two cohorts’ samples have high genomic tumor purity

values (Figure S1), so the variation within the slides is very

low. The PRAD cohort’s plot also has a different pattern than

the others. It has an initial decrease and an increase in the later

stages, emphasizing the importance of the ROI size. The pa-

thologists may need to analyze a bigger ROI depending on

the morphology of the tissue origin to reach a certain nuclei

count while estimating percentage tumor nuclei. The PRAD

may be one of them due to the glandular structure of the

prostate.
Patterns 3, 100399, February 11, 2022 9



ll
OPEN ACCESS Descriptor
Furthermore, as the ROI grows, the mean absolute error be-

tween the slides’ predictions and genomic tumor purity values

decreases (Figure 4H). Indeed, this is expected since our MIL

models converge to their original performance of prediction

over the whole slide (Figure 2). It is even more evident in

the LUSC and OV cohorts. The error decreases initially but in-

creases later since our MIL models underestimated the tumor

purity compared with genomic tumor purity values in these

cohorts.

MIL model learns discriminant features for cancerous
versus normal tissue histology
We explored the capability of our MIL model’s feature extractor

on learning discriminant features for cancerous versus normal

tissue histology while being trained on sample-level genomic tu-

mor purity labels. For each patient having both tumor andmatch-

ing normal samples, features of patches cropped over the slides

of the tumor and normal samples were extracted using the

trained feature extractor module of the MIL model. Then, slide-

level cancerous versus normal segmentation maps were ob-

tained by performing a hierarchical clustering over the extracted

feature vectors (Figure 1C and see supplemental experimental

procedures for details). The resolution of segmentation was at

the patch level, and each patch was around 256 mm 3 256 mm

at the specimen level.

In the test set of the LUAD cohort, there were 33 patients both

with tumor andmatching normal samples.We constructed slide-

level segmentation maps for these patients (Figure 5). We

observed that segmentation maps were consistent with the

LUAD histopathology during the qualitative assessment of the

segmentation maps. While healthy tissue components, like

blood vessels, stroma regions, and normal tissue structures,

were labeled normal, regions invaded by neoplastic cells were

labeled cancerous. Hence, we qualitatively validated that our

MIL model learned discriminant features for cancerous versus

normal tissue histology in LUAD from sample-level genomic tu-

mor purity labels without requiring pixel-level annotations from

pathologists.

MIL model successfully classifies samples into tumor
versus normal
A good tumor purity predictor should be able to discriminate be-

tween tumor and normal. We checked our MIL model’s perfor-

mance in the tumor versus normal sample classification task.

Tumor purity predictions for all samples in the test set of each

cohort were obtained and a receiver operating characteristic

(ROC) curve analysis was conducted. Then, the area under the

ROC curve (AUC) was calculated and a 95%CI was constructed

using the percentile bootstrap method.63 Note that GBM and

LGG cohorts were excluded from analysis since there were no

normal slides in these cohorts.

Our MIL models successfully discriminated tumor samples

from normal samples in all cohorts with AUC values greater

than or equal to 0.927 (Figure 3B). We got the minimum and

maximum AUC values of 0.927 (95% CI, 0.826–0.993) and

1.000 (95% CI, 1.000–1.000) on the test sets of THCA and

BRCA cohorts, respectively. Note that, although we did not get

a strong correlation between genomic tumor purity values and

MIL predictions in the test sets of kidney renal clear cell carci-
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noma (KIRC) and THCA cohorts, our models successfully classi-

fied samples into tumor versus normal in these cohorts.

Furthermore, we obtained an AUC value of 0.991 (95% CI,

0.975–1.000) on the test set of the LUAD cohort. Our model out-

performed the classical image processing and machine-

learning-based method of Yu et al.64 (AUC, 0.85) and the DNA

plasma-based method of Sozzi et al.65 (AUC, 0.94). Besides,

our model performed on par with the deep learning model of

Coudray et al.66 (AUC, 0.993), whichwas trained on tumor versus

normal classification, and the deep learning model of Fu et al.67

(AUC, 0.977 with 95%CI, 0.976–0.978), which was fine-tuned on

pathologists’ percentage tumor nuclei estimates in a transfer

learning setup. However, there is one concern about the dataset

preparation methods of Coudray et al.66 and Fu et al.67 They ob-

tained the datasets by segregating data either at slide level66 or

at patch level.67 These data segregationmethodsmight lead to a

severe data leakage problem, and the models’ performance

might be illusory.

DISCUSSION

Accurate tumor purity estimation is crucial for high-throughput

genomic analysis. It is routinely estimated by pathologists; how-

ever, pathologists’ estimates suffer from inter-observer vari-

ability and do not correlate well with genomic tumor purity

values. Besides, percentage tumor nuclei estimation by pathol-

ogists is tedious and time consuming. To overcome these

challenges, we developed a novel MIL model with a distribution

pooling filter. It predicted tumor purity from H&E-stained histo-

pathology slides of fresh-frozen and FFPE sections in different

TCGA cohorts and a Singapore cohort, respectively. The predic-

tions were consistent with genomic tumor purity values, and they

outperformed pathologists’ percentage tumor nuclei estimates

in the TCGA cohorts.

Hence, our MIL models can be utilized for sample selection for

high-throughput genomic analysis, which will help reduce pa-

thologists’ workload and decrease inter-observer variability.

Moreover, spatially resolved tumor purity maps obtained using

our MIL models can substantially contribute to a better under-

standing of the tumor microenvironment. Lastly, our models’

predictions can be used as prognostic biomarkers to stratify

patients.

MIL model can pre-screen slides for genomic analysis
The current workflow for sample selection for genomic analysis

includes screening slides of 8–12 sections, choosing the most

appropriate slide, and, possibly, marking out a high tumor con-

tent region on the slide for macrodissection before extraction.

This adds a heavy burden to pathologists’ workload. To help pa-

thologists, our MIL model can pre-screen the slides and suggest

the best slide (with the highest predicted tumor purity) for high-

throughput sequencing. Moreover, it can propose high-tumor-

content regions over the slide for macrodissection via spatial

tumor purity map, which is remarkably important for low-purity

samples (for example, in lung cancers).

Furthermore, our MIL model’s predictions can be used as a

quality control metric to decide if a section has enough tumor

content for sequencing or if a section requires deeper

sequencing. This can avoid wasting the limited amount of
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tissue (especially in biopsy samples) in failed sequencing

attempts.

Genomic tumor purity values and pathologists’
percentage tumor nuclei estimates are complementary
While genomic tumor purity values have recently been recog-

nized as accurate for downstream genomic analysis after

sequencing,35 sequencing is still subject to sample selection

based on pathologists’ percentage tumor nuclei estimates. On

the other hand, pathologists’ slide reading method is inherently

limited since it requires cellular-level analysis. It can give reliable

results over a selected ROI, but it may not be applicable for sam-

ple-level tumor purity prediction, ideally requiring the analysis of

gigapixel digital histopathology slides. Therefore, we used sam-

ple-level genomic tumor purity values as labels for training our

MILmodels. Now, we can use our MILmodels to support pathol-

ogists for sample selection for molecular analysis by pre-

screening slides and proposing ROIs for further assessment.

Spatially resolved tumor purity maps can enhance
spatial omics
We obtained tumor purity maps showing the variation of tumor

purity in slides using our trained MIL models (Figures 4B and

4E). They can potentially help understand the interaction of can-

cer cells with other tissue components (like normal epithelial,

stromal, and immune cells) in the tumor microenvironment,

which is a key player in tumor formation and primary determinant

of therapeutic response.68,69 Furthermore, they can enhance

spatial-omics technologies.70–73

Weak tumor purity labels innately necessitated an MIL
approach
Previous studies based on patch-based models worked on few

cancer types with relatively few patients (like 10 patients46 or 64

patients47,48) since they required pixel-level annotations (rarely

available). However, using genomic tumor purity values as sam-

ple-level weak labels enabled us to conduct a pan-cancer study

on 10 different TCGA cohorts, where each cohort had more than

400 patients. On the other hand, unlike pixel-level annotations

providing whether each cell is cancerous or normal, the genomic

tumor purity of a sample tells us only the proportion of cancer

cells within the sample. Therefore, training a machine learning

model using weak tumor purity labels innately necessitated an

MIL approach, where a sample was represented as a bag of

patches from the sample’s slides, and the sample’s genomic

tumor purity value was used as the bag’s label.

The sources of error in MIL predictions
Our MIL models successfully predicted tumor purity (Figure 2).

However, they slightly deviated from the genomic tumor purity

values. There may be different sources of prediction errors.

While some of them can be eliminated, some are inevitable.

First, we have fewer patients in our datasets (300 patients per

training set) than traditional deep learning datasets containing

millions of independent samples.74 Considering the complexity

of cancer, our MIL models effectively captured features that

distinguish cancerous versus normal. We also expect that the

performance will improvewith the increasing number of patients.
Indeed, we obtained the best performance in our largest cohort

of BRCA (559 patients in the training set).

Second, our MIL model uses histopathology slides from the

top and bottom sections of the tumor portion. We have already

shown the variation in tumor purity between the top and bottom

sections of the tumor samples. Thus, for samples with only one

slide, the prediction error is expected to be higher.

Third, we checked if necrosis regions inside the slides affect

our MIL models’ performances. For each cohort (except the

LGG cohort, in which all samples have percentage necrosis of

0), Spearman’s correlation coefficients between absolute errors

in MIL predictions and percentage necrosis values are calcu-

lated in the test set (Table S8). There is no significant correlation

(p > 0.05) in any cohorts except the LUSC cohort, in which we

observe a low correlation of 0.253 (p = 1.6 3 10�2; 95% CI,

0.062, 0.432). Overall, it seems that our models can handle ne-

crosis regions well.

Last, our model’s predictions are based on morphology in

H&E-stained histopathology slides. However, genomic tumor

purity values were based on DNA data, and all the effects of ge-

netic changes (so the genomic tumor purity changes) may not be

observable from the slides due to the selective dyeing character-

istics of H&E staining. Even some genetic changesmay not man-

ifest in morphology.75

Why do MIL predictions perform better than percentage
tumor nuclei estimates?
Compared with the percentage tumor nuclei estimates by pathol-

ogists, our MIL models’ predictions gave a higher correlation and

lower mean absolute error with genomic tumor purity values (Fig-

ure 3A). One of the primary reasons for this superiority is that the

MILmodels were trained directly on genomic tumor purity values,

which enabled the MIL models to learn associated features.

Another reason might be that pathologists concentrate more

on tumor cells than infiltrating normal cells within the tumor,

which may result in missed normal tissue components. More-

over, cancer cells are usually enlarged. They occupymore space

than normal tissue components, stromal cells, and infiltrating

lymphocytes, which may create an implication of high tumor

content.18 Pathologists may fail to incorporate this effect in their

estimates correctly and may overestimate percentage tumor

nuclei. Indeed, this was the case in the cohorts we analyzed (Fig-

ures 2J, S1, and S2).

Finally, while our MIL models predict tumor purity over the

whole slide, pathologists estimate the percentage tumor nuclei

by analyzing some selected ROI over the slide. Therefore, the

size and selection of the ROI might cause the overestimation in

pathologists’ percentage tumor nuclei estimates (Figure 4G).

Limitations and future work
OurMILmodels, by design, apply to any tumor sample with H&E-

stained histopathology slides.We tested themon tumor samples

with a broad range of tumor purity values. However, testing them

on samples with percentage tumor nuclei lower than TCGA

threshold would strengthen the applicability of our MIL models.

It is reserved for future work.

We evaluated ourMILmodels on hold-out test sets to simulate

real-world clinical workflow and obtained successful results. Be-

sides, our analysis on the LUAD_SG cohort using transfer
Patterns 3, 100399, February 11, 2022 11
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learning withminimal training for domain adaptation showed that

our MIL models learned robust features for tumor purity predic-

tion tasks. However, we could not validate our models on

external cohorts due to differences between fresh-frozen and

FFPE tissue preservation methods, which might further consoli-

date their robustness.

We qualitatively validated our spatially resolved tumor purity

maps. Quantitative validation of them using spatial-omics tech-

nologies is reserved for future work, which requires recruitment

of a prospective cohort, conducting spatial-omics and image

analysis, and evaluating purity maps obtained from the MIL

model against spatial-omics.

Lastly, our MIL models are deep learning based, and deep

learning algorithms perform better with more data. Training of

the models with larger cohorts would help to improve the model

performance by better capturing patient-to-patient variations.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and will

be fulfilled by the lead contact, Wing-Kin Sung (ksung@comp.nus.edu.sg).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d All TCGA datasets are publicly available. Manifest files are provided with

original code to download H&E-stained digital histopathology slides

using GDC Data Transfer Tool. Genomic tumor purity values were

downloaded from https://gdc.cancer.gov/about-data/publications/

pancanatlas under filename TCGA_mastercalls.abs_ tables_JSedit.fix-

ed.txt. They are also given in Data S1. For the Singapore cohort,

genomic tumor purity values and representative histological images

are publicly available from OncoSG (https://src.gisapps.org/OncoSG/)

under dataset Lung Adenocarcinoma (GIS, 2019).

d All original code has been deposited at Zenodo under the https://doi.

org/10.5281/zenodo.5606981 and is publicly available as of the date

of publication. The repository provides a detailed step-by-step explana-

tion, from downloading H&E-stained digital histopathology slides to ob-

taining spatially resolved tumor purity maps (SRTPMs).

d Any additional information required to reanalyze the data reported in this

paper is available from the lead contact upon request.
Datasets

We downloaded H&E-stained histopathology slides of fresh-frozen sections in

10 different cohorts in TCGA (Table 1). We selected these cohorts since they

have more than 400 patients with both histopathology slides and correspond-

ing genomic sequencing data in TCGA. Each patient had a tumor sample, and

some patients also had matching normal samples.

In TCGA, primary tumor samples and matching normal samples (adjacent

non-neoplastic solid tissue or blood) were collected at the Tissue Source Sites

(TSSs) from patients who had received no prior treatment (chemotherapy or

radiotherapy) for their disease. Collected samples were frozen and shipped

overnight to the Biospecimen Core Resource (BCR) for TCGA while maintain-

ing a temperature less than �180�C.76

At the BCR, each frozen sample was cut into portions.77 Then, two glass

slides (sometimes only one) were prepared by cutting sections 4–6 mm thick

from the top and bottom of a portion78 and staining with H&E.79 Based on

the information from the BCR (via personal communication), these slides

were scanned at 403 magnification using an Aperio XT slide scanner. A

board-certified pathologist reviewed the slides. Upon passing pathology re-

view, the remaining portion without any tumor enrichment was sent for

genomic analysis.80 In other words, the (top and bottom) slides and the portion

sent for genomic analysis were immediate neighbors.
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During review (personal communication), a pathologist estimated (1) per-

centage tumor nuclei and percentage of all other nuclei, which add up to

100%; and (2) percentage cellular tumor, percentage normal, percentage

stroma, and percentage necrosis, which add up to 100%. Percentage tumor

nuclei in each slide of a frozen tumor section was estimated by evaluating at

least 10 specimen fields (excluding necrosis regions) via the digital slide

viewer. Tumor portions with percentage tumor nuclei of R60% and percent-

age necrosis of%20%were accepted to the study and sent for genomic anal-

ysis.76 Besides, pathologists confirmed from slides of frozen normal sections

that the adjacent normal tissues (if available) were free of tumor cells.

We also collected H&E-stained histopathology slides of FFPE sections in an

East Asian cohort consisting of 179 lung adenocarcinoma patients in

Singapore. In the Singapore cohort, only one slide was prepared for each tu-

mor sample from the top section of the tissue used for sequencing, and there

were no normal samples. All the slides of FFPE sections were prepared,

stained, and scanned at 403magnification using The Philips IntelliSite Pathol-

ogy Solution (Koninklijke Philips, The Netherlands) in the same laboratory in

Singapore.

In each cohort, we randomly segregated the data at the patient level (i.e.,

slides from the same patient should be in the same set) into training (60%), vali-

dation (20%), and test (20%) sets (Table 1), which had similar tumor purity dis-

tributions (Figures S1 and S2). Note that segregating data at the patient level is

crucial to prevent data leakage while training machine learning models.54 The

training set was used to train the machine learning model, the validation set

was used to choose the best model, and the test set was held out as unseen

data for evaluation of the best model. The list of patients and slides in each set

are given in Document S2.

MIL model

Our novel MIL model consists of three modules: feature extractor module, MIL

pooling filter, and bag-level representation transformation module (Figure 1A).

We use neural networks to implement the feature extractor module and the

bag-level representation transformation module to parameterize the learning

process fully (see supplemental experimental procedures for details). We

use our novel distribution pooling filter as the MIL pooling filter. It is more

expressive than standard pooling filters (like mean and maximum pooling)

regarding the amount of information captured while obtaining bag-level repre-

sentations.81 Given a bag of patches, the feature extractor module extracts a

feature vector for each patch inside the bag. Then, thanks to its superiority, the

distribution pooling filter obtains a strong bag-level representation by esti-

mating the marginal distributions of the extracted features. Finally, the bag-

level representation transformation module predicts tumor purity. This system

of neural network modules is trained end-to-end using samples’ genomic tu-

mor purity values as labels.

Training of MIL models

To prepare machine learning datasets, tissue regions inside histopathology

slides were detected by applying OTSU thresholding. Over the tissue regions,

non-overlapping 512 3 512 patches at 203 zoom level (specimen-level pixel

size, 0.5 mm 3 0.5 mm) were cropped.

During training, we used a bag of patches cropped from a sample’s top and

bottom slides as the input and the sample’s tumor purity value obtained from

genomic sequencing data by ABSOLUTE19 as the ground-truth label (Fig-

ure S1). At each epoch, one bag per sample is created on the fly by randomly

selecting 200 patches from the sample’s patches. We also used the matching

normal samples whenever available to enable our model to capture the infor-

mation related to normal tissue histology. We assigned a tumor purity value of

0.0 to a matching normal sample as the ground-truth label. Note that there

were no normal samples in the Singapore cohort.

We initialized the models’ weights randomly and trained them end-to-end

using the ADAM optimizer with a learning rate of 0.0001 and L2 regularization

on the weights with a weight decay of 0.0005. The batch size was 1. We used

absolute error as the loss function and employed early stopping based on loss

in the validation set to avoid overfitting.

Predicting tumor purity of a sample

We created 100 bags for each sample in the test set and obtained tumor purity

predictions from the trained model. Each bag was created by randomly

mailto:ksung@comp.nus.edu.sg
https://gdc.cancer.gov/about-data/publications/pancanatlas
https://gdc.cancer.gov/about-data/publications/pancanatlas
https://src.gisapps.org/OncoSG/
https://doi.org/10.5281/zenodo.5606981
https://doi.org/10.5281/zenodo.5606981
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selecting 200 patches from the available patches cropped from the sample’s

(top and bottom) slides. We used the average of 100 predictions as the sam-

ple’s tumor purity prediction during performance evaluation.

Statistical analysis

We obtained 95% CIs for Spearman’s rank correlation coefficients and area

under the ROC curves using the percentile bootstrap method.63 To compare

the performance of two methods (our MIL models’ predictions and

pathologists’ percentage tumor nuclei estimates), we used the Fisher’s z

transformation-basedmethod of Meng et al.55 on Spearman’s rank correlation

coefficients and Wilcoxon signed-rank test53 on absolute error values.

All statistical tests were two sided and statistical significance was consid-

ered when p < 0.05. We used scipy.stats (v1.4.1) python library for statisti-

cal tests.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

patter.2021.100399.
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SUPPLEMENTAL ITEMS

Table S1: The number of samples, slides, and patches in each TCGA cohort. Each patient has only
one tumor sample and one normal sample if available. Note that “tumor slide” and “normal slides” refer to the
slides of tumor samples and normal samples, respectively. Similarly, “tumor patches” and “normal patches”
refer to patches cropped over “tumor slides” and “normal slides”, respectively. Related to Table 1.

# samples # slides # patches

normal tumor total normal tumor total normal tumor total

BRCA 133 929 1,062 312 1,280 1,592 84,196 710,446 794,642
GBM 0 474 474 0 917 917 0 618,649 618,649
KIRC 364 435 799 454 841 1295 466,883 655,625 1,122,508
LGG 0 454 454 0 625 625 0 347,065 347,065
LUAD 171 446 617 200 694 894 108,876 490,401 599,277
LUSC 220 453 673 333 714 1,047 166,181 544,778 710,959
OV 84 516 600 142 1,031 1,173 72,385 1,122,620 1,195,005
PRAD 111 428 539 111 535 646 75,798 338,120 413,918
THCA 83 428 511 83 443 526 30,234 199,275 229,509
UCEC 32 449 481 34 589 623 17,359 314,624 331,983

Table S2: The number of samples in different genomic tumor purity and percent tumor nuclei groups
(<10% , 10-25%, 25-50%, and ≥50%). Related to Table 1.

genomic tumor purity percent tumor nuclei

<10% 10-25% 25-50% ≥50% <10% 10-25% 25-50% ≥50%

BRCA 1 44 247 637 0 0 10 919
GBM 0 6 43 425 1 0 4 469
KIRC 0 7 158 270 0 0 0 435
LGG 0 10 54 390 0 0 3 451
LUAD 1 40 225 180 0 0 5 441
LUSC 0 40 188 225 0 0 5 448
OV 0 1 28 487 0 0 0 516
PRAD 0 24 117 287 0 0 7 421
THCA 0 3 50 375 0 0 0 428
UCEC 0 6 43 400 0 0 6 443
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Figure S1: Violin plots of genomic tumor purity values (obtained using ABSOLUTE1) in the training,
validation, and test sets of each TCGA cohort. Related to Table 1.
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Figure S2: Violin plots of percent tumor nuclei values (collected from TCGA data portal) in each
TCGA cohort’s training, validation, and test sets. Related to Table 1.

Table S3: Comparison of methods based on Spearman’s correlation coefficients in the test sets of
different cohorts. Spearman’s correlation coefficients between genomic tumor purity values and MIL
predictions (ρmil) and genomic tumor purity values and pathologists’ percent tumor nuclei estimates (ρpath)
in the test sets of different cohorts are calculated for only the tumor samples. Then, they are compared
using the method in Meng et al.2. The number of tumor samples (n), Spearman’s correlation coefficients
together with calculated p-values (Pρmil and Pρpath ) and 95% confidence intervals (CIρmil and CIρpath ), and
calculated p-values in statistical tests (Pcomp) are presented. Note that if the calculated correlation in any
method is not significant (i.e., Pρmil > 5.0e− 02 or Pρpath > 5.0e− 02), the statistical test is not conducted. It
is indicated by ‘x’. The best methods are highlighted in bold. Related to Figure 2 and Figure 3A.

MIL prediction Pathologist’s estimate Comparison

n ρmil Pρmil CIρmil ρpath Pρpath CIρpath Pcomp

BRCA 185 0.655 4.6e-24 0.547 - 0.743 0.299 3.6e-05 0.162 - 0.429 1.4e-07
GBM 94 0.572 1.7e-09 0.389 - 0.721 0.104 3.2e-01 -0.102 - 0.309 x
LGG 90 0.418 4.1e-05 0.226 - 0.574 0.201 5.7e-02 -0.029 - 0.392 x
LUAD 90 0.515 2.1e-07 0.320 - 0.660 0.255 1.5e-02 0.036 - 0.448 1.2e-02
LUSC 90 0.467 3.5e-06 0.280 - 0.627 0.324 1.8e-03 0.118 - 0.503 1.7e-01
OV 103 0.581 1.3e-10 0.429 - 0.711 0.328 7.1e-04 0.132 - 0.518 9.4e-03
PRAD 85 0.424 5.3e-05 0.224 - 0.597 0.293 6.5e-03 0.074 - 0.504 2.0e-01
UCEC 89 0.579 2.7e-09 0.408 - 0.720 0.344 9.8e-04 0.139 - 0.531 2.6e-02



Table S4: Spearman’s correlation coefficients. Spearman’s correlation coefficients between (i) genomic
tumor purity values from ABSOLUTE1 (ABS) and MIL predictions (MIL), (ii) genomic tumor purity values
from ESTIMATE3 (EST) and MIL predictions, and (iii) genomic tumor purity values from ABSOLUTE and
genomic tumor purity values from ESTIMATE are calculated for the tumor samples having corresponding
values in the test sets. The number of tumor samples (n), correlation coefficients (ρ) together with calculated
p-values (P ) and 95% confidence intervals (CI) are presented.

ABS vs. MIL EST vs. MIL EST vs ABS

n ρ P CI ρ P CI ρ P CI

BRCA 186 0.655 4.6e-24 0.547 - 0.743 0.519 4.0e-14 0.401 - 0.615 0.611 2.4e-20 0.496 - 0.709
GBM 22 0.610 3.3e-03 0.162 - 0.882 0.528 1.4e-02 0.112 - 0.821 0.732 1.6e-04 0.439 - 0.898
LGG 91 0.418 4.1e-05 0.226 - 0.574 0.139 1.9e-01 -0.076 - 0.333 0.352 6.6e-04 0.142 - 0.531
LUAD 91 0.515 2.1e-07 0.320 - 0.660 0.546 2.5e-08 0.391 - 0.674 0.645 6.7e-12 0.468 - 0.779
LUSC 88 0.447 1.4e-05 0.264 - 0.611 0.350 8.9e-04 0.150 - 0.524 0.628 7.5e-11 0.466 - 0.752
OV 52 0.596 3.9e-06 0.360 - 0.768 0.579 8.5e-06 0.323 - 0.763 0.708 6.2e-09 0.532 - 0.824
PRAD 86 0.424 5.3e-05 0.224 - 0.597 0.319 3.0e-03 0.109 - 0.496 0.447 1.8e-05 0.241 - 0.634
UCEC 40 0.574 1.3e-04 0.284 - 0.788 0.400 1.2e-02 0.057 - 0.695 0.580 1.1e-04 0.291 - 0.789

Table S5: Comparison of methods based on absolute errors in the test sets of different cohorts.
Absolute errors between genomic tumor purity values and MIL predictions (emil) and genomic tumor purity
values and pathologists’ percent tumor nuclei estimates (epath) in the test sets of different cohorts are
calculated for only the tumor samples. Then, they are compared using the Wilcoxon signed-rank test4. The
number of tumor samples (n), mean absolute errors (µemil and µepath) together with standard deviations
(σemil and σepath), median absolute errors (memil and mepath) together with interquartile ranges (IQRemil
and IQRepath ), and calculated p-values in the statistical tests (Pcomp) are presented. The best methods are
highlighted in bold. Related to Figure 2 and Figure 3A.

MIL prediction Pathologist’s estimate Comp.

n µemil σemil memil IQRemil µepath σepath mepath IQRepath Pcomp

BRCA 185 0.116 0.097 0.104 0.043 - 0.159 0.220 0.147 0.200 0.105 - 0.310 2.5e-13
GBM 94 0.113 0.106 0.074 0.046 - 0.142 0.195 0.158 0.145 0.080 - 0.260 2.1e-07
LGG 90 0.136 0.119 0.105 0.052 - 0.188 0.152 0.122 0.130 0.060 - 0.200 5.4e-02
LUAD 90 0.132 0.109 0.112 0.060 - 0.175 0.280 0.151 0.275 0.170 - 0.395 3.9e-09
LUSC 90 0.148 0.122 0.125 0.054 - 0.196 0.266 0.150 0.250 0.140 - 0.375 5.8e-06
OV 103 0.105 0.091 0.086 0.043 - 0.127 0.136 0.126 0.110 0.030 - 0.190 1.6e-02
PRAD 85 0.173 0.154 0.130 0.068 - 0.240 0.204 0.141 0.180 0.090 - 0.285 1.4e-02
UCEC 89 0.109 0.120 0.072 0.027 - 0.142 0.132 0.124 0.100 0.040 - 0.170 1.4e-02



Note S1: Singapore Cohort

Singapore cohort consists of 179 lung adenocarcinoma patients having East Asian ancestry. Each patient
has one tumor sample, and one slide is prepared from each tumor sample (except one sample in the training
set). The slides are prepared from formalin-fixed paraffin-embedded sections (FFPE). On the contrary
to FFPE sections in the Singapore cohort, slides in the TCGA cohorts are prepared from fresh-frozen
sections. These two tissue preservation methods are quite different from each other. While the FFPE method
preserves morphology better and is the routine in histopathology, the fresh-frozen method preserves nucleic
acids better and is preferred for molecular analysis5. The number of samples, slides and patches in the
training, validation and test sets of the Singapore cohort are presented below.

Singapore cohort: the number of samples, slides, and patches. Note that each patient has only one
tumor sample. Related to Table 1.

# samples # slides # patches

dataset normal tumor total normal tumor total normal tumor total
training 0 107 107 0 108 108 0 525,961 525,961
validation 0 36 36 0 36 36 0 190,971 190,971
test 0 36 36 0 36 36 0 182,383 182,383
all 0 179 179 0 180 180 0 899,315 899,315
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Figure S3: Singapore cohort: genomic tumor purity histograms for (a) training, (b) validation, and
(c) test sets. Related to Table 1.



(a) TCGA LUAD: Fresh-frozen - Normal (b) Singapore LUAD: FFPE - Normal

(c) TCGA LUAD: Fresh-frozen - Cancerous (d) Singapore LUAD: FFPE - Cancerous

Figure S4: Example patches cropped from slides of fresh-frozen and formalin-fixed paraffin-
embedded (FFPE) sections. (a, c) A normal patch and a cancerous patch cropped from slides of fresh-
frozen sections in the TCGA LUAD cohort. (b, d) A normal patch and a cancerous patch cropped from slides
of FFPE sections in the Singapore LUAD cohort. Related to Figure 4.
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Figure S5: External validation on Singapore cohort. We checked the performance of the TCGA LUAD
model directly on the Singapore LUAD cohort (with n=179 tumor samples) used as an external validation set.
Scatter plot of genomic tumor purity vs. MIL model prediction. Diagonal red dotted line shows the y=x line.



Table S6: Statistics of the absolute difference between the predictions of a tumor sample’s top and
bottom slides. In the test set of each cohort, for a tumor sample with two slides, the absolute difference
(dabs) between the tumor purity predictions of the slides is calculated. Then, the number of tumor samples
with two slides (n), the mean absolute difference (µdabs), the standard deviation of the absolute difference
(σdabs ), the median absolute difference (mdabs ), and the interquartile range (IQRdabs ) are presented. Related
to Figure 3C.

n µdabs σdabs mdabs IQRdabs

BRCA 73 0.101 0.106 0.063 0.031 - 0.115
GBM 90 0.090 0.083 0.068 0.016 - 0.141
LGG 31 0.086 0.089 0.054 0.023 - 0.139
LUAD 44 0.100 0.110 0.059 0.023 - 0.125
LUSC 52 0.106 0.123 0.062 0.030 - 0.144
OV 102 0.125 0.156 0.080 0.032 - 0.150
PRAD 21 0.144 0.189 0.086 0.027 - 0.134
UCEC 23 0.063 0.056 0.042 0.021 - 0.089

Table S7: Comparing the absolute errors of sample-level predictions and the expected value of the
absolute errors of slide-level predictions in the test sets of different cohorts. In the test set of each
cohort, for a tumor sample with two slides, the absolute errors between genomic tumor purity values and
sample-level MIL predictions (esmpl) and the expected value of absolute errors between genomic tumor
purity values and slide-level MIL predictions (esld) are calculated. Then, the number of samples with two
slides (n), the mean absolute errors (µesmpl and µesld) together with standard deviations (σesmpl and σesld),
the median absolute errors (mesmpl and mesld) together with interquartile ranges (IQResmpl and IQResld),
and the calculated p-values in the statistical tests (Pcomp) are presented. Note that the PRAD (n=21) and
UCEC (n=23) cohorts were excluded from this study due to few samples with two slides. The best methods
are highlighted in bold. Related to Figure 3D.

Sample level Slide level

n µesmpl σesmpl mesmpl IQResmpl µesld σesld mesld IQResld Pcomp

BRCA 73 0.114 0.082 0.092 0.043 - 0.166 0.126 0.073 0.129 0.060 - 0.171 2.8e-03
GBM 90 0.115 0.107 0.076 0.046 - 0.145 0.118 0.096 0.089 0.062 - 0.161 7.1e-01
LGG 31 0.178 0.149 0.146 0.100 - 0.218 0.168 0.152 0.106 0.067 - 0.198 5.6e-01
LUAD 44 0.118 0.102 0.084 0.050 - 0.168 0.138 0.102 0.121 0.067 - 0.181 3.7e-04
LUSC 52 0.124 0.092 0.109 0.039 - 0.168 0.150 0.096 0.143 0.085 - 0.201 1.7e-03
OV 102 0.106 0.091 0.086 0.043 - 0.128 0.135 0.100 0.105 0.073 - 0.176 5.0e-03

Table S8: Spearman’s correlation coefficients between absolute errors in MIL predictions and per-
cent necrosis values (ρ) are calculated in the test set of each cohort. The number of samples (n),
correlation coefficients together with calculated p-values (P) and 95% confidence intervals (95% CI) are
presented for tumor samples only. There is no significant correlation (P>0.05) in any cohorts except LUSC,
in which the correlation is 0.253 (P=1.6e-02 < 0.05). The LGG cohort is excluded from analysis since all
samples have percent necrosis of 0.

n ρ 95% CI P

BRCA 185 0.089 -0.054, 0.236 2.3e-01
GBM 94 -0.040 -0.232, 0.150 7.0e-01
LUAD 90 0.034 -0.187, 0.267 7.5e-01
LUSC 90 0.253 0.062, 0.432 1.6e-02
OV 103 0.044 -0.157, 0.236 6.6e-01
PRAD 85 -0.050 -0.262, 0.170 6.5e-01
UCEC 89 -0.023 -0.230, 0.187 8.3e-01
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Figure S6: Tumor purity map for A186 in the Singapore Cohort. Genomic tumor purity was 0.340 and
our MIL model predicted tumor purity as 0.339, so the absolute error was 0.001. Related to Figure 4.
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Figure S7: Tumor purity map for A537 in the Singapore Cohort. Genomic tumor purity was 0.420 and
our MIL model predicted tumor purity as 0.380, so the absolute error was 0.04. Related to Figure 4.
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Figure S8: Tumor purity map for A143 in the Singapore Cohort. Genomic tumor purity was 0.240 and
our MIL model predicted tumor purity as 0.339, so the absolute error was 0.099. Related to Figure 4.
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Figure S9: Tumor purity map for A219 in the Singapore Cohort. Genomic tumor purity was 0.410 and
our MIL model predicted tumor purity as 0.584, so the absolute error was 0.174. Related to Figure 4.
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Figure S10: Tumor purity map for A126 in the Singapore Cohort. Genomic tumor purity was 0.160 and
our MIL model predicted tumor purity as 0.527, so the absolute error was 0.367. Related to Figure 4.



SUPPLEMENTAL EXPERIMENTAL PROCEDURES

MIL Framework

Problem formulation and notation

Let D be a MIL dataset such that for each (X,Y ) ∈ D, X = {x1, x2, · · · , xN} ⊆ I and Y ∈ Y , where I is the
instance space, and Y is the bag label space. Note that we fix the number of instances in a bag to N for
clarity of notation, yet our formulation is also valid for bags with the variable number of instances.

Given any pair (X,Y ) ∈ D, our objective is to predict bag label Y for a given bag of instances X. Here, a
bag label Y is the genomic tumor purity of a sample, and a bag X is a collection of cropped patches over the
sample’s slides. Let Ŷ be the predicted bag label of X. To obtain Ŷ , we designed a novel MIL framework
consisting of three stages.

The first stage is a feature extractor module θfeature : I → F , where F is the feature space. For each
xi ∈ X, the feature extractor module takes xi as input, extracts J features and outputs a feature vector:
fxi = θfeature(xi) = [f1xi , f

2
xi , · · · , f

J
xi ] ∈ F , where f jxi ∈ R is the jth feature value and F = RJ . Let

FX = [fx1 ,fx2 , · · · ,fxN ] ∈ RJN be feature matrix constructed from extracted feature vectors such that ith

column corresponds to fxi .
The second stage is a MIL pooling filter module θfilter : RJN → H, where H is the bag-level representation

space. The MIL pooling filter module takes the feature matrix FX as input and aggregates the extracted
feature vectors to obtain a bag-level representation: hX = θfilter(FX) ∈ H.

The last stage is a bag-level representation transformation module θtransform : H → Y. It transforms the
bag-level representation into the predicted bag label: Ŷ = θtransform(hX).

We use neural networks to implement θfeature and θtransform so that we can fully parameterize the learning
process. For θfilter, we use our novel ‘distribution’ pooling filter. This system of neural networks is end-to-end
trainable.

Distribution Pooling Filter

Our previous study6 defined the family of distribution-based pooling filters as: Given a feature matrix
FX = [f jxi |f

j
xi ∈ R, i = 1, 2, · · · , N and j = 1, 2, · · · , J ] obtained from a bag X = {x1, x2, · · · , xN}, its

bag level representation is obtained by estimating a marginal distribution over each extracted feature. Let
p̃jX : R→ R+ ∪ {0} be the estimated marginal distribution obtained over jth extracted feature and p̃jX ∈ P
where P is the set of all possible marginal distributions. p̃jX is calculated by using kernel density estimation7,
which employs a Gaussian kernel with standard deviation σ, as shown in the Eq. 1. Each instance has two
attention based weights, feature weight αi and kernel weight βi, obtained from neural network modules.
Hence, the bag level representation hX = [p̃jX |p̃

j
X ∈ P, j = 1, 2, · · · , J ] ∈ H where H = PJ . Note that the

estimated marginal distributions are uniformly binned during training neural network models for computational
purposes.

p̃jX(v) =

N∑
i=1

βi
1√
2πσ2

e−
1

2σ2
(v−αifjxi)

2

∀j=1,2,··· ,J (1)

Our previous study formally proved that the distribution-based pooling filters are more expressive than the
point estimate-based counterparts (like max and mean pooling) regarding the amount of information captured
while obtaining bag-level representations6. Then, we empirically showed that models with distribution-based
pooling filters perform equal or better than that with point estimate-based pooling filters on distinct real-world
MIL tasks.

In this study, we used standard deviation of σ = 0.05 and the estimated marginal distributions were
uniformly binned into 21 bins. Note that attention weights in ‘distribution’ pooling were fixed to αi = 1 ∀i and
βi =

1
N ∀i where N is the number of instances per bag.



Neural network architectures and hyper-parameters

We used a ResNet188 model as the feature extractor module and a three-layer multi-layer-perceptron as the
bag-level representation transformation module.

During the training of the models, we prepared bags on the go. A bag was created by randomly sampling
200 patches (instances) from all available patches previously cropped over a sample’s slides. The patch size
was 512× 512. Data augmentation (random cropping with a size of 299× 299 and random horizontal/vertical
flipping) was also applied on the patches. We extracted 128 features for each instance inside the bag.

The architecture and list of hyper-parameters used in MIL models are given below.

Neural network architecture and list of hyper-parameters used in the MIL models.

input - 299× 299× 3
ResNet18 (128 nodes in the last fc layer)

‘distribution’ pooling
Dropout(0.5)

fc-384 + ReLU
Architecture Dropout(0.5)

fc-192 + ReLU
Dropout(0.5)

fc-1 (regression)

patch size 512× 512
random crop size 299× 299
# instances per bag (N ) 200
# features (J) 128
# bins in ‘distribution’ filters 21
σ in Gaussian kernel 0.05
Optimizer ADAM
Learning rate 1e− 4
L2 regularization weight decay 0.0005
batch size 1

Segmentation of Histopathology Slides in The TCGA LUAD Cohort

In the TCGA LUAD cohort, for each patient with a matching normal sample, we used the trained feature
extractor module of our MIL model to extract features of patches cropped over the slides of the tumor and
normal samples of the patient. Then, we clustered the patches by using hierarchical clustering over the
extracted feature vectors. We determined the distance threshold in hierarchical clustering such that there
were 4 clusters among the patches from slides of the normal sample. This made our clustering approach
robust against patient-to-patient variations. Indeed, this was why we decided to use both tumor and normal
samples of the patient. In other words, instead of determining a global distance threshold for all patients, we
calculated patient-specific distance threshold values to capture inter-patient variations.

Each cluster can be assigned one of two labels: cancerous or normal. Ideally, a cluster with a cancerous
label can contain patches only from slides of the tumor sample. On the other hand, a cluster with a normal
label can contain patches from slides of both the tumor and the normal samples since the tumor sample
may also contain normal tissue components. As a post-processing step, we analyzed normal clusters. If the
number of patches from slides of the normal sample in a normal cluster was less than 10%, we split this
cluster into two such that patches from slides of the tumor sample were assigned to a new cancerous cluster.
Finally, we created segmentation masks for slides of the tumor sample by using cluster labels assigned to
the patches.
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