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Abstract 
Background 
Disease complications, the onset of secondary phenotypes given a primary condition, can 
exacerbate the long-term severity of outcomes. However, the exact cause of many of these 
cross-phenotype associations is still unknown. One potential reason is shared genetic etiology – 
common genetic drivers may lead to the onset of multiple phenotypes. A holistic, network-based 
view incorporating knowledge of other diseases and genetic associations will be required to 
uncover the exact basis of disease complications. Disease-disease networks (DDNs), where 
nodes represent diseases and edges represent associations between diseases, can provide an 
intuitive way of understanding the relationships between phenotypes. Using summary statistics 
from a phenome-wide association study (PheWAS), we can generate a corresponding DDN 
where edges represent shared single-nucleotide polymorphisms (SNPs) between diseases. 
Such a network can help us analyze genetic associations across the diseasome, the landscape 
of all human diseases, and identify potential genetic influences for disease complications. 

 
Results 
To improve the ease of network-based analysis of shared genetic components across 
phenotypes, we developed the humaN disEase phenoType MAp GEnerator (NETMAGE), a web-
based tool that produces interactive DDN visualizations from PheWAS summary statistics. Users 
can search the map by various attributes and select nodes to view related phenotypes, associated 
SNPs, and various network statistics. As a test case, we used NETMAGE to construct a network 
from UK BioBank (UKBB) PheWAS summary statistic data. Our map correctly displayed 
previously identified disease comorbidities from the UKBB and identified concentrations of hub 
diseases in the endocrine/metabolic and circulatory disease categories. By examining the 
associations between phenotypes in our map, we can identify potential genetic explanations for 
the relationships between diseases and better understand the underlying architecture of the 
human diseasome. Our tool thus provides researchers with a means to identify prospective 
genetic targets for drug design, using network medicine to contribute to the exploration of 
personalized medicine. 
 
Availability: Our service runs at https://hdpm.biomedinfolab.com. Source code can be 
downloaded from https://github.com/dokyoonkimlab/netmage. 
Contact: dokyoon.kim@pennmedicine.upenn.edu  
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Findings 

Background 
Disease complications refer to the onset of secondary phenotypes given a primary condition, 
while disease comorbidities refer to the co-occurrent presence or onset of multiple diseases.1 
Both forms of disease association can exacerbate the long-term severity of disease, and they 
vary drastically from phenotype to phenotype.1 However, their causes are still not well understood. 
One potential reason for these cross-phenotype associations2 could be shared genetic etiology – 
the same genetic drivers may cause multiple symptoms to appear over time.3 

Electronic health record (EHR)-linked biobanks capture both clinical and genetic information 
for large populations of patients.4 These repositories contain both genetic and longitudinal 
phenotype data, including DNA samples, disease histories, laboratory measurements, lifestyle 
habits, and demographic information.4 Given an EHR-linked biobank as input, a phenome-wide 
association study (PheWAS) can be used to calculate a multitude of associations between 
phenotypes and single-nucleotide polymorphisms (SNPs) in an unbiased manner.4 

A holistic network-based view involving disorders across the diseasome will be required to 
translate these genetic correlations into an understanding of disease co-occurrences.5 Disease-
disease networks (DDNs), where nodes represent diseases and edges represent connections 
between diseases, can provide an intuitive way to understand the relationships between 
phenotypes.6,7 In particular, a DDN that uses its edges to represent SNPs can be generated as a 
proxy to highlight potential shared genetic influences for diseases. Analyzing the topology of these 
SNP-based DDNs can provide insight into how genetic influences may drive the onset of disease 
complications. 

 
 
Figure 1. A depiction of the process for creating an SNP-based DDN. A PheWAS can be run on data 
from an EHR-linked biobank to calculate p-values of associations between a variety of genetic variants 
and phenotypes. The summary statistics from this PheWAS lend themselves to a DDN, where nodes 
represent diseases and edges represent common associated SNPs between diseases. Created with 
BioRender.com.  
 

 



 

 

Purpose of the work 
The network-based visualization of associations between SNPs and phenotypes can provide 
researchers and clinicians with a potential way to understand the genetic basis of disease 
interactions. In particular, the growth of available EHR-linked biobanks across institutions 
presents a trove of data that have yet to be mined from a “network medicine” perspective.5 A 
variety of tools currently exist to depict PheWAS statistics, including PleioNet8, ShinyGPA9, 
PheGWAS10, PheWeb11, and PheWAS-ME12 (Table 1). However, to the best of our knowledge, 
none of these packages allows for the creation of interactive, searchable DDNs from user-
provided PheWAS summary data. 
 
Table 1. A comparison of NETMAGE to other toolkits that currently exist for the visualization of PheWAS 
summary statistics. 

 

Software 

Name 

Allows users 

to upload 

desired 

PheWAS 

results for 

analysis 

Allows for 

interactive 

investigation 

of cross-

phenotype 

associations 

Generates a network 

visualization of 

genetic associations 

between 

phenotypes 

Allows users to search 

and create subsets of 

any produced networks 

by disease, by SNP, or 

by other network 

statistics 

PleioNet  x x x 

ShinyGPA x x  x 

PheGWAS x x  N/A 

PheWAS-Me x x  x 

PheWeb x x  N/A 

NETMAGE x x x x 

 
 

The humaN disEase phenoType MAp GEnerator (NETMAGE) addresses this need. 
NETMAGE is a web-based tool that allows users to upload any PheWAS summary statistics and 
generate corresponding interactive networks. In particular, the resulting DDN is a projection of an 
undirected bipartite network of phenotypes and SNPs, where nodes serve as diseases and edges 
serve as sets of common associated SNPs.6 Users can filter their input data by p-value and by 
minor allele frequency (MAF) to manipulate the rarity and significance of SNPs being used to 
generate the network. Furthermore, they can select nodes within the DDN to view information 
such as connected phenotypes, shared SNPs, and network statistics (Figure 2). 



 

 

NETMAGE will serve as a step toward mass network-based analysis of PheWAS data. The 
interactive, graph-based representation of these summary statistics will help researchers 
visualize comorbidities as well as identify genetic variants that may potentially lead to the onset 
of disease complications. Furthermore, because NETMAGE facilitates the analysis of PheWAS 
data from individual EHR-linked biobanks, users can follow up with phenotypic data in their 
corresponding EHRs to evaluate the predictive ability of SNP-based DDNs with respect to 
disease co-occurrences. NETMAGE will allow us to gain a deeper understanding of the 
underlying genetic architecture of disease interaction.  

 
Implementation 
We used Gephi13, an open-source network visualization software package, as well as 
InteractiveVis14, a framework built over sigma.js15 for the interactive visualization of geospatial 
data, as a base for the implementation of NETMAGE. These packages were extended to create 
a web interface for the generation of network visualizations. We implemented a web server 
backend to accept the files uploaded by the user and then parse and generate the network using 
the Gephi toolkit. We deployed the server on Amazon Web Service (AWS) infrastructure, and it 
is available for use at https://hdpm.biomedinfolab.com/netmage/. We also enhanced the software 
to automatically parse all attributes provided in the input data and turn them into options for 
filtration and search. The NETMAGE pipeline works as follows: 

1. Users upload their PheWAS summary statistic files to our website. Each row should 
correspond to an SNP, and the user can provide p-value and MAF information if they want 
to filter their data using NETMAGE. The data can be uploaded either as a single file where 
the phenotype name is included in each row or separate files where each file corresponds 
to a distinct phenotype. 

2. NETMAGE converts PheWAS summary data into an intermediate 
disease_snpmap.netmage file. This file represents a dictionary of phenotype-to-SNP 
mappings, where each phenotype serves as a key and each SNP, p-value, MAF triplet 
serves as a value in a set. To create a DDN from the same data in the future, the user can 
simply upload the disease_snpmap.netmage file instead of re-uploading the original 
PheWAS data by using the “Upload netmage file” option. 

3. The disease_snpmap.netmage file is converted into a corresponding node and 
edge map. Based upon the p-value and MAF thresholds provided by the user, 
phenotype-SNP mappings will be filtered to provide a final file containing a list of 
relevant SNPs for each disease. This file is used to generate an edge map and a node 
map. The edge map establishes all links in the network – each row corresponds to an 
edge from a source to a target. The weight of the edge is equal to the number of 
associated SNPs shared between the two phenotypes. In addition, the node map 
represents a list of all nodes in the network. Each row provides a distinct phenotype and 
a list of its associated SNPs. Users can provide an input disease category mapping file 
so that each row of the node map now represents the disease and its category. 

4. The node and edge maps are used to create a two-dimensional mapping of the 
network. Through the Gephi and InteractiveVis frameworks, each disease is mapped to 
a two-dimensional space to visualize the DDN. Within the NETMAGE webpage, users 
can specify parameters including network layout, node size, and edge thickness to edit 
the aesthetics of the resulting graph. 

 
 
 
 
 
 

https://hdpm.biomedinfolab.com/netmage/


 

 

 

Figure 2. A depiction of the NETMAGE visualization tool. (A) The sidebar of the visualization gives a 
description of the map. It also includes a search dropdown and a group selector dropdown menu. (B) 
Variables are automatically read from the input data and included as options for search. (C) Clicking on a 
node reduces the displayed map to only the chosen node and its direct connections. Additionally, 
associated SNPs, connected phenotypes, and network statistics are presented to the right of the window 
when a node is selected. This graph corresponds to the subnetwork for type 2 diabetes (D) All nodes 
within a single disease category can be visualized at once using the Group Selector. Here, we display all 
neoplasm phenotypes.  



 

 

Given a resulting network, NETMAGE offers the following features: 
- Node Selection: clicking on a node will highlight the node and all of its first-degree 

neighbors. A variety of default attributes will be presented on the right side of the 
webpage. The user can also define other custom attributes. 

- Search: users can search the map for relevant phenotypes based upon any attribute 
defined, such as phenotype name, phenotype ID, SNP ID, node degree, and other 
parameters. In particular, the “search by SNP” option allows users to find shared SNPs 
between diseases. The custom attributes provided by the user are also automatically 
incorporated into the search dropdown menu. 

- Highlighting: groups of nodes within the same disease category can be highlighted to 
visualize associations within groups. These categories are established according to the 
user-provided input disease category file. 

 
Key strengths of NETMAGE include the automated creation of DDNs from user input for the 

visualization of a multitude of datasets, searchability of DDNs by both phenotype and SNP, and 
interactivity with the nodes of the DDN. These aspects allow users to focus on specific genetic 
associations by visualizing subsets of the map. Generated networks can be interacted with online 
or downloaded in a static format. NETMAGE allows users to download an image of the network 
as a PDF file or download the data corresponding to the network, including the intermediate 
disease_snpmap.netmage file (providing a map of phenotypes to SNPs, including p-value and 
MAF information if given by the user), node and edge map files (providing all nodes in the network 
along with their attributes, as well as all edges in the network respectively), and a final data.json 
file (providing the two-dimensional mapping of the elements in network). The node and edge map 
files, as well as the data.json file, can all be visualized and edited locally within Gephi. The 
data.json file can also be directly hosted by users on any web server. 
 
Case Study 
As a demonstration of the abilities of NETMAGE, we applied our software to SAIGE16-analyzed 
UK Biobank17 (UKBB) PheWAS data. The DDN is hosted at 
https://hdpm.biomedinfolab.com/ddn/ukbb. These data corresponded to 1,403 binary phenotypes 
expressed in terms of PheCodes18 and 28 million imputed genetic variants for 400,000 British 
individuals of European ancestry. SAIGE16 was used to generate summary statistics for each 
variant, providing p-values of association between every variant and every phenotype. Data were 
also filtered in order to select significantly associated common variants, based upon the following 
thresholds: maximum p-value threshold19 of 5x10-8, minimum MAF of 0.01, minimum case count 
of 200, and LD-pruning through PLINK20 with an R2 of 0.2 and 250 kilobases for maximum search 
length.  

The final network included 232 nodes and 2375 edges. Degrees of nodes ranged from 1 to 
84. The average degree was 20.47 and the average weighted degree was 1657.17. 68% 
(158/232) nodes had lower degrees than the average degree, implying a scale-free nature of the 
network (Figure 3).5 Furthermore, the diameter of the network was 7 while the average path length 
was 2.70, suggesting the small-world property for the network.5 570 edges (24%) connect 
diseases of the same category while 1,805 edges (76%) connect diseases of different categories, 
indicating that the genetic associations we identified appeared mostly across disease classes. 
Modularity analysis yielded 18 different clusters, ranging from size 2 to 72. There was also 
extensive variation in terms of the disease categories present for each module, again suggesting 
that genetic associations with phenotypes are not specific to disease class. Finally, the average 
clustering coefficient was 0.782, meaning that the network lacks extensive local clustering.5 

 

https://hdpm.biomedinfolab.com/ddn/ukbb


 

 

 
Figure 3. A histogram of degree distributions for the UKBB DDN. This distribution follows the power 
law, suggesting a scale-free property for the network. We also see that disease categories fail to follow 
specific trends based upon the degree of the disease. 

 
Degree, weighted degree, closeness centrality, betweenness centrality, and eigenvector 

centrality were all used to identify hub diseases in the DDN.5 Diseases with the highest degree 
included hyperlipidemia (272.1), disorders of lipoid metabolism (272), type 2 diabetes (250.2), 
diabetes mellitus (250), and hypothyroidism (244.4).  Diseases with the highest weighted degree 
included celiac disease (557.1), non-celiac intestinal malabsorption (557), hypothyroidism (244), 
type 1 diabetes (250.1), and psoriasis (696 and 696.4). Highest closeness centrality phenotypes 
included disorders of muscle, ligament, and fascia (728), fasciitis (728.7), and other retinal 
disorders (362), and highest betweenness centrality phenotypes included disorders of lipoid 
metabolism (272), hyperlipidemia (272.1), skin cancer (172), coronary atherosclerosis (411.4), 
hypertension (401), and essential hypertension (401.1). Finally, highest eigenvector centrality 
diseases included intestinal malabsorption and celiac disease (557 and 557.1), hypothyroidism 
(244.4 and 244), type 2 diabetes (250.2), type 1 diabetes (250.1), psoriasis (696), and rheumatoid 
arthritis and other inflammatory polyarthropathies (714.1 and 714). Based upon these results, it 
appears that endocrine/metabolic and circulatory diseases seem to have the most influence in 
our DDN (Table 2). 
 
Table 2. A table of phenotypes with the highest centrality measures in the UKBB DDN. Diseases marked 
in bold appear multiple times as the most central nodes based upon our different network measures. 

 

Phenotype PheCode Attribute Value 
Hypothyroidism NOS 244.4 Degree 83 

Disorders of lipoid metabolism 272 Degree 79 

Type 2 diabetes 250.2 Degree 79 

Diabetes mellitus 250 Degree 77 

Hyperlipidemia 272.1 Degree 76 



 

 

Celiac disease 557.1 Weighted Degree 1.27*105 

Non-celiac intestinal malabsorption 557 Weighted Degree 1.26*105 

Hypothyroidism NOS 244.4 Weighted Degree 7.48*104 

Hypothyroidism 244 Weighted Degree 7.39*104 

Type 1 diabetes 250.1 Weighted Degree 6.53*104 

Psoriasis 696 Weighted Degree 5.09*104 

Psoriasis NOS  696.4 Weighted Degree 5.11*104 

Disorders of muscle, ligament, and 
fascia 

728 Closeness Centrality 1.00 

Fasciitis 728.7 Closeness Centrality 1.00 

Other retinal disorders 362 Closeness Centrality 1.00 

Skin cancer 172 Betweenness Centrality 2.15*103 

Disorders of lipoid metabolism 272 Betweenness Centrality 1.97*103 

Hyperlipidemia 272.1 Betweenness Centrality 1.97*103 

Essential hypertension 401.1 Betweenness Centrality 1.84*103 

Hypertension 401 Betweenness Centrality 1.19*103 

Coronary atherosclerosis 411.4 Betweenness Centrality 7.72*102 

Intestinal malabsorption 557 Eigenvector Centrality 1.00 

Celiac disease 557.1 Eigenvector Centrality 1.00 

Hypothyroidism NOS 244.4 Eigenvector Centrality 0.98 

Hypothyroidism 244 Eigenvector Centrality 0.98 

Type 1 diabetes 250.1 Eigenvector Centrality 0.95 

Type 2 diabetes 250.2 Eigenvector Centrality 0.93 

Rheumatoid arthritis 714.1 Eigenvector Centrality 0.89 

Other inflammatory polyarthropathies 714 Eigenvector Centrality 0.89 

Psoriasis 696 Eigenvector Centrality 0.86 

 
Using the UKBB electronic health records, phi correlations21 between pairs of phenotypes 

were calculated for 224 phenotypes in order to identify potential disease comorbidities. These 
associations were compared to the SNP-based edges in our DDN as a way of evaluating the 
extent to which genetic associations in PheWAS summary statistics match disease co-
occurrences. Out of the 2189 edges for which phi correlations could be calculated, 1811 (82.73%) 
appeared in the DDN. This behavior suggests that our genetic associations identified by our 
PheWAS results serve as a reasonable approximation of disease co-occurrences. 

The DDN we generated includes many disease connections identified in previous studies. In 
keeping with the DDN generated from the DiscovEHR biobank7, our network identified 
connections among type 1 diabetes, rheumatoid arthritis, psoriasis, and multiple sclerosis. It also 
identified connections among hypothyroidism, type 2 diabetes, thyroid cancer, obesity, and 
rheumatoid arthritis. Furthermore, similar to the Disease Comorbidity Network22 derived from 
hospitals across China, our DDN included edges between hypertension and hyperlipidemia, type 
1 and type 2 diabetes, and diabetes mellitus. Finally, in keeping with a multimorbidity study 
performed on elderly patients in Tokyo23, our DDN identified connections between hypertension, 
dyslipidemia, and coronary heart disease. 

Finally, considering potential genetic associations between diseases, we find that our DDN 
displays relevant genetic associations between diseases, including rs544873’s association with 
pulmonary heart disease, phlebitis and thrombophlebitis, hemorrhoids, circulatory disease, and 
diverticulosis24, rs925488’s association with thyroid cancer, nontoxic nodular and multinodular 
goiter, and hypothyroidism24, and rs780094’s association with diabetes and lipid metabolism.25 
 
 



 

 

Testing 
As a test of runtime for NETMAGE, we constructed DDNs from random subsets of the 

PheWAS data used to create the UKBB DDN and determined the time it took for each network to 
be generated. Five networks were each generated from collections of 50, 100, 250, 500, and 1000 
phenotypes. These DDNs were constructed in both the Fruchterman-Reingold and Force Atlas 2 
layouts from Gephi13, resulting in a total of 50 graphs for runtime analysis. The average time to 
create a network seems to grow in O(n2) as the number of phenotypes increases (Table 3). This 
behavior makes sense, as the inclusion of additional nodes will tend to exponentially increase the 
number of edges assuming a low clustering coefficient in the network. 
 
Table 3. A table of run times (in seconds) for DDN generation given input datasets with different numbers 
of phenotypes. These times measure how long it takes for the server to generate the network after the 
“submit” button has been clicked – in all instances, files have already been uploaded to the server. Upload 
speeds for files will vary depending on user bandwidth. Five replicates were performed for each count of 
phenotypes, and the mean and standard deviation of time is provided after each section. 
 

Phenotype 
Count 

Server runtime (in seconds) to generate network after receiving HTTP request 

 Fruchterman-Reingold Layout Force Atlas 2 Layout 

 1 2 3 4 5 Mean SD 1 2 3 4 5 Mean SD 

50 3.07 2.34 2.86 2.31 2.76 2.67 0.33 2.46 2.48 2.93 2.43 3.00 2.66 0.28 

100 3.26 3.49 4.29 3.61 3.52 3.63 0.39 3.43 4.14 4.37 4.62 3.58 4.03 0.51 

250 6.60 5.20 6.77 6.62 5.56 6.15 0.72 6.74 5.31 6.36 6.92 5.90 6.25 0.65 

500 11.21 11.85 12.53 10.94 9.91 11.29 0.99 11.68 12.04 12.49 11.21 9.33 11.35 1.22 

1000 28.27 28.77 30.19 27.01 29.52 28.75 1.22 29.37 28.35 29.84 27.23 30.23 29.00 1.22 

 

 
Discussion and Conclusions 
NETMAGE is a toolkit for the network-based interactive visualization of PheWAS summary data. 
The goal of this software is to improve the ease of visualization of genetic associations across 
diseases and to facilitate large-scale genetic analysis of the human diseasome. 

Several future directions exist for NETMAGE. First is the inclusion of directionality in the 
network using beta values from PheWAS results. We will also allow for the selection of multiple 
nodes at once within the DDN – as of now, a user can select just one node to visualize its 
associations. The ability to select multiple nodes will allow clinicians to visualize genetic 
associations across triplets of disease. Furthermore, we hope to enhance NETMAGE to allow for 
the construction of gene-based DDNs by including SNP-to-gene mapping as a part of the website. 
We will also allow users the option to create SNP-SNP networks that depict edges between 
genetic variants based upon shared associations with phenotypes.  

Ultimately, NETMAGE will give researchers and clinicians insight into the underlying genetic 
architecture of disease complications. The impact of our work will be a tool that allows for 
identification of new gene targets that can be investigated in follow-up studies of pleiotropy and 
drug discovery. We hope that this software will contribute to new potential discoveries in 
personalized medicine and that it helps facilitate the advancement of network medicine studies 
into the genetics of disease co-occurrences. 

  
Availability of supporting source code and requirements 

• Project name: NETMAGE 
• Project home page: https://hdpm.biomedinfolab.com/netmage/ 
• Source code: https://github.com/dokyoonkimlab/netmage 

https://hdpm.biomedinfolab.com/netmage/
https://github.com/dokyoonkimlab/netmage


 

 

• Operating system(s): Platform independent 
• Programming language: Python, HTML, JavaScript 
• Other requirements: None 
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