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Abstract: Background
Disease complications, the onset of secondary phenotypes given a primary condition,
can exacerbate the long-term severity of outcomes. However, the exact cause of many
of these cross-phenotype associations is still unknown. One potential reason is shared
genetic etiology – common genetic drivers may lead to the onset of multiple
phenotypes. A holistic, network-based view incorporating knowledge of other diseases
and genetic associations will be required to uncover the exact basis of disease
complications. Disease-disease networks (DDNs), where nodes represent diseases
and edges represent associations between diseases, can provide an intuitive way of
understanding the relationships between phenotypes. Using summary statistics from a
phenome-wide association study (PheWAS), we can generate a corresponding DDN
where edges represent shared genetic variants between diseases. Such a network can
help us analyze genetic associations across the diseasome, the landscape of all
human diseases, and identify potential genetic influences for disease complications. 
Results
To improve the ease of network-based analysis of shared genetic components across
phenotypes, we developed the humaN disEase phenoType MAp GEnerator
(NETMAGE), a web-based tool that produces interactive DDN visualizations from
PheWAS summary statistics. Users can search the map by various attributes and
select nodes to view related phenotypes, associated variants, and various network
statistics. As a test case, we used NETMAGE to construct a network from UK BioBank
(UKBB) PheWAS summary statistic data. Our map correctly displayed previously
identified disease comorbidities from the UKBB and identified concentrations of hub
diseases in the endocrine/metabolic and circulatory disease categories. By examining
the associations between phenotypes in our map, we can identify potential genetic
explanations for the relationships between diseases and better understand the
underlying architecture of the human diseasome. Our tool thus provides researchers
with a means to identify prospective genetic targets for drug design, using network
medicine to contribute to the exploration of personalized medicine.
 
Availability: Our service runs at https://hdpm.biomedinfolab.com. Source code can be
downloaded from https://github.com/dokyoonkimlab/netmage.
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Response to Reviewers: We appreciate the valuable comments of the anonymous reviewers which were helpful
to improve the quality of the paper. The chances to our manuscript that reflect
reviewers’ comments are highlighted in ‘red’ in the following document.

1.Revision on Comments of Reviewer 1
2.Revision on Comments of Reviewer 2
3.Revision on Comments of Reviewer 3

 
[Revision on Comments of Reviewer 1]

[R1: Comment 1]
Generally well written and logical flow. Some minor errors (e.g. "an SNP" rather than "a
SNP") and some headers could be improved for readability (e.g. "Testing" is vague;
this section really only touches upon Run time).

[Response to Comment 1]
We correct the identified mistakes in our manuscript, fixing all instances of “an SNP” to
“a SNP,” as well as renaming the “Testing” section to “Runtime Analysis.”

[R1: Comment 2]
Figure 1- Displaying a single Manhattan plot for "PheWAS Summary Statistics" is not
very intuitive. It makes me think of a single GWAS rather than a phenome-wide set of
GWAS run on a Biobank. Perhaps revise the image.

[Response to Comment 2]
Figure 1 has been revised to include a Manhattan plot corresponding to a PheWAS
instead of a GWAS, with phenotypes instead of genes appearing along the x-axis of
the plot.

[R1: Comment 3]
Is the disease-disease network only applicable to case/control studies? Could there be
an extension to quantitative traits, and if so, would that be pertinent for discoveries?

[Response to Comment 3]
Disease-disease networks are indeed applicable to both binary and continuous
phenotypes. In the case of quantitative traits, a PheWAS would be performed between
genetic variants as independent variables and the continuous value of each phenotype
as the outcome variable. Considering the associations between variants and such
diseases may provide additional nuance into the strength of links between phenotypes.
We have revised the Discussion and Conclusions section to include a mention of
NETMAGE’s applicability to quantitative traits.

[In the revised manuscript]
(6. Discussion and Conclusions)
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…to facilitate large-scale genetic analysis of the human diseasome. While the UKBB
data used for our case study consisted solely of binary phenotypes, NETMAGE can
also be applied to quantitative traits. Indeed, in such a situation, the continuous value
of the quantitative phenotype serves as the outcome variable in the PheWAS. This
process provides a more detailed degree of association between the trait and genetic
variants, suggesting a link between the variant and the severity of the phenotype as
opposed to its presence or absence.

[R1: Comment 4]
The authors refer to "SNPs" throughout to define genetic variation. If the summary
statistics contains another type of variation (e.g. indels), are those associations still
used? If so, I would suggest using a more generic term to define the genetic variation.

[Response to Comment 4]
We thank the reviewer for identifying this over-simplification in our manuscript. Indeed,
NETMAGE can use data involving any sort of genetic variation to generate a
corresponding DDN. We replace the term “SNP” in our manuscript with “variant” or
“genetic variant” as appropriate.

[In the revised manuscript]
(Abstract)
…Using summary statistics from a phenome-wide association study (PheWAS), we
can generate a corresponding DDN where edges represent shared genetic variants
between diseases…

…Users can search the map by various attributes and select nodes to view related
phenotypes, associated variants, and various network statistics.

(1. Background)
…a phenome-wide association study (PheWAS) can be used to calculate a multitude
of associations between phenotypes and genetic variants, such as single-nucleotide
polymorphisms (SNPs) in an unbiased manner…

…In particular, a DDN that uses its edges to represent variants can be generated as a
proxy to highlight potential shared genetic influences for diseases. Analyzing the
topology of these genetics-based DDNs can provide insight into how inherited factors
may drive the onset of disease complications…

(2. Purpose of the work)
…The network-based visualization of associations between variants and phenotypes
can provide researchers…

… In particular, the resulting DDN is a projection of an undirected bipartite network of
phenotypes and genetic variants, where nodes serve as diseases and edges serve as
sets of common associated variants. Users can filter their input data by p-value and by
minor allele frequency (MAF) to manipulate the rarity and significance of variants being
used to generate the network. Furthermore, they can select nodes within the DDN to
view information such as connected phenotypes, shared variants, and network
statistics…

… users can follow up with phenotypic data in their corresponding EHRs to evaluate
the predictive ability of genetics-based DDNs with respect to disease co-occurrences…

(Table 1)
…Allow users to search and create subsets of any produced networks by disease, by
genetic variant, or by other network statistics.

(3. Implementation)
…Each row should correspond to a genetic variant, and the user can provide p-value…

…This file represents a dictionary of phenotype-to-variant mappings, where each
phenotype serves as a key and each variant, p-value, MAF triplet serves as a value in
a set…
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…Based upon the p-value and MAF thresholds provided by the user, phenotype-
variant mappings will be filtered to provide a final file containing a list of relevant
variants for each disease…

… The weight of the edge is equal to the number of associated variants shared
between the two phenotypes…

… Each row provides a distinct phenotype and a list of its associated variants…

… users can search the map for relevant phenotypes based upon any attributed
defined, such as phenotype name, phenotype ID, variant name, node degree, and
other parameters. In particular, the “search by variant” option allows users to find
shared genetic variants between diseases.

…searchability of DDNs by both phenotype and genetic variant…

…providing a map of phenotypes to variants…

(Figure 2)
…Additionally, associated variants, connected phenotypes, and …

(6. Discussion and Conclusions)
…Furthermore, we hope to enhance NETMAGE to allow for the automated
construction of gene-based DDNs from variant-based data by including variant-to-gene
mapping as a part of the website. We will also allow users the option to create variant-
variant networks that depict edges between genetic variants based upon shared
associations with phenotypes …

[R1: Comment 5]
The discussion seems underdeveloped. Discussion of limitations rather than only
future work would be helpful.

[Response to Comment 5]
We have revised the “Discussion” section to include a paragraph on current limitations
of NETMAGE. The Discussion has also been extended to include a description of
DDNs generated from continuous traits.

[In the revised manuscript]
(6. Discussion and Conclusions)
…The goal of this software is to improve the ease of visualization of genetic
associations across diseases and to facilitate large-scale genetic analysis of the
human diseasome. While the UKBB data used for our case study consisted of entirely
binary phenotypes, NETMAGE is also applicable to quantitative traits. Indeed, in such
a situation, the continuous value of the quantitative phenotype, such as a laboratory
test measurement like A1C level, is used as the outcome variable in the PheWAS. This
process provides a more detailed degree of association between the severity of the
trait and genetic variants, as compared to the identification of associations between a
presence or absence of the trait with variants. A key point to note regarding NETMAGE
is that the output DDNs will provide only as much information as the input data. Indeed,
NETMAGE is an exploratory tool intended to help visualize connections between
diseases. Including summary PheWAS data that provides insight into the statistical
associations between phenotypes will yield an associative map but will tell us nothing
about causality. Associations identified through PheWAS are often spurious, so any
sort of analyses performed on these data must take this information into consideration.
Nevertheless, these kinds of associative visualizations are still useful for the study of
disease and may help identify connections between phenotypes and genetic variants,
generate new hypotheses, and suggest future experiments that can be conducted. For
a visualization that gives stronger insight into the causal connections between traits,
one could potentially input the results of a Mendelian Randomization experiment.
Several future directions exist for NETMAGE. First is the inclusion of directionality in
the network – as of now, DDNs produced by NETMAGE give no indication regarding
the direction of association between phenotypes. Using beta values for the association
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between phenotypes and genetic variants would be a useful inclusion, aiding in clinical
interpretation of the network. We will also allow for the concurrent selection of multiple
nodes within the DDN. The current NETMAGE user interface allows only one node to
be selected at a time. The ability to select multiple nodes will allow clinicians to quickly
identify if two phenotypes are associated in the network. We also hope to enhance
NETMAGE to allow for the construction of gene-based DDNs from variant-based data
by including variant-to-gene mapping as a part of the website. Finally, we will allow
users to create variant-variant networks instead of disease-disease networks, which
depict the connections between genetic variants (for instance, SNPs) based upon
associations with phenotypes. Ultimately, NETMAGE will give researchers and
clinicians insight into the underlying genetic architecture of disease complications…

[R1: Comment 6]
Case study-- The authors could improve the interpretability/discussion of the UKB
PheWAS example. This is one of my largest concerns because the author state that
the tool can help researchers and clinicians get insight into the underlying genetic
architecture of disease complications; however, the case study part of the manuscript
is quite technical and could be challenging to interpret for someone without network
experience; e.g. Table 2.

[Response to Comment 6]
We very much appreciate the reviewer’s comments regarding interpretability – we have
edited Table 2 to simply list hub diseases identified through network centrality
measures. Phenotypes identified according to multiple centrality measures are
depicted in bold in the table. Furthermore, to aid with interpretability when exploring the
DDN, we have included a new hyperlink in the “Information Pane” when a phenotype is
selected. This link directs the user to a new window which depicts a histogram of
diseases connected to the phenotype of interest, sorted in order of number of shared
variants. This new feature should aid users in visualizing the significance of disease
connections to a phenotype in the DDN, allowing for improved interpretability.

[In the revised manuscript]
(3. Implementation)
…Clicking on a node will highlight the node and all its first-degree neighbors. A variety
of default attributes will be presented on the right side of the webpage as part of an
“Information Pane.” The user can also define other custom attributes, and these will be
included in the Information Pane as well. If the user inputs data that include rsID-
formatted SNPs, then NETMAGE will automatically hyperlink each SNP’s ID to its
corresponding dbSNP profile, allowing for further exploration of the variant’s
information. To aid with interpretation and visualization of disease associations, a
hyperlink to a histogram of disease connections is also included in the Information
Pane. For each phenotype, this histogram depicts first-degree disease neighbors
sorted in order of the number of shared variants…

[R1: Comment 7]
Additionally, more details should be provided on the underlying summary statistics
used (e.g. some details can be found on the About page of the HRC-imputed UKB
PheWeb page: https://pheweb.org/UKB-SAIGE/about).

[Response to Comment 7]
We thank the reviewer for pointing us to this clearer description of our input dataset.
We include additional details about our data in the “Case Study” section of the
manuscript

[In the revised manuscript]
(4. Case Study)
…These data corresponded to 1,403 binary phenotypes expressed in terms of
PheCodes. All 400,000 British individuals of European ancestry in the dataset were
imputed using the Haplotype Reference Consortium panel, yielding 28 million imputed
SNPs.11 SAIGE16, a generalized mixed model association test that uses the
saddlepoint approximation to account for case-control imbalance, was used to
generate summary statistics for each SNP, providing p-values of association between
every SNP and every phenotype. This analysis was adjusted for genetic relatedness,
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sex, birth year, and the first four principal components.11 All genomic positions are on
GRCh37.11 Phenotypes that had a case count lower than 200 were dropped to keep
more relevant diseases, yielding a total of 1075 traits for consideration…

[R1: Comment 8]
The authors list additional filtering that they performed on the summary statistics, but it
appears that some details are missing. For instance, how many traits remain after the
case count filtering is applied? Also, what is used as a reference for the LD-pruning in
PLINK?

[Response to Comment 8]
We have revised the description of our filtration steps to include how many traits were
included after case count filtering, as well as a mention of the reference panel used for
LD-pruning.

[In the revised manuscript]
(4. Case Study)
…SAIGE was used to generate summary statistics for each variant, providing p-values
of association between every variant and every phenotype. Phenotypes that had a
case count lower than 200 were dropped to keep more relevant diseases, yielding a
total of 1075 traits. Data were also filtered in order to select significant associated
common variants, based upon the following thresholds: maximum p-value threshold of
5x10^-8, minimum MAF of 0.01, and LD-pruning through PLINK using the quality-
controlled UKBB genetic data itself as our reference panel, with an R^2 of 0.2 and 250
kilobases for maximum search length. Removing nodes with degree 0 after the
previously described filtration steps yielded a final network of 232 nodes and 2375
edges…

[R1: Comment 9]
Run time-- I am wondering why Table 3 (run time for subsets of the UKBB data) ends
at 1000 phenotypes. It would be interesting to see the run time that is close to case
example (e.g. possibly adding a column for the total number of phenotypes used in the
UKBB DDN). Additionally, this section gives the impression that run time only depend
on the number of phenotypes? I would assume that run time should also depend on
the number of variants that were tested.

[Response to Comment 9]
We clarify in the text of our runtime section that increasing the number of variants
under consideration will increase the runtime. We also include a new row in Table 3
that includes the runtime for the UKBB DDN case study for both the Fruchterman-
Reingold and Force Atlas 2 layouts.

[In the revised manuscript]
(5. Runtime Analysis)
… This behavior makes sense, as runtime depends on not only the number of
phenotypes included in the input data, but also the number of variants being tested.
Indeed, assuming that each additional phenotype added to the network will include
multiple associated variants, the inclusion of nodes will tend to exponentially increase
the number of edges assuming a low clustering coefficient in the network…

[R1: Comment 10]
It is nice that on each page the authors have allowed users to download a pdf of the
image and also the data behind the image (e.g. edge-map, node-map, etc.). The
zoom-in feature for the visualization is also useful, as is the short video tutorial.

[Response to Comment 10]
We thank the reviewer for their comments regarding the software and website.

[R1: Comment 11]
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I think that the search bar would be more user-friendly if suggestions automatically
came up when the user begins to type.
[Response to Comment 11]
Auto-completion for any sort of categorical variable (e.g. phenotype ID, associated
SNP ID, and category) has been implemented in the NETMAGE tool. Now, as a user
begins to type, NETMAGE will refer to all possible values in the input data and provide
suggestions that the user can search.

[In the revised manuscript]
(3. Implementation)
…Users can search the map for relevant phenotypes based upon any attribute defined,
such as phenotype name, phenotype ID, variant name, node degree, and other
parameters. In particular, the “search by variant” option allows users to find shared
genetic variants between diseases. The custom attributes provided by the user are
also automatically incorporated into the search dropdown menu. Any categorical
variables, such as disease name, disease category, or variant name, will include an
auto-completion dropdown menu that dynamically updates as users type out their
query terms…

[R1: Comment 12]
Additionally, displaying the list of "associated SNPs" in a (sortable and/or searchable)
table (with some annotations, such as chr, position, closest gene, consequence, rather
than just rsID) could be a neater and more informative way to show these data, rather
than simply as it appears currently as a list in the "information pane".

[Response to Comment 12]
The inclusion of a dynamically updating table of SNP information for each phenotype is
challenging to include in the current version of NETMAGE, particularly since users may
not be uploading data purely corresponding to SNPs. Instead, we have revised the
Information Pane’s presentation of associated variant information to present SNP
information in a more useful manner. If the user’s input data includes variant IDs that
are formatted in terms of rsIDs, then the variants will automatically be hyperlinked to
their profiles on dbSNP. Otherwise, the list of associated variants stays as is. This
behavior allows users to delve into the details of a SNP of interest. In the future, we will
offer the ability to view a table of annotated SNP information for each phenotype based
upon Annovar/VEP. We will also allow users to download a text file of associated
variants for a phenotype of interest, including links to dbSNP if appropriate as well as
Annovar annotations. We have raised a ticket on GitHub for this update, and it can be
found at the following link: https://github.com/dokyoonkimlab/netmage/issues/20. For
now, if users wish to download a list of variants associated with a phenotype, they can
download the “Node Map” file to see the genetic associations for their desired disease.

[In the revised manuscript]
(3. Implementation)
…clicking on a node will highlight the node and all its first-degree neighbors. A variety
of default attributes will be presented on the right side of the webpage as part of an
“Information Pane.” The user can also define other custom attributes, and these will be
included in the Information Pane as well. If the user inputs data that include rsID-
formatted SNPs, then NETMAGE will automatically hyperlink each SNP’s ID to its
corresponding dbSNP profile, allowing for further exploration of the variant’s
information. To aid with interpretation and visualization of disease associations, a
hyperlink to a histogram of disease connections is also included in the Information
Pane. For each phenotype, this histogram depicts first-degree disease neighbors
sorted in order of the number of shared variants…

[R1: Comment 13]
My comment on interpretability for researchers and clinicians comes up again: I am not
sure how useful/interpretable some of the search categories are for users to intuitively
draw insights; for instance, number of triangles, page range, etc. I think the authors
should really focus on the intuitiveness for the target audience so that the tool can
have more impact.

[Response to Comment 13]
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We appreciate the reviewer’s concern regarding interpretability in the presentation of
the network information for the DDN. We prefer to keep all network statistics in the
visualization, as it is unclear what piece of information might be most useful for users to
consider. However, we include “information” icons next to each network statistic term
that can be hovered over to provide a brief description of the utility of the variable. We
hope that this inclusion helps clear up confusion surrounding network analysis in the
DDN.

 
[Revision on Comments of Reviewer 2]

[R2: Comment 1]
I tried the web interface Human-Disease Phenotype Map
(https://hdpm.biomedinfolab.com), which utilizes NETMAGE. I found that sometimes it
takes some time for the network to appear. While the network is loaded, only the gray
empty space with the side panel is shown. I recommend the authors to show the
progress bar while loading the network, especially when it is first loaded, to avoid users
to think that their web browser is frozen.

[Response to Comment 1]
The NETMAGE website has been updated to include a loading circle as the network is
being generated.

[R2: Comment 2]
In the Search bar, it is not always trivial to guess what to enter, especially for
Phenotype Name, Associated SNPs, and category. Auto-completion features for these
variables will significantly facilitate users' convenience.

[Response to Comment 2]
Auto-completion for any sort of categorical variable (e.g. phenotype ID, associated
SNP ID, and category) has been implemented in the NETMAGE tool. Now, as a user
begins to type, NETMAGE will refer to all possible values in the input data and provide
suggestions that the user can search.

[In the revised manuscript]
(3. Implementation)
…Users can search the map for relevant phenotypes based upon any attribute defined,
such as phenotype name, phenotype ID, variant name, node degree, and other
parameters. In particular, the “search by variant” option allows users to find shared
genetic variants between diseases. The custom attributes provided by the user are
also automatically incorporated into the search dropdown menu. Any categorical
variables, such as disease name, disease category, or variant name, will include an
auto-completion dropdown menu that dynamically updates as users type out their
query terms…

[R2: Comment 3]
Meaning of edges is somewhat unclear to me. Are the existence and the weights of
edges purely based on the number of shared SNPs or are they based on any statistical
methods? When the weights of edges are calculated, are the marginal counts taken
into account? The same number of shared SNPs can have different meanings when
the disease to which this edge is connected has a small number of associated SNPs
vs. a large number of associated SNPs. How is this factor considered?

[Response to Comment 3]
We very much appreciate this point noted by the reviewer. In the baseline version of
the DDN, as described in Step 3 of the “Implementation” section, “The weight of the
edge is equal to the number of associated variants shared between the two
phenotypes.” However, as the reviewer mentions, the degree of the phenotypes in
question can have a clear impact on the significance of an edge between two
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diseases. To address this discrepancy, we have incorporated a “Marginalize edges”
checkbox in the website. Users can specify if they want their edge weights to simply
represent the number of shared variants between two diseases, or by selecting the
checkbox, if they want the weight of the edge to be marginalized by the number of
variants associated with each of the parent phenotypes.

[In the revised manuscript]
(3. Implementation)
…This file is used to generate an edge map and a node map. The edge map
establishes all links in the network – each row corresponds to an edge from a source to
a target. Depending on the user’s choice, the weight of the edge equals either the
number of associated variants shared between the two phenotypes, or the
marginalized fraction of variants (the number of variants that constitute the edge
divided by the union of the individual sets of variants for both phenotypes). In addition,
the node map represents a list of all nodes in the network…

[R2: Comment 4]
The network generated by the Human-Disease Phenotype Map
(https://hdpm.biomedinfolab.com) is usually huge and complex with a large number of
edges. As a result, it is often not straightforward to understand the generated network.
This is partially relevant to the fact that the network layout is static, i.e., locations of
nodes remain the same regardless of which subnetworks are chosen. If the network
layout is optimized for each subnetwork, it should be much easier for users to
understand the network architecture. Given this, I recommend the authors to consider
updating the network layout interactively when a subnetwork is selected.

[Response to Comment 4]
We appreciate the reviewer’s suggestion to dynamically update the network layout
when a subset of the network is chosen. This feature will require a considerable
amount of work in terms of the structure of our code and will be handled in a future
version of the software. We have raised a ticket on GitHub for this issue, and it can be
found at this link: https://github.com/dokyoonkimlab/netmage/issues/19

[R2: Comment 5]
When a subnetwork is chosen, the "Information Pane" appears. In this pane, it might
be helpful for users if the authors provide some quick help link for each network score,
e.g., how to interpret PageRank scores, etc.

[Response to Comment 5]
We appreciate the reviewer’s suggestion for how to improve the interpretability of
resulting networks. We have edited the NETMAGE Information Pane so that for each
network statistic, an information icon can be hovered over that provides a brief
description of the statistic’s purpose.

[R2: Comment 6]
In the "Information Pane", a long list of SNPs is provided for "Associated SNPs" but it is
not easy to use this list. I recommend the authors to make it downloadable as a table
so that users can do downstream analysis. In addition, it will significantly facilitate
users' convenience if each SNP ID is chosen, it brings the user to the relevant
database, e.g., dbSNP. In this way, users can easily check where it is located in the
sense of chromosome, gene, exon/intron/promoter/intergenic, etc. Alternatively, the
authors can consider to use a quick information table (SNP ID, gene name,
exon/intron/promoter/intergenic) instead of simply providing as a list.

[Response to Comment 6]
We have revised the Information Pane’s presentation of associated variant information
to present SNP information in a more useful manner. If the user’s input data includes
variant IDs that are formatted in terms of rsIDs, then the variants will automatically be
hyperlinked to their profiles on dbSNP. Otherwise, the list of associated variants stays
as is. This behavior allows users to delve into the details of a SNP of interest. In the
future, we will offer the ability to view a table of annotated SNP information for each
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phenotype based upon Annovar/VEP. We will also allow users to download a text file
of associated variants for a phenotype of interest, including links to dbSNP if
appropriate as well as Annovar annotations. We have raised a ticket on GitHub for this
update, and it can be found at the following link:
https://github.com/dokyoonkimlab/netmage/issues/20. For now, if users wish to
download a list of variants associated with a phenotype, they can download the “Node
Map” file to see the genetic associations for their desired disease.

[In the revised manuscript]
(3. Implementation)
…clicking on a node will highlight the node and all its first-degree neighbors. A variety
of default attributes will be presented on the right side of the webpage as part of an
“Information Pane.” The user can also define other custom attributes, and these will be
included in the Information Pane as well. If the user inputs data that include rsID-
formatted SNPs, then NETMAGE will automatically hyperlink each SNP’s ID to its
corresponding dbSNP profile, allowing for further exploration of the variant’s
information. To aid with interpretation and visualization of disease associations, a
hyperlink to a histogram of disease connections is also included in the Information
Pane. For each phenotype, this histogram depicts first-degree disease neighbors
sorted in order of the number of shared variants…
 
[Revision on Comments of Reviewer 3]
[R3: Comment 1]
A DDN based on true genetic associations is useful for understanding complex disease
comorbidities and their shared genetic etiology (pleiotropy). An interactive web tool to
explore such a complex networked information could be highly useful for the proposed
purposes of this tool. However, the EHR/Biobank PheWAS associations data are
statistical in nature and commonly with small effect sizes. The reported genetic
associations often are not well understood at the mechanistic level, and many genetic
associations are spurious. Although certain positive findings can be observed from the
disease network generated by NETMAGE, it's of concern the general usability of the
current implementation of the tool in order to facilitate novel applications in drug design
and personalized medicine, which requires the genetic associations to best represent
the underlying true causal mechanism. Further work is needed to verify the genetic
associations reported from PheWAS to minimize the impact of spurious associations.

[Response to Comment 1]
We appreciate the reviewer’s comments regarding the implications of NETMAGE. The
applicability of the data that go into the software will dictate the applicability of the
resulting DDN. Indeed, with the results of a PheWAS, NETMAGE will be able to
produce only an associative map of disease connections. We include a more thorough
discussion of association vs. causation in our “Discussion and Conclusions” section.

[In the revised manuscript]
(6. Discussion and Conclusions)
…A key point to note regarding NETMAGE is that the output DDNs will provide only as
much information as the input data. Indeed, NETMAGE is an exploratory tool intended
to help visualize connections between diseases. Including summary PheWAS data that
provides insight into the statistical associations between phenotypes will yield an
associative map but will tell us nothing about causality. Associations identified through
PheWAS are often spurious, so any sort of analyses performed on these data must
take this information into consideration. Nevertheless, these kinds of associative
visualizations are still useful for the study of disease and may help identify connections
between phenotypes and genetic variants, as well as suggest future experiments that
can be conducted. For a visualization that gives stronger insight into the causal
connections between traits, one could potentially input the results of a Mendelian
Randomization experiment…

[R3: Comment 2]
Network edges based on SNPs without considering the linkage disequilibrium (LD)
between SNPs is misleading and could miss a significant portion of associations that
should be linked between diseases if the LD correlations are considered. When
construct the network using NETMAGE, the LD correlation between SNPs should be
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considered.

[Response to Comment 2]
We thank the reviewer for identifying this gap in our software. While we had included a
feature to account for an input LD file in our back-end software, we had failed to
include it in the NETMAGE website itself. The option for LD pruning according to an
input LD file is now incorporated into the NETMAGE website.

[In the revised manuscript]
(3. Implementation)
…Each row provides a distinct phenotype and a list of its associated variants. If input
data have not already been pruned for linkage disequilibrium (LD), then users can
provide an LD-mapping file that gives mappings between each variant to blocks of LD.
NETMAGE will then clump SNPs according to their specified LD blocks, ensuring that
associations that should be linking phenotypes together are present in the map. Users
can also provide an input disease category mapping file so that each row of the node
map now represents the disease and its category…

[R3: Comment 3]
For the reported DDN and its statistics to be relevant to true disease - disease
relationships, the quality of disease diagnosis using Phecode should be considered.
Phecodes are based on ICD codes that are known to be noisy. The accuracy of ICD
can be as low as only 50%. Ignoring this limitation and treating disease diagnoses from
Phecodes as gold standards or as precise and accurate may result in irrelevant and
misleading findings.

[Response to Comment 3]
This point regarding the appropriateness of Phecodes is extremely relevant. We
include a small description of the limitations of Phecodes in our “Case Study” section.

[In the revised manuscript]
(4. Case Study)
…and rs780094’s association with diabetes and lipid metabolism. One potential issue
in terms of the conclusions that can be drawn from our UKBB DDN is the use of
“PheCodes” as a method of defining phenotypes. PheCodes are defined according to
ICD codes, but the accuracy of these codes for disease diagnosis is known to be
questionable. Given such inaccuracies, users must be wary when treating PheCode or
ICD-based diagnoses as a gold standard, as doing so may lead to inaccurate
conclusions…

[R3: Comment 4]
Phecodes are hierarchical. For example, parent codes are three digits (008), and each
additional digit after decimal point indicates a subset of ICD codes of the parent code
(008.5 and 008.52). So here a code 008.52 implies 008.5 also 008. What's the impact
of this hierarchy to the NETMAGE network and the inferences to be made based on
the network?

[Response to Comment 4]
We agree with the reviewer that hierarchy between phenotypes may influence resulting
DDNs. In our case study, the data we make use of includes mostly upper hierarchy
phenotypes. More detailed hierarchical phenotypes are absent from the data. Users
should be careful to avoid extensive hierarchical structure in their input data when
generating DDNs through NETMAGE. We include a description of this facet in the
“Case Study” section of our manuscript.

[In the revised manuscript]
(4. Case Study)
…Another aspect of the use of PheCodes for phenotype definitions is their hierarchical
nature. Digits that appear after decimal points correspond to subsets of phenotypes
compared to the parent code that appears before the decimal. In our case study, the
data we make use of include mostly upper hierarchy phenotypes. More detailed
hierarchical phenotypes are for the most part absent from our network. Users should
be careful about including extensive hierarchical structure in their input data when
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generating DDNs through NETMAGE. Including phenotypes that are essentially
identical to one another will introduce unnecessary nodes and edges in the network, in
the process clouding more significant disease connections…

[R3: Comment 5]
On Page 9, you said "Out of the 2189 edges for which phi correlations could be
calculated, 1811 (82.73%) appeared in the DDN. This behavior suggests that our
genetic associations identified by our PheWAS results serve as a reasonable
approximation of disease co-occurrences". This is expected because both phi
correlation and PheWAS analyses were performed on the same dataset. If a pair of
disease highly co-occur in the dataset, you would expect a strong correlation on their
genetic associations analyzed on the same dataset. However, it may not be
generalizable that the genetic associations from PheWAS are a reasonable
approximation to disease co-occurrences.

[Response to Comment 5]
We thank the reviewer for pointing out this flaw in our analysis of the DDN. We remove
this analysis, and instead include a paragraph in our “Case Study” section that
describes comparison to external EHR comorbidities as an area of future work.

[In the revised manuscript]
(4. Case Study)
…and rs780094’s association with diabetes and lipid metabolism. In terms of future
work for this case study, it would be interesting to compare the edges in our DDN with
known disease comorbidities. We can take disease occurrence data from an external
electronic health record and evaluate phi correlations between all pairs of phenotypes.
Comparison of these co-occurrences to the genetic associations in our PheWAS may
give us an indication if the DDN is a reasonable representation of disease
connections…

[R3: Comment 6]
The disease-SNP relationships from the PheWAS analysis result are bipartite. Even
though NETMAGE focuses on the projected disease-disease network, the information
about how specific SNPs link to their corresponding disease pairs is important. For
example, in your UKBB-based network (https://hdpm.biomedinfolab.com/ddn/ukbb),
when a specific disease is selected, a subgraph of the selected disease and other
disease linked to the selected one are showing, but only a lump of SNPs without linking
to their specific disease pair is provided. This is not helpful.

[Response to Comment 6]
We appreciate this comment from the reviewer, and we agree that selecting a single
disease in our DDN does not provide insight into the links between variants and their
corresponding disease pairs. For this purpose, we recommend that the user makes
use of the “Search by SNP” feature to identify in which disease pairs the variant is
involved. As a future extension of NETMAGE, we will offer the ability to generate
variant-variant or gene-gene networks, which will make it easier to visualize how
variants connect to diseases.

[R3: Comment 7]
Also annotating those SNPs their genetic context could be very useful for users to
quickly grasp the nature of the genetic associations in the subgraph.

[Response to Comment 7]
We have revised the Information Pane’s presentation of associated variant information
to present SNP information in a more useful manner. If the user’s input data includes
variant IDs that are formatted in terms of rsIDs, then the variants will automatically be
hyperlinked to their profiles on dbSNP. Otherwise, the list of associated variants stays
as is. This behavior allows users to delve into the details of a SNP of interest. In the
future, we will offer the ability to view a table of annotated SNP information for each
phenotype based upon Annovar/VEP. We will also allow users to download a text file
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of associated variants for a phenotype of interest, including links to dbSNP if
appropriate as well as Annovar annotations. We have raised a ticket on GitHub for this
update, and it can be found at the following link:
https://github.com/dokyoonkimlab/netmage/issues/20. For now, if users wish to
download a list of variants associated with a phenotype, they can download the “Node
Map” file to see the genetic associations for their desired disease.

[In the revised manuscript]
(3. Implementation)
…clicking on a node will highlight the node and all its first-degree neighbors. A variety
of default attributes will be presented on the right side of the webpage as part of an
“Information Pane.” The user can also define other custom attributes, and these will be
included in the Information Pane as well. If the user inputs data that include rsID-
formatted SNPs, then NETMAGE will automatically hyperlink each SNP’s ID to its
corresponding dbSNP profile, allowing for further exploration of the variant’s
information. To aid with interpretation and visualization of disease associations, a
hyperlink to a histogram of disease connections is also included in the Information
Pane. For each phenotype, this histogram depicts first-degree disease neighbors
sorted in order of the number of shared variants…
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Abstract 

Background 

Disease complications, the onset of secondary phenotypes given a primary condition, can 

exacerbate the long-term severity of outcomes. However, the exact cause of many of these cross-

phenotype associations is still unknown. One potential reason is shared genetic etiology – 

common genetic drivers may lead to the onset of multiple phenotypes. A holistic, network-based 

view incorporating knowledge of other diseases and genetic associations will be required to 

uncover the exact basis of disease complications. Disease-disease networks (DDNs), where 

nodes represent diseases and edges represent associations between diseases, can provide an 

intuitive way of understanding the relationships between phenotypes. Using summary statistics 

from a phenome-wide association study (PheWAS), we can generate a corresponding DDN 

where edges represent shared genetic variants between diseases. Such a network can help us 

analyze genetic associations across the diseasome, the landscape of all human diseases, and 

identify potential genetic influences for disease complications. 

 

Results 

To improve the ease of network-based analysis of shared genetic components across 

phenotypes, we developed the humaN disEase phenoType MAp GEnerator (NETMAGE), a web-

based tool that produces interactive DDN visualizations from PheWAS summary statistics. Users 

can search the map by various attributes and select nodes to view related phenotypes, associated 

variants, and various network statistics. As a test case, we used NETMAGE to construct a network 

from UK BioBank (UKBB) PheWAS summary statistic data. Our map correctly displayed 

previously identified disease comorbidities from the UKBB and identified concentrations of hub 

diseases in the endocrine/metabolic and circulatory disease categories. By examining the 

associations between phenotypes in our map, we can identify potential genetic explanations for 

the relationships between diseases and better understand the underlying architecture of the 

human diseasome. Our tool thus provides researchers with a means to identify prospective 

genetic targets for drug design, using network medicine to contribute to the exploration of 

personalized medicine. NETMAGE is available to use at https://hdpm.biomedinfolab.com. Source 

code can be downloaded from https://github.com/dokyoonkimlab/netmage. 
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Disease-disease network; PheWAS; comorbidity; disease complication; network medicine 

https://hdpm.biomedinfolab.com/
https://github.com/dokyoonkimlab/netmage


 

 

 

1. Background 

Disease complications refer to the onset of secondary phenotypes given a primary condition, 

while disease comorbidities refer to the co-occurrent presence or onset of multiple diseases [1]. 

Both forms of disease association can exacerbate the long-term severity of disease, and they 

vary drastically from phenotype to phenotype [1]. However, their causes are still not well 

understood. One potential reason for these cross-phenotype associations [2] could be shared 

genetic etiology – the same genetic drivers may cause multiple symptoms to appear over time 

[3].  

Electronic health record (EHR)-linked biobanks capture both clinical and genetic information 

for large populations of patients [4]. These repositories contain both genetic and longitudinal 

phenotype data, including DNA samples, disease histories, laboratory measurements, lifestyle 

habits, and demographic information [4]. Given an EHR-linked biobank as input, a phenome-wide 

association study (PheWAS) can be used to calculate a multitude of associations between 

phenotypes and genetic variants, such as single-nucleotide polymorphisms (SNPs), in an 

unbiased manner [4].  



 

 

 

Figure 1. A depiction of the process for creating a SNP-based DDN. A PheWAS can be run on data 

from an EHR-linked biobank to calculate p-values of associations between a variety of single-nucleotide 

polymorphisms (SNPs) and phenotypes. The summary statistics from this PheWAS lend themselves to a 

DDN, where nodes represent diseases and edges represent common associated SNPs between diseases. 

Figure created with BioRender.com.  

 

A holistic network-based view involving disorders across the diseasome will be required to 

translate these genetic correlations into an understanding of disease co-occurrences [5]. Disease-

disease networks (DDNs), where nodes represent diseases and edges represent connections 

between diseases, can provide an intuitive way to understand the relationships between 

phenotypes [6, 7]. In particular, a DDN that uses its edges to represent variants can be generated 

as a proxy to highlight potential shared genetic influences for diseases. Analyzing the topology of 

these genetics-based DDNs can provide insight into how inherited factors may drive the onset of 

disease complications. 



 

 

 

2. Purpose of the work 

The network-based visualization of associations between variants and phenotypes can provide 

researchers and clinicians with a potential way to understand the genetic basis of disease 

interactions. In particular, the growth of available EHR-linked biobanks across institutions 

presents a trove of data that have yet to be mined from a “network medicine” perspective [5]. A 

variety of tools currently exist to depict PheWAS statistics, including PleioNet [8], ShinyGPA [9], 

PheGWAS [10], PheWeb [11], and PheWAS-ME [12] (Table 1). However, to the best of our 

knowledge, none of these packages allows for the creation of interactive, searchable DDNs from 

user-provided PheWAS summary data. 

 

Table 1. A comparison of NETMAGE to other toolkits that currently exist for the visualization of PheWAS 

summary statistics. 

 

Software 

Name 

Allows users 

to upload 

desired 

PheWAS 

results for 

analysis 

Allows for 

interactive 

investigation 

of cross-

phenotype 

associations 

Generates a network 

visualization of 

genetic associations 

between phenotypes 

Allows users to search 

and create subsets of 

any produced networks 

by disease, by genetic 

variant, or by other 

network statistics 

PleioNet  x x x 

ShinyGPA x x  x 

PheGWAS x x  N/A 

PheWAS-Me x x  x 

PheWeb x x  N/A 



 

 

NETMAGE x x x x 

 

The humaN disEase phenoType MAp GEnerator (NETMAGE) addresses this need. 

NETMAGE (NETMAGE, RRID:SCR_021843) is a web-based tool that allows users to upload any 

PheWAS summary statistics and generate corresponding interactive networks. In particular, the 

resulting DDN is a projection of an undirected bipartite network of phenotypes and genetic 

variants, where nodes serve as diseases and edges serve as sets of common associated variants 

[6]. Users can filter their input data by p-value and by minor allele frequency (MAF) to manipulate 

the rarity and significance of variants being used to generate the network. Furthermore, they can 

select nodes within the DDN to view information such as connected phenotypes, shared variants, 

and network statistics (Figure 2). 

NETMAGE will serve as a step toward mass network-based analysis of PheWAS data. The 

interactive, graph-based representation of these summary statistics will help researchers 

visualize comorbidities as well as identify genetic variants that may potentially lead to the onset 

of disease complications. Furthermore, because NETMAGE facilitates the analysis of PheWAS 

data from individual EHR-linked biobanks, users can follow up with phenotypic data in their 

corresponding EHRs to evaluate the predictive ability of genetics-based DDNs with respect to 

disease co-occurrences. NETMAGE will allow us to gain a deeper understanding of the underlying 

genetic architecture of disease interaction.  

 

3. Implementation 

We used Gephi  (Gephi, RRID:SCR_004293) [13], an open-source network visualization software 

package, as well as InteractiveVis [14], a framework built over sigma.js [15] for the interactive 

visualization of geospatial data, as a base for the implementation of NETMAGE. These packages 

were extended to create a web interface for the generation of network visualizations. We 

implemented a web server backend to accept the files uploaded by the user and then parse and 

generate the network using the Gephi toolkit. We deployed the server on Amazon Web Service 

(AWS) infrastructure, and it is available for use at the website [16]. We also enhanced the software 

to automatically parse all attributes provided in the input data and turn them into options for 

filtration and search. The NETMAGE pipeline works as follows: 

1. Users upload their PheWAS summary statistic files to our website. Each row should 

correspond to a genetic variant, and the user can provide p-value and MAF information if 

they want to filter their data using NETMAGE. The data can be uploaded either as a single 



 

 

file where the phenotype name is included in each row or separate files where each file 

corresponds to a distinct phenotype. 

2. NETMAGE converts PheWAS summary data into an intermediate 

disease_snpmap.netmage file. This file represents a dictionary of phenotype-to-variant 

mappings, where each phenotype serves as a key and each variant, p-value, MAF triplet 

serves as a value in a set. To create a DDN from the same data in the future, the user can 

simply upload the disease_snpmap.netmage file instead of re-uploading the original 

PheWAS data by using the “Upload netmage file” option. 

3. The disease_snpmap.netmage file is converted into a corresponding node and edge 

map. Based upon the p-value and MAF thresholds provided by the user, phenotype-

variant mappings will be filtered to provide a final file containing a list of relevant variants 

for each disease. This file is used to generate an edge map and a node map. The edge 

map establishes all links in the network – each row corresponds to an edge from a source 

to a target. Depending on the user’s choice, the weight of the edge equals either the 

number of associated variants shared between the two phenotypes, or the marginalized 

fraction of variants (the number of variants that constitute the edge divided by the union 

of the individual sets of variants for both phenotypes). In addition, the node map 

represents a list of all nodes in the network. Each row provides a distinct phenotype and 

a list of its associated variants. If input data have not already been pruned for linkage 

disequilibrium (LD), then users can provide an LD-mapping file that gives mappings 

between each variant to blocks of LD. NETMAGE will then clump SNPs according to their 

specified LD blocks, ensuring that associations that should be linking phenotypes together 

are present in the map. Users can also provide an input disease category mapping file so 

that each row of the node map now represents the disease and its category. 

4. The node and edge maps are used to create a two-dimensional mapping of the 

network. Through the Gephi and InteractiveVis frameworks, each disease is mapped to 

a two-dimensional space to visualize the DDN. Within the NETMAGE webpage, users can 

specify parameters including network layout, node size, and edge thickness to edit the 

aesthetics of the resulting graph. 

 

Given a resulting network, NETMAGE offers the following features: 

- Node Selection: clicking on a node will highlight the node and all its first-degree 

neighbors. A variety of default attributes will be presented on the right side of the webpage 

as part of an “Information Pane.” The user can also define other custom attributes, and 



 

 

these will be included in the Information Pane as well. If the user inputs data that include 

rsID-formatted SNPs, then NETMAGE will automatically hyperlink each SNP’s ID to its 

corresponding dbSNP profile [17], allowing for further exploration of the variant’s 

information. To aid with interpretation and visualization of disease associations, a 

hyperlink to a histogram of disease connections is also included in the Information Pane. 

For each phenotype, this histogram depicts first-degree disease neighbors sorted in order 

of the number of shared variants.  

- Search: users can search the map for relevant phenotypes based upon any attribute 

defined, such as phenotype name, phenotype ID, variant name, node degree, and other 

parameters. In particular, the “search by variant” option allows users to find shared genetic 

variants between diseases. The custom attributes provided by the user are also 

automatically incorporated into the search dropdown menu. Any categorical variables, 

such as disease name, disease category, or variant name, will include an auto-completion 

dropdown menu that dynamically updates as users type out their query terms. 

- Highlighting: groups of nodes within the same disease category can be highlighted to 

visualize associations within groups. These categories are established according to the 

user-provided input disease category file. 

 

Key strengths of NETMAGE include the automated creation of DDNs from user input for the 

visualization of a multitude of datasets, searchability of DDNs by both phenotype and genetic 

variant, and interactivity with the nodes of the DDN. These aspects allow users to focus on specific 

genetic associations by visualizing subsets of the map. Generated networks can be interacted 

with online or downloaded in a static format. NETMAGE allows users to download an image of 

the network as a PDF file or download the data corresponding to the network, including the 

intermediate disease_snpmap.netmage file (providing a map of phenotypes to variants, including 

p-value and MAF information if given by the user), node and edge map files (providing all nodes 

in the network along with their attributes, as well as all edges in the network respectively), and a 

final data.json file (providing the two-dimensional mapping of the elements in network). The node 

and edge map files, as well as the data.json file, can all be visualized and edited locally within 

Gephi. The data.json file can also be directly hosted by users on any web server. 

 



 

 

 

Figure 2. A depiction of the NETMAGE visualization tool. (A) The sidebar of the visualization gives a 

description of the map. It also includes a search dropdown and a group selector dropdown menu. (B) 

Variables are automatically read from the input data and included as options for search. (C) Clicking on a 

node reduces the displayed map to only the chosen node and its direct connections. Additionally, 

associated variants, connected phenotypes, and network statistics are presented to the right of the window 

when a node is selected. This graph corresponds to the subnetwork for type 2 diabetes (D) All nodes within 



 

 

a single disease category can be visualized at once using the Group Selector. Here, we display all neoplasm 

phenotypes.  

 

4. Case Study 

As a demonstration of the abilities of NETMAGE, we applied our software to SAIGE [18] -

analyzed UK Biobank [19] (UKBB) PheWAS data. The current version of the DDN is hosted at 

the website [20]. These data corresponded to 1,403 binary phenotypes expressed in terms of 

PheCodes [21]. All 400,000 British individuals of European ancestry in  the dataset were imputed 

using the Haplotype Reference Consortium panel, yielding 28 million imputed SNPs [11]. SAIGE 

[18], a generalized mixed model association test that uses the saddlepoint approximation to 

account for case-control imbalance, was used to generate summary statistics for each SNP, 

providing p-values of association between every SNP and every phenotype. This analysis was 

adjusted for genetic relatedness, sex, birth year, and the first four principal components[11]. All 

genomic positions are on GRCh37 [11]. Phenotypes that had a case count lower than 200 were 

dropped to keep more relevant diseases, yielding a total of 1075 traits for consideration. Data 

were also filtered in order to select significantly associated common variants, based upon the 

following thresholds: maximum p-value threshold [22] of 5x10-8, minimum MAF of 0.01, and LD-

pruning through PLINK [23] length using the quality-controlled UKBB genetic data itself as our 

reference panel, with an R2 of 0.2 and 250 kilobases for maximum search.  

Removing nodes with degree 0 after the previously described filtration steps yielded a final 

network of 232 nodes and 2375 edges. Degrees of nodes ranged from 1 to 84. The average 

degree was 20.47 and the average weighted degree was 1657.17. 68% (158/232) nodes had 

lower degrees than the average degree, implying a scale-free nature of the network (Figure 3) 

[5]. Furthermore, the diameter of the network was 7 while the average path length was 2.70, 

suggesting the small-world property for the network [5]. 570 edges (24%) connect diseases of the 

same category while 1,805 edges (76%) connect diseases of different categories, indicating that 

the genetic associations we identified appeared mostly across disease classes. Modularity 

analysis yielded 18 different clusters, ranging from size 2 to 72. There was also extensive variation 

in terms of the disease categories present for each module, again suggesting that genetic 

associations with phenotypes are not specific to disease class. Finally, the average clustering 

coefficient was 0.782, meaning that the network lacks extensive local clustering [5].  

 



 

 

 

Figure 3. A histogram of degree distributions for the UKBB DDN. This distribution follows the power 

law, suggesting a scale-free property for the network. We also see that disease categories fail to follow 

specific trends based upon the degree of the disease. 

 

Degree, weighted degree, closeness centrality, betweenness centrality, and eigenvector 

centrality were all used to identify hub diseases in the DDN 5]. Diseases with the highest degree 

included hyperlipidemia (272.1), disorders of lipoid metabolism (272), type 2 diabetes (250.2), 

diabetes mellitus (250), and hypothyroidism (244.4).  Diseases with the highest weighted degree 

included celiac disease (557.1), non-celiac intestinal malabsorption (557), hypothyroidism (244), 

type 1 diabetes (250.1), and psoriasis (696 and 696.4). Highest closeness centrality phenotypes 

included disorders of muscle, ligament, and fascia (728), fasciitis (728.7), and other retinal 

disorders (362), and highest betweenness centrality phenotypes included disorders of lipoid 

metabolism (272), hyperlipidemia (272.1), skin cancer (172), coronary atherosclerosis (411.4), 

hypertension (401), and essential hypertension (401.1). Finally, highest eigenvector centrality 

diseases included intestinal malabsorption and celiac disease (557 and 557.1), hypothyroidism 

(244.4 and 244), type 2 diabetes (250.2), type 1 diabetes (250.1), psoriasis (696), and rheumatoid 

arthritis and other inflammatory polyarthropathies (714.1 and 714). Based upon these results, it 

appears that endocrine/metabolic and circulatory diseases seem to have the most influence in 

our DDN (Table 2). 

 



 

 

Table 2. A table of hub phenotypes in the UKBB DDN. Centrality measures used to identify these 

phenotypes included degree, weighted degree, closeness centrality, betweenness centrality, and 

eigenvector centrality. Diseases marked in bold appear multiple times as the most central nodes based 

upon our different network measures. Refer to Table S1 in the Supplementary Data to see the exact 

centrality measures that identified each phenotype to be a hub. 

 

Phenotype PheCode Disease Category 

 

Skin cancer 172 Neoplasm 

Diabetes mellitus 250 Endocrine/Metabolic 

Hypothyroidism 244 Endocrine/Metabolic 

Hypothyroidism NOS 244.4 Endocrine/Metabolic 

Type 1 diabetes 250.1 Endocrine/Metabolic 

Type 2 diabetes 250.2 Endocrine/Metabolic 

Disorders of lipoid metabolism 272 Endocrine/Metabolic 

Hyperlipidemia 272.1 Endocrine/Metabolic 

Other retinal disorders 362 Sense Organs 

Hypertension 401 Circulatory System 

Essential hypertension 401.1 Circulatory System 

Coronary atherosclerosis 411.4 Circulatory System 

Non-celiac intestinal malabsorption 557 Digestive 

Celiac disease 557.1 Digestive 

Psoriasis 696 Dermatologic 

Psoriasis NOS  696.4 Dermatologic 

Other inflammatory polyarthropathies 714 Musculoskeletal 

Rheumatoid arthritis 714.1 Musculoskeletal 

Disorders of muscle, ligament, and fascia 728 Musculoskeletal 

Fasciitis 728.7 Musculoskeletal 

 

The DDN we generated includes many disease connections identified in previous studies. In 

keeping with the DDN generated from the DiscovEHR biobank [7], our network identified 

connections among type 1 diabetes, rheumatoid arthritis, psoriasis, and multiple sclerosis. It also 

identified connections among hypothyroidism, type 2 diabetes, thyroid cancer, obesity, and 

rheumatoid arthritis. Furthermore, similar to the Disease Comorbidity Network [24] derived from 



 

 

hospitals across China, our DDN included edges between hypertension and hyperlipidemia, type 

1 and type 2 diabetes, and diabetes mellitus. Finally, in keeping with a multimorbidity study 

performed on elderly patients in Tokyo [25], our DDN identified connections between 

hypertension, dyslipidemia, and coronary heart disease. 

Finally, considering potential genetic associations between diseases, we find that our DDN 

displays relevant genetic associations between diseases, including rs544873’s association with 

pulmonary heart disease, phlebitis and thrombophlebitis, hemorrhoids, circulatory disease, and 

diverticulosis [26], rs925488’s association with thyroid cancer, nontoxic nodular and multinodular 

goiter, and hypothyroidism [24], and rs780094’s association with diabetes and lipid metabolism 

[27]. 

One potential issue in terms of the conclusions that can be drawn from our UKBB DDN is the 

use of “PheCodes” as a method of defining phenotypes. PheCodes are defined according to ICD 

codes, but the accuracy of these codes for disease diagnosis is known to be questionable. Given 

such inaccuracies, users must be wary when treating PheCode or ICD-based diagnoses as a gold 

standard, as doing so may lead to inaccurate conclusions. Another aspect of the use of PheCodes 

for phenotype definitions is their hierarchical nature. Digits that appear after decimal points 

correspond to subsets of phenotypes compared to the parent code that appears before the 

decimal. In our case study, the data we make use of include mostly upper hierarchy phenotypes. 

More detailed hierarchical phenotypes are for the most part absent from our network. Users 

should be careful about including extensive hierarchical structure in their input data when 

generating DDNs through NETMAGE. Including phenotypes that are essentially identical to one 

another will introduce unnecessary nodes and edges in the network, in the process clouding more 

significant disease connections. 

In terms of future work for this case study, it would be interesting to compare the edges in our 

DDN with known disease comorbidities. We can take disease occurrence data from an external 

electronic health record and evaluate phi correlations between all pairs of phenotypes. 

Comparison of these co-occurrences to the genetic associations in our PheWAS may give us an 

indication if the DDN is a reasonable representation of disease connections. 

 

5. Runtime Analysis 

As a test of runtime for NETMAGE, we constructed DDNs from random subsets of the 

PheWAS data used to create the UKBB DDN and determined the time it took for each network to 

be generated. Five networks were each generated from collections of 50, 100, 250, 500, and 1000 

phenotypes. These DDNs were constructed in both the Fruchterman-Reingold and Force Atlas 2 



 

 

layouts from Gephi13, resulting in a total of 50 graphs for runtime analysis. The average time to 

create a network seems to grow in O(n2) as the number of phenotypes increases (Table 3). This 

behavior makes sense, as runtime depends on not only the number of phenotypes included in 

the input data, but also the number of variants being tested. Indeed, if each additional phenotype 

added to the network will have multiple associated variants, then the inclusion of nodes will tend 

to exponentially increase the number of edges assuming a low clustering coefficient in the 

network.  

 

 

 

 

 

 

 

 

Table 3. A table of run times (in seconds) for DDN generation given input datasets with different numbers 

of phenotypes. These times measure how long it takes for the server to generate the network after the 

“submit” button has been clicked – in all instances, files have already been uploaded to the server. Upload 

speeds for files will vary depending on user bandwidth. Five different datasets were constructed for each 

count of phenotypes to evaluate runtime, and the mean and standard deviation of time for the five runs is 

also provided for each row. Finally, runtime for the full input UKBB case study is included in the last row of 

the table.  

 

Phenotype 

Count 

Server runtime (in seconds) to generate network after receiving HTTP request 

 Fruchterman-Reingold Layout Force Atlas 2 Layout 

 1 2 3 4 5 Mean SD 1 2 3 4 5 Mean SD 

50 3.07 2.34 2.86 2.31 2.76 2.67 0.33 2.46 2.48 2.93 2.43 3.00 2.66 0.28 

100 3.26 3.49 4.29 3.61 3.52 3.63 0.39 3.43 4.14 4.37 4.62 3.58 4.03 0.51 

250 6.60 5.20 6.77 6.62 5.56 6.15 0.72 6.74 5.31 6.36 6.92 5.90 6.25 0.65 

500 11.21 11.85 12.53 10.94 9.91 11.29 0.99 11.68 12.04 12.49 11.21 9.33 11.35 1.22 

1000 28.27 28.77 30.19 27.01 29.52 28.75 1.22 29.37 28.35 29.84 27.23 30.23 29.00 1.22 

UKBB 

DDN 
48.60 N/A N/A 39.43 N/A N/A 

 



 

 

 

6. Discussion and Conclusions 

NETMAGE is a toolkit for the network-based interactive visualization of PheWAS summary data. 

The goal of this software is to improve the ease of visualization of genetic associations across 

diseases and to facilitate large-scale genetic analysis of the human diseasome. While the UKBB 

data used for our case study consisted of entirely binary phenotypes, NETMAGE is also 

applicable to quantitative traits. Indeed, in such a situation, the continuous value of the 

quantitative phenotype, such as a laboratory test measure like A1C level, is used as the outcome 

variable in the PheWAS. This process provides a more detailed degree of association between 

the severity of the trait and genetic variants, as compared to the identification of associations 

between a presence or absence of the trait with variants. 

A key point to note regarding NETMAGE is that the output DDNs will provide only as much 

information as the input data. Indeed, NETMAGE is an exploratory tool intended to help visualize 

connections between diseases. Including summary PheWAS data that provides insight into the 

statistical associations between phenotypes will yield an associative map but will tell us nothing 

about causality. Associations identified through PheWAS are often spurious, so any sort of 

analyses performed on these data must take this information into consideration. Nevertheless, 

these kinds of associative visualizations are still useful for the study of disease and may help 

identify connections between phenotypes and genetic variants, generate new hypotheses, and 

suggest future experiments that can be conducted. For a visualization that gives stronger insight 

into the causal connections between traits, one could potentially input the results of a Mendelian 

Randomization experiment.  

Several future directions exist for NETMAGE. First is the inclusion of directionality in the 

network – as of now, DDNs produced by NETMAGE give no indication regarding the direction of 

association between phenotypes. Using beta values for the association between phenotypes and 

genetic variants would be a useful inclusion, aiding in clinical interpretation of the network. We 

will also allow for the concurrent selection of multiple nodes within the DDN. The current 

NETMAGE user interface allows only one node to be selected at a time. The ability to select 

multiple nodes will allow clinicians to quickly identify if two phenotypes are associated in the 

network. We also hope to enhance NETMAGE to allow for the construction of gene-based DDNs 

from variant-based data by including variant-to-gene mapping as a part of the website. Finally, 

we will allow users to create variant-variant networks instead of disease-disease networks, which 

depict the connections between genetic variants (for instance, SNPs) based upon associations 

with phenotypes. 



 

 

Ultimately, NETMAGE will give researchers and clinicians insight into the underlying genetic 

architecture of disease complications. The impact of our work will be a tool that allows for the 

potential identification of new gene targets that can be investigated in follow-up studies of 

pleiotropy and drug discovery. We hope that this software will contribute to new potential 

discoveries in personalized medicine and that it helps facilitate the advancement of network 

medicine studies into the genetics of disease co-occurrences. 

  

Availability of supporting source code and requirements 

• Project name: NETMAGE 

• Project home page: https://hdpm.biomedinfolab.com/netmage/ 

• Source code: https://github.com/dokyoonkimlab/netmage 

• Operating system(s): Platform independent 

• Programming language: Python, HTML, JavaScript 

• Other requirements: None 

• Contact: dokyoon.kim@pennmedicine.upenn.edu  

 

Data Availability 

Supporting data and materials are available in the GigaDB database[28]. 
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Supplementary Data 

 

Table S1. A table of phenotypes with the highest centrality measures in the UKBB DDN. Diseases marked 

in bold appear multiple times as the most central nodes based upon our different network measures. 

 

Phenotype PheCode Attribute Value 

Hypothyroidism NOS 244.4 Degree 83 

Disorders of lipoid metabolism 272 Degree 79 

Type 2 diabetes 250.2 Degree 79 

Diabetes mellitus 250 Degree 77 

Hyperlipidemia 272.1 Degree 76 

Celiac disease 557.1 Weighted Degree 1.27*105 

Non-celiac intestinal malabsorption 557 Weighted Degree 1.26*105 

Hypothyroidism NOS 244.4 Weighted Degree 7.48*104 

Hypothyroidism 244 Weighted Degree 7.39*104 

Type 1 diabetes 250.1 Weighted Degree 6.53*104 

Psoriasis 696 Weighted Degree 5.09*104 

Psoriasis NOS  696.4 Weighted Degree 5.11*104 

Disorders of muscle, ligament, and 

fascia 

728 Closeness Centrality 1.00 

Fasciitis 728.7 Closeness Centrality 1.00 

Other retinal disorders 362 Closeness Centrality 1.00 

Skin cancer 172 Betweenness Centrality 2.15*103 

Disorders of lipoid metabolism 272 Betweenness Centrality 1.97*103 

Hyperlipidemia 272.1 Betweenness Centrality 1.97*103 

Essential hypertension 401.1 Betweenness Centrality 1.84*103 

Hypertension 401 Betweenness Centrality 1.19*103 

Coronary atherosclerosis 411.4 Betweenness Centrality 7.72*102 

Intestinal malabsorption 557 Eigenvector Centrality 1.00 

Celiac disease 557.1 Eigenvector Centrality 1.00 

Hypothyroidism NOS 244.4 Eigenvector Centrality 0.98 

Hypothyroidism 244 Eigenvector Centrality 0.98 

Type 1 diabetes 250.1 Eigenvector Centrality 0.95 



 

 

Type 2 diabetes 250.2 Eigenvector Centrality 0.93 

Rheumatoid arthritis 714.1 Eigenvector Centrality 0.89 

Other inflammatory polyarthropathies 714 Eigenvector Centrality 0.89 

Psoriasis 696 Eigenvector Centrality 0.86 

 


