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Abstract 

Background: With the rise of single cell RNA sequencing new bioinformatic tools 

became available to handle specific demands, such as quantifying unique molecular 

identifiers and correcting cell barcodes. Here, we analysed several datasets with the 

most common alignment tools for scRNA-seq data. We evaluated differences in the 

whitelisting, gene quantification, overall performance and potential variations in 

clustering or detection of differentially expressed genes.  

We compared the tools Cell Ranger 5, STARsolo, Kallisto and Alevin on three 

published datasets for human and mouse, sequenced with different versions of the 

10X sequencing protocol. 

Results: Striking differences have been observed in the overall runtime of the 

mappers. Besides that Kallisto and Alevin showed variances in the number of valid 

cells and detected genes per cell. Kallisto reported the highest number of cells, 

however, we observed an overrepresentation of cells with low gene content and 

unknown celtype. Conversely, Alevin rarely reported such low content cells. 

Further variations were detected in the set of expressed genes. While STARsolo, 

Cell Ranger 5 and Alevin released similar gene sets, Kallisto detected additional 

genes from the Vmn and Olfr gene family, which are likely mapping artifacts. We 

also observed differences in the mitochondrial content of the resulting cells when 

comparing a prefiltered annotation set to the full annotation set that includes 

pseudogenes and other biotypes.  

Conclusion: Overall, this study provides a detailed comparison of common scRNA-

seq mappers and shows their specific properties on 10X Genomics data.  
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Background 

Single cell RNA sequencing (scRNA-seq) has made great strides in the 

transcriptomics field as it enables differential expression analysis, clustering, cell 

type annotation and pseudotime analysis on a single cell level [1]. Analysis of 

scRNA-seq data helped to reveal new insights into cellular heterogeneity, like the 

altered phenotypes in circulating immune cells of patients with chronic ischemic 

heart diseases [2] or the transcriptional diversity of aging fibroblasts [3]. However, 

the analysis of scRNA-seq data is resource intensive and requires deeper 

knowledge of specific characteristics of each analysis tool. 

The most resource intensive step during single cell NGS data analysis is the 

alignment of reads to a reference genome and/or transcriptome. Therefore, a 

common question relates to the choice of the best scRNA-seq alignment tool, that 

can be incorporated into a fast, reliable and reproductive analysis pipeline. Here we 

evaluated four popular alignment tools Cell Ranger 5, STARsolo, Alevin and Kallisto.  

 

Technological properties of these mappers are summarized in Supplementary table 

1. In general, the analysis pipeline for the Chromium platform from 10X Genomics 

consists of Cell Ranger 5 as the standard alignment tool [4], which includes STAR [5] 

which was designed for bulk RNA-seq data. STAR performs a classical alignment 

approach by utilizing a maximal mappable seed search, thereby all possible 

positions of the reads can be determined. In contrast, Kallisto [6] and Alevin [7] 

perform an alignment-free approach, so called pseudo-alignments. The idea of 

alignment-free RNA-Seq quantification was introduced by Patro et al. [8] and 

promised much faster alignments. Here, k-mers of reads and the transcriptome are 
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compared, and thus avoiding a comparison of each base. However, it has been 

shown that pseudo alignment tools have limitations in the quantification of lowly 

expressed genes [9]. 

In contrast to bulk-RNA-seq, preprocessing of scRNA-seq requires specific features. 

Essential features are cell calling, removing PCR duplicates and assigning reads to 

individual genes and cells. These features can be achieved through barcode and 

UMI sequences, which are sequenced along with the reads. Therefore, the correct 

handling of barcode and UMI sequences are crucial steps while processing scRNA-

seq data. Each alignment tool applies different strategies to handle these errors.  

The most important step for cell calling is the correction of sequencing errors within 

the barcodes. Cell Ranger 5, STARsolo and Kallisto correct barcodes by comparing 

the sequenced barcodes to a set of all barcodes that are included in the library 

preparation kit, the so-called whitelist. This whitelist is provided by 10X Genomics. If 

no exact match of a sequenced barcode can be found in the whitelist, this barcode is 

replaced with the closest barcode from the whitelist, if the Hamming distance is not 

bigger than 1. Alevin, however, generates a putative whitelist of highly abundant 

barcodes that exceed a previously defined knee point. Afterwards Alevin assigns 

error prone barcodes to the closest barcode from the putative whitelist, while 

allowing an edit distance of 1. 

In order to remove PCR duplicates (reads with the same mapping position, the same 

cell barcode) an identical unique molecular identifier (UMI) sequence is required for 

pooling these PCR duplicates. To correct errors in UMI sequences, Cell Ranger 5 

and STARsolo group reads according to their barcode, UMI and gene annotation, 

while allowing 1 mismatch (MM) in the UMI sequence. As error prone UMIs are rare, 

they will be replaced by the higher abundant (supposedly correct) UMI. Afterwards a 
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second round is done by grouping the barcode, corrected UMI and gene annotation. 

When groups differ only by their gene annotation, the group with the highest read 

count is kept for UMI counting. The other groups are discarded, as these reads origin 

from the same RNA construct but were mapped to different genes [10]. Alevin builds 

a UMI graph and tries to find a minimal set of transcripts for UMI deduplication [7]. In 

this process, similar UMIs are corrected. Kallisto applies a naive collapsing method 

which removes reads that originate from different molecules but contain the same 

UMI [6]. 

The third important preprocessing step of scRNA-seq data is the assignment of 

reads to individual genes and cells. Here, the alignment tools have striking 

differences handling these multi mapped reads. In STARsolo, Cell Ranger 5 and 

Kallisto multi mapped reads are discarded when no unique mapping position can be 

found within the genome/transcriptome. Whereas Alevin equally divides the counts 

of a multi mapped read to all potential mapping positions.  

Apart from the choice of the mapper, other decisions can influence the mapping 

results. One aspect is the choice of an appropriate annotation, which was shown to 

influence gene quantifications [11]. 10X Genomics recommends a filtered gene 

annotation that contains only a small subset that includes the biotypes protein 

coding, lncRNA and Immunoglobulin and T-cell receptor genes. Other biotypes e.g. 

pseudogenes are not included. Therefore, we were interested if a full annotation set 

affects the gene composition and the results of secondary analysis steps of scRNA-

seq. Therefore we compared the mapping statistics of the filtered annotations to the 

complete (unfiltered) Ensembl annotation.  
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Here, we performed a benchmark of four of the most common scRNA-seq alignment 

tools (Cell Ranger 5, STARsolo, Alevin and Kallisto). We used different scRNA-seq 

data sets of mouse and human to highlight specific differences and effects on 

downstream analysis with a focus on clustering and cell annotation as prominent 

goals of droplet-based sequencing. 

We are convinced that this benchmark of commonly used mappers is a valuable 

resource for other researchers to help them to choose the most appropriate mapper 

in their scRNA-seq analysis. 

Methods 

Datasets  and Reference Genomes     

10X Drop-Seq Data 

We used three publicly available data.  

PBMC 

The first data set are human Peripheral blood mononuclear cells (PBMCs) from a 

healthy donor provided by 10X. It was downloaded from the 10X website [12]. It was 

sequenced with the v3 chemistry of the Chromium system from 10X.  

Cardiac 

The second data set consists of 7 samples of mouse heart cells at individual 

timepoints (Homeostasis, 1 day, 3 days, 5 days, 7, days, 14 days, 28 days) after 

myocardial infarction [13]. Data was downloaded from the ArrayExpress database 
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under the accession E-MTAB-7895. This dataset was sequenced with the v2 

chemistry of the Chromium system from 10X.  

Endothelial 

The third dataset is from the mouse single cell transcriptome atlas of murine 

endothelial cells from 11 tissues (n=1) [14]. Data was downloaded from the 

ArrayExpress database under the accession E-MTAB-8077. It was sequenced with 

the v2 chemistry of the Chromium system from 10X. This data set could not be 

mapped with Cell Ranger version 4 and 5. The UMI sequence is one base shorter 

and the strict error handling introduced in Cell Ranger 4 could not be circumvented. 

Therefore, all results are based on Cell Ranger 3. 

Gene annotation databases 

Mouse and human genome and transcriptome sequences as well as gene 

annotations were downloaded from the Ensembl FTP server (Genome assembly 

GRCm38.p6 release 97 for mouse and GRCh38.p6 release 97 for human) [15]. The 

annotation for Cell Ranger 5 is the GENCODE version M22 for mouse and version 

31 for human that match the Ensembl release 97 [16]. 

In this study, we compare two annotations (filtered and unfiltered). The filtered 

annotation file was generated applying the mkgtf function for Cell Ranger v3.0.2 and 

mkref for Cell Ranger 5 according to the manual from 10X [17]. Therefore, the 

filtered annotation file contains the following features: protein coding, lncRNA and 

the immunoglobulin and thyroid hormone receptor genes. For the unfiltered 

annotation, the complete Ensembl GTF file was used without any alterations. 
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Software 

Source Code 

An index of the reference genome has been built for each tool individually, using the 

default parameters according to the manual pages of the individual tools. The exact 

commands for the creation of the indices and the mapping of the data are published 

at [18]. 

Cell filtering 

Cells were filtered with the R package DropletUtils v1.6.1 [19]. All raw gene-count 

matrices were processed with the emptyDrops method [20]. The emptyDrops 

function applies the emptyDrops method and 50000 iterations of the Monte Carlo 

simulation were chosen, to avoid low resolution p-values due to a limited number of 

sampling rounds.  

Downstream clustering analysis 

Seurat v3.1.5 [21] was used for the downstream analysis. For all secondary analysis 

steps, we retained cells with a number of genes between 200 and 2500 and a 

mitochondrial content < 10%. 

To compare the clustering we integrated the expression matrices of the samples 

from each mapper to remove technical noise and compare all combined samples. 

This was done for the Cardiac and PBMC data set. The data sets were first 

normalized with the SCTransform function. We then ranked the features with the 

function SelectIntegrationFeatures and controlled the resulting features with the 

function PrepSCTIntegration. Anchors were determined by FindIntegrationAnchors 
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and afterwards used with the IntegrateData function. The UMAP algorithm was run 

on the first 15 (Cardiac) and 10 (PBMC) principal components of a PCA. To 

determine clusters, the FindClusters function was utilized with the parameter 

resolution=0.13 (Cardiac) and 0.51 (PBMC) to receive a number of clusters that is 

similar to the expected major cell types in the data set. The Endothelial matrices 

were only merged and not integrated because the resulting clustering would not yield 

appropriate tissue clusters due to the lack of different cell types. Yet, after merging 

the matrices we could obtain a similar clustering to the original study. 

SCINA cluster comparison 

To evaluate the effects of the different alignment and pseudoalignment algorithms on 

clustering analysis, we created an artificial “ground truth”, where we assigned each 

barcode to a cell type. For this task we choose SCINA v1.2 [22] as an external 

classification tool. The semi-supervised classification method in SCINA requires a 

set of known marker genes for each cell type to be classified. Marker gene sets were 

obtained from Skelly et. al. [23] and combined with other marker gene sets, as 

suggested by Tombor et.al. [24] (Suppl. Table 2). An expectation–maximization (EM) 

algorithm uses the marker genes to obtain a probability for each provided cell type. 

After the classification each cell will be assigned a cell type that shows the highest 

probability based on the provided marker genes. Alignments with different mappers 

might result in different cell classifications for each barcode. Therefore, a consensus 

scheme is applied to each sample to create a cell type agreement for each barcode. 

Consensus of a cell classification for each barcode is achieved if two or more 

mappers agree on a cell type. 
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The remaining barcodes were used as a global barcode set for SCINA. Sankey plots 

were generated with the R-package  ggalluvial 0.12.3 [25] to illustrate the 

representation of cell types in each Seurat cluster (Suppl. Figure 5). In addition, to 

convey the differences between SCINA and the seurat clusters from each mapper, a 

jaccard index was calculated and visualized with a heatmap (Suppl. Figure 6). 

UMAPs were created for each data set to illustrate the clustering between the 

mapper (not shown). 

DEG analysis 

For the differential gene expression (DEG) analysis each cluster from the integration 

in Seurat was assigned to a cell type by known marker genes for the PBMC dataset. 

The marker genes were obtained by the Seurat workflow for a similar 10X dataset  

[26]. DEGs were then calculated by using the FindAllMarkers function with the 

Wilcoxon Rank Sum test in Seurat and all DEGs above an adjusted p-value of 0.05 

were removed. Upset plots were then created with the remaining DEGs (Figure 4). 

Additional Software 

The R-package ComplexHeatmap 2.6.2 [27] was used to create the Upset-plots 

(Figures 2, 4; Suppl. Figure 2). 

Hardware 

All computations were executed on a workstation with Intel Xeon E5-2667 CPU and 

128 GB RAM. The OS was Ubuntu 18.04 LTS. 
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Results 

For the comparison of the four different alignment tools Cell Ranger 5, STARsolo, 

Alevin and Kallisto, we analysed three representative datasets which are denoted as 

PBMCs, Endothelial and Cardiac (see method section for a detailed description of 

the datasets) in the following.  

General statistics 

The overall performance and basic parameters like runtime, genes per cell, cell 

number and mapping rate are summarized in Figure 1. In terms of runtime 

STARsolo, Alevin and Kallisto clearly outperformed each version of Cell Ranger and 

were at least three times faster. Kallisto showed the shortest runtimes and was on 

average 21 times faster than Cell Ranger in version 3. With version 4 and 5 of Cell 

Ranger, Kallisto was 4 to 6 times faster. Additionally, Kallisto showed the highest 

transcriptome mapping rate whereas Alevin showed a slightly decreased mapping 

rate across all datasets. The cell count and the average genes per cell were similar 

for Cell Ranger 5 and STARsolo across all datasets. Overall Cell Ranger and 

STARsolo had almost identical results regarding the cell count and the genes per 

cell especially in Cell Ranger version 3, which is expected from the similarity of both 

tools. However, a slight increase of cells and a decrease of genes per cell could only 

be detected in version 4 and 5 in the Cardiac datasets. In contrast, Alevin and 

Kallisto showed different behavior for the genes per cell across the datasets. 

Compared to the other tools, Alevin detected more cells with less genes per cell in 

the PBMC and Endothelial dataset. However, it detected less cells with more genes 

per cell in the Cardiac dataset. More details with respect to these differences can be 
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found in Suppl. Figure 1. In the PBMC and the Endothelial datasets, Alevin shows 

small peaks in the lower left corner of the density plots for UMI counts and genes per 

cell. These peaks represent cells which have low UMI counts. For the Cardiac 

dataset Alevin did not detect these cells with low UMI content, which might explain 

the lower cell count for this dataset. However, in the Cardiac dataset, we observed 

more low content cells for Kallisto. This is consistent with the finding that Kallisto 

detects most cells in the Cardiac dataset. 

Cell and gene identification 

In 10X droplet based single cell sequencing, the individual cells are usually identified 

via the randomized cell barcodes, which are predefined by the whitelist. In order to 

determine if the different mapping tools detected identical cells, we merged the 

resulting cells based on their barcodes (Figure 2A). The majority of barcodes were 

identified by all alignment tools. However, Cell Ranger 5, STARsolo and Kallisto 

detected more barcodes as compared to Alevin in the Cardiac dataset. These cells 

had far less reads per cell compared to the cells that were detected in all mappers, 

as shown in the section 1 of Suppl. Figure 2 A&B. Similarly, Alevin detected unique 

barcodes for the PBMC and Endothelial datasets, which also had less gene content 

compared to the other cells detected by Alevin (panel 3 of Suppl. Figure 2 A&B). 

Additionally, we recognised that the majority of these barcodes are not included in 

the whitelist from 10X (Suppl. Table 1). Panel 4 of Suppl. Figure 2 B shows the 

unique barcodes for Kallisto in the Cardiac dataset, which also have less gene 

content than the other cells. Overall, we saw a reduced number of genes per cell for 

the barcodes that were only detected by one or two of the four alignment tools. 
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By comparing the expressed genes, we could show that all alignment tools detect a 

similar set of genes (Figure 2B). Only Kallisto detected additional genes leading to a 

higher number of protein coding and lncRNA genes compared to the other tools 

(Suppl. Figure 3).  

One gene family that occurred more frequently in Kallisto is the Vmn (Vomeronasal 

receptors) gene family, that is represented with higher UMI counts in the analysis 

performed with Kallisto (Figure 3A). Another Kallisto-enriched gene family is the Olfr 

(Olfactory receptor) family, which is detected with lower UMI counts compared to the 

Vmn family, but is still elevated compared to the other tools (Figure 3B). This leads 

to an increase in total gene counts for Kallisto (red line in Figure 3) and an increase 

of the respective biotypes (Suppl. Figure 3). The increased expression of genes from 

the Olfr gene family is exemplified in Suppl. Figure 4. 

Effects on downstream analysis 

In order to evaluate downstream effects of the different alignment tools, we 

performed a semi-supervised cell type assignment with SCINA. Therefore, we used 

all cells that were found by more than two mappers and assigned them to a 

corresponding cell type based on the marker genes documented in Suppl. Table 2. 

Thereby, the majority of barcodes could be assigned to a specific cell type. Then we 

compared the clusters from each alignment tool to the assigned cell types from 

SCINA. Using the barcodes to identify each cell, we traced the cells from their 

respective clusters to the assigned cell type.  

The fate from the predicted cell types to the clusters for each mapper can be 

observed in the sankey plots in Suppl. Figure 5. Most SCINA cell types are split into 

several clusters as shown in Suppl. Figure 6.  
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In general, the clustering was similar when comparing the alignment tools. Minor 

differences were observed for Kallisto and Alevin. In the PBMC dataset, Kallisto 

showed a higher number of missing barcodes (M.b.), predominantly from monocytes. 

Missing barcodes are barcodes that were found in at least two of the other mappers, 

but not in the present one. Which means that these monocytes were not present or 

filtered out in Kallisto. 

In the Cardiac data set, the lower cell count found by Alevin leads to more barcodes 

associated with missing barcodes demonstrating that these cells are not detected in 

Alevin. The majority of these missing cells were assigned as endothelial cells. Which 

means that in the cardiac dataset Alevin detected only around 50% of the endothelial 

cells that were found with the other tools. Also the number of B-cells and 

granulocytes were decreased due to the lower cell counts. However, the decrease in 

the latter cell types could not be confirmed in the PBMC dataset. 

In summary, Cell Ranger 5 and STARsolo showed the highest agreement with the 

predicted cell types from SCINA, which is not surprising as they use the same 

internal algorithm. The overlaps of Alevin and Kallisto were lower due to varying cell 

counts. Analysis of the differential expressed genes across the cell types of the 

PBMC dataset did not show major differences among the alignment tools (Figure 4). 

Comparing filtered to unfiltered annotations 

The default transcriptome annotation dataset, which is recommended for Cell 

Ranger 5 by 10X Genomics, misses some important biotypes like pseudogenes and 

TEC’s, sequences that indicate protein coding genes that need to be experimentally 

confirmed. These differences in gene model compositions can have profound effects 

on the read mapping and the gene quantification as reported by Zhao et al. [11]. In 
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order to evaluate the effects of different annotation sets on 10x scRNA-seq data, we 

compared the mapping statistics of the filtered annotations to the complete 

(unfiltered) Ensembl annotation.  

Besides the increase of processed pseudogenes (Suppl. Fig. 3), the usage of the 

unfiltered annotation led to a decrease in mitochondrial (MT) content across all 

alignment tools as shown in Suppl. Fig 8A. Especially the two mouse datasets 

showed a strong reduction of MT content in the unfiltered annotation. Suppl. Fig. 8B 

shows the amount of reads per mitochondrial gene which are not mapped. Further 

investigation revealed that the unfiltered annotation includes pseudogenes which are 

identical to MT genes (Suppl. Fig. 8E). A potential explanation for the reduced MT-

content with the unfiltered annotation is that the mapping algorithms cannot uniquely 

assign a read to the MT-gene, as the read can simultaneously map to the MT-gene 

and the identical pseudogene (Suppl. Fig. 8E). Therefore, this read is discarded. As 

high MT-content is a sign for damaged or broken cells, cells with an MT-content 

above a certain threshold are usually filtered out. However due to the reduced MT 

content less cells surpassed the MT content threshold and we could retrieve more 

cells. These additional cells clustered along with the other cell types, indicating that 

the cell quality is good and that these additional cells are not broken or damaged 

cells as exemplified in Suppl. Fig. 8C. Using the unfiltered annotation yielded up to 

10% more cells per sample. However deeper research is required to ensure the 

quality of these additional cells. 
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Discussion 

Since handling of scRNA-seq data is a moving target, the constant revision of new 

tools is important to ensure reliable results. Therefore, independent benchmarking 

and evaluation of uncertainties of analysis tools is of central importance [28]. 

Specifically for scRNA-Seq tools, comprehensive benchmarking papers are sparse 

[29]. Until now, only a limited number of benchmarking papers for scRNA-seq 

mappers were published. Du et al. [30] conducted a benchmark between STAR and 

Kallisto on different scRNA-seq platforms. Chen et al. and Vieth et al. performed a 

pipeline comparison with in vivo respectively simulated datasets with a vast 

combination of tools concentrating on imputation, normalization and calculation of 

differential expression [31,32]. Very recently, Booeshaghi and Pachter [33] published 

a preprint paper where they compared Alevin and Kallisto on 10X datasets. 

However, an in-depth and combined comparison of the four most common alignment 

tools on different 10X datasets has not been performed so far.  

Our study of real 10X Genomics data sets demonstrated advantages and 

disadvantages of four popular scRNA-seq mappers for gene quantification in single 

cells and adds to the growing number of benchmarks. The tools benchmarked in this 

study are widely used in many labs, thus, our results are relevant for many scientists 

working with scRNA-seq data. All mappers have been evaluated on in vivo datasets 

as these data might reveal unexpected differences or characteristics that probably 

could not have been found with simulated data as is highlighted by Srivastava et al 

[34]. From our perspective, the only advantage of simulated datasets is that it allows 

the assessment of read accuracy, which has already been done for the mappers we 

used in this study [35–37]. 
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The runtime is one of the most important factors when choosing a tool, but the 

quality of the results is of equal importance. In our detailed analysis, we show that 

Cell Ranger 5 could be easily replaced with STARsolo, as they show almost identical 

results but STARsolo is up to 5x faster in comparison with Cell Ranger 5. The low 

variance in the PBMC dataset for the cell counts and genes per cell for Cell Ranger 

5 and STARsolo can be explained by the predefined sample size by 10X. 

Du et al. 2020 [30] reported that Kallisto was even faster than STARsolo; a finding 

which is consistent with our results as Kallisto had overall the shortest runtime 

across all mappers. However, the number of cells and the genes per cell varied 

across datasets for Alevin and Kallisto. 

Additionally, Kallisto seems to detect genes of the Vmn and Olfr family as highly 

expressed in several single cell data sets, although these genes are typically not 

expressed in these tissues. As these gene families belong to the group of sense and 

smell receptors, they are expected to be expressed at lower levels or be absent in 

PBMCs and heart tissue and likely represent artefacts. We consistently show that 

these genes are overrepresented in the Kallisto results (Figure 3 and Suppl. Figure 

4). As Kallisto does not perform quality filtering for UMIs this might have influenced 

the reported number of genes per cell as is indicated by Parekh et al [38].  

Another major difference of the tested mapping tools is the handling of errors in the 

barcodes. We could show that Alevin often detects unique barcodes, which were not 

identified by the other tools. These barcodes had very low UMI content and were not 

listed in the 10X whitelist. It can therefore be assumed that these barcodes were 

poorly assigned (Suppl. Figure 2, Section 3). A possible explanation might be the 

usage of a putative whitelist in Alevin that was calculated prior to the mapping, 

instead of using the one provided by 10X. 
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While comparing the resulting cell clusters generated by each tool, we recognised 

only minor differences between the tools. Especially the clusters from Cell Rranger 

and STARsolo were similar. However, Kallisto detected fewer monocytes in the 

PBMC dataset and Alevin detected fewer endothelial cells in the cardiac dataset. 

Overall, we saw a much higher variance in the clustering in the cardiac dataset. This 

could be due to the use of an older version of the library extraction protocol (10X v2), 

which has short barcode and UMI sequences, or a lower sequencing quality of the 

Cardiac dataset. 

The comparison of the complete annotation from Ensembl and the filtered 

annotation, as suggested by 10X, revealed that multi-mapped reads play an 

important role in scRNA-seq analysis. In this study, we showed that using an 

unfiltered annotation reduces the MT-content of cells compared to the filtered 

annotation. Therefore, the mitochondrial content as a way to distinguish valid cells 

and dead or damaged cells has to be carefully conducted as it depends on the 

annotation. The recommended annotation from 10X, which only contains genes with 

the biotypes protein coding and long non-coding, might lead to an overestimation of 

mitochondrial gene expression respectively the absence of other gene types. 

However, on the other side all of these genomic loci that are identical to MT genes, 

so called nuclear mitochondrial DNA (NUMT), are unprocessed pseudogenes and 

are not yet experimentally validated and could well be artifacts from the genome 

assembly. For human samples we could not see major differences in the 

downstream results while using the complete annotation, therefore it might well be 

used instead of the filtered annotation. However, for mouse samples a clear 

recommendation of whether to use the filtered or the complete annotation cannot be 
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made, as more research into this issue is required. These results suggest that there 

is still a need to improve the handling of multi-mapped reads in scRNA-seq data. 

Future mapping tools might for example consider the likelihood of a gene to be 

expressed in a certain cell type. This might enhance the quantification of cell type-

specific genes and prevent multi-mapped reads for cell types, where a certain gene 

is rarely expressed. Inclusion of mapping uncertainties may be another fruitful 

direction. 

Srivastava et al. [34] observed that there are significant differences between 

methods that align against the transcriptome with quasi-mapping (e.g. Alevin) and 

methods that do full spliced alignments against the genome (e.g. STAR) [34]. The 

observed discrepancies, when using the filtered annotation in our experiments, often 

result from genes that share the same sequences, and therefore, the true alignment 

origin cannot be determined. The reported positions of reads contained annotated 

transcripts e.g., from the mitochondria and a few unprocessed pseudogenes. 

In conclusion, our analysis shows that Alevin, Kallisto and STARsolo are very fast 

and reliable alternatives to Cell Ranger 5. They also scale to large datasets. A 

summary of advantages and disadvantages of each individual tool is provided in 

Figure 5.  

We could show that STARsolo is an ideal substitute for Cell Ranger 5, as it is faster 

but otherwise performs quite identical. If high-quality cell counts need to be obtained, 

Alevin appears to be the most suitable method, as average gene counts are high- 

and poor-quality barcodes are seldom reported. Kallisto, while reporting the highest 

number of barcodes, also contains many barcodes that could not be assigned to 

cells expected in the heart based on known marker genes. 



20 

Availability of Source Code and Requirements 

● Project name: Comparative Analysis of common alignment tools for single cell 

RNA sequencing 

● Project home page:  https://github.com/rahmsen/BenchmarkAlignment 

● Operating system(s): x86_64-pc-linux-gnu (64-bit) 

● Programming language: R (version 3.6.2) 

● Other requirements: Cell Ranger 3.0.2, STARsolo 2.7.4a, Alevin 1.1.0, 

Kallisto 0.46.1, Seurat v3.1.5, DropletUtils v1.6.1, Seurat v3.1.5, SCINA v1.2, 

ggalluvial 0.12.3, ComplexHeatmap 2.6.2 

● License: MIT 

Abbreviations 

scRNA-seq: single cell RNA sequencing; NGS: next generation sequencing; UMI: 

unique molecular identifier; PCR: Polymerase chain reaction; PBMC: Peripheral 

blood mononuclear cell; lncRNA: long non-coding RNA; MM: mismatch; GTF: 

General Feature Format; DEG: Differentially expressed genes; UMAP: Uniform 

Manifold Approximation and Projection; SCINA: Semi-Supervised Subtyping 

Algorithm; Vmn: Vomeronasal receptor; Olfr: Olfactory receptor; PCA: Principal 

component analysis; M.b.: Missing barcodes; MT: mitochondrial; NUMT: nuclear 

mitochondrial DNA 
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Figure Descriptions 

Figure 1: Summary of major measurements including runtime in hours (A), Genes 

per cell (B), cell count (C) and the mapping rate in percent (D). All bar plots show the 

mean of all samples with the standard error. 

 

Figure 2: Intersection size of detected cells (A) and the detected genes (B) for each 

mapper. The intersection for the cells was determined by the cell-barcode. Black 

dots indicate the cells/barcodes that are shared among the mappers. 

 

Figure 3: UMI counts of all detected A) Vmn (Vomeronasal receptor genes) and B) 

Olfr (Olfactory receptor genes) genes per mapper. The red line indicates the total 

number of expressed genes. 

 

Figure 4: Intersection of differentially expressed genes due to the usage of different 

mappers in the PBMC data set. 

 

Figure 5: Summary of the results for each evaluated section of interest and mapper. Good 

results are colored in green, intermediate in yellow and poor results in red. 

 

Suppl. Figure 1 Distribution of UMI-counts and genes per cell for the individual data sets. 

Distribution is a kernel density estimate with a gaussian kernel of all samples for the PBMC, 

Endothelial and Cardiac data set. The left column displays the UMI counts per cell and on 

the right column the number of genes per cell. 

        

Suppl. Figure 2 A.) Amount of common and unique barcodes (mean± s.e.m.) detected by 

the individual alignment tools. Intersections of interest are marked by numbers. B.) Gaussian 
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distribution of genes per cells the interesting intersection and dataset from A. The 

distributions of the tools from the intersection (non-transparent) are compared with all 

detected barcodes of each tool (transparent lines (in the background); denoted with ‘*’ in the 

legend) 

        

Suppl. Figure 3 Number (mean+s.e.m) of biotypes per dataset with at least 1 UMI count 

after mapping with a filtered (solid dots) or unfiltered annotation (square-triangles). IG = 

Immunoglobulin genes, TR = T-cell receptor genes, TEC = Sequences that need To be 

Experimentally Confirmed. 

        

Suppl. Figure 4 Expression of the OLFR gene family per cell in the PBMC data set for A) 

Cell Ranger, B) Cell Ranger 5, C) STARsolo, D) Alevin and E) Kallisto. Cells are sorted by 

clusters that are denoted by the color code above each heatmap. 

        

Suppl. Figure 5 Sankey plots demonstrating the fate of each cell from SCINA cell types to 

the clusters obtained by Seurat. Only cells were kept if more than two mappers detected a 

barcode. A) represent the PBMC data set and B) the Cardiac data set. M.b. stands for 

missing barcodes these are barcodes that were found in at least two of the other mappers, 

but not in the present one. 

        

Suppl. Figure 6 Heatmap showing Jaccard similarity index between Seurat cluster and 

SCINA cell type assignments separated by mapping tool. A) PBMC and B) Rosenthal data 

set. Color denotes the extent of the overlap ranging from zero (no overlap) in green, to one 

(full overlap) in white. Overlap is shown for each cell type. 
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Suppl. Figure 7 Average overlap of clustering from SCINA to the obtained Seurat clusters 

for A) the Cardiac data set and B) the PBMC data set. The overlap is calculated as the 

Jaccard index. 

        

Suppl. Figure 8 Difference in mitochondrial content (mt-content) of cells due to usage of a 

filtered and unfiltered annotation. A) MT-content of cells separated by filtered and unfiltered 

annotation. B) Reads mapped to the mitochondrial genes for the PBMC and Rosenthal data 

set with unfiltered annotation. Orange indicating the amount of reads that are removed due 

to multimapping when an unfiltered annotation is used. C) UMAP showing cells in green that 

are retained because the MT-content is below the filtering threshold when the unfiltered 

annotation was used in the mapping. D) Mitochondrial genes and its closest pseudogene 

when the mappers reported the secondary mapping position along with the sequence 

similarity to the MT gene. E) Example of the mapping process of a read from a MT gene with 

a filtered/unfiltered annotation. As the filtered annotation does not include potential NUMT’s, 

the read is uniquely mapped to the MT gene. Whereas the complete set contains NUMT’s 

and therefore the read cannot be uniquely mapped to the MT genes (multimapped) and 

therefore is discarded from counting. 

 

Suppl. Table 1 Technical overview of the most important features of each mapper. 

 

Suppl. Table 2 For the two unique sets in the EC mouse atlas and the PBMC data set in 

Alevin we show the ratio of the barcodes that are not included in the 10x whitelist against the 

total number of barcodes in the unique intersection set. 
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Suppl. Table 3 Cell types and its marker genes for the PBMC and Cardiac data set that are 

used for the cell type classification in SCINA. 
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