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Abstract: Background  : With the rise of single cell RNA sequencing new bioinformatic tools have
been developed to handle specific demands, such as quantifying unique molecular
identifiers and correcting cell barcodes. Here, we benchmarked several datasets with
the most common alignment tools for scRNA-seq data. We evaluated differences in the
whitelisting, gene quantification, overall performance and potential variations in
clustering or detection of differentially expressed genes. 
We compared the tools Cell Ranger 6, STARsolo, Kallisto and Alevin on three
published datasets for human and mouse, sequenced with different versions of the
10X sequencing protocol.
Results  : Striking differences have been observed in the overall runtime of the
mappers. Besides that Kallisto and Alevin showed variances in the number of valid
cells and detected genes per cell. Kallisto reported the highest number of cells,
however, we observed an overrepresentation of cells with low gene content and
unknown cell type. Conversely, Alevin rarely reported such low content cells.
Further variations were detected in the set of expressed genes. While STARsolo, Cell
Ranger 6, Alevin-fry and Alevin released similar gene sets, Kallisto detected additional
genes from the Vmn and Olfr gene family, which are likely mapping artifacts. We also
observed differences in the mitochondrial content of the resulting cells when comparing
a prefiltered annotation set to the full annotation set that includes pseudogenes and
other biotypes. 
Conclusion  : Overall, this study provides a detailed comparison of common scRNA-
seq mappers and shows their specific properties on 10X Genomics data.
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Responds to Reviewer #1
Single-cell RNA-seq has revolutionized our abilities of investigating cell heterogeneity
in complex tissue. Generating a high-quality gene count matrix is a critical first step for
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single-cell RNA-seq data analysis. Thus, a detailed comparison and benchmarking of
available gene-count matrix generation tools, such as the work described in this
manuscript, is a pressing need and has the potential to benefit the general community.

Although this work has a great potential, the benchmarking efforts described in the
manuscript are not comprehensive enough to justify its publication at GigaScience
unless the authors address my following major and minor concerns.

Major concerns:

1.)
The authors should discuss related benchmarking efforts and the differences between
previous work and this manuscript in the Background section instead of the Discussion
section. For example, Du et al. 2020 G3: Genes, Genomics, Genetics. and Booeshaghi
& Pacther bioRxiv 2021 should be mentioned and discussed in the Background
section. In addition, STARsolo manuscript
(https://www.biorxiv.org/content/10.1101/2021.05.05.442755v1), which contains a
comprehensive comparison of Cell Ranger, STARsolo, Alevin and Kallisto-Bustools
should be cited and discussed. Zakeri et al. 2021 bioRxiv
(https://www.biorxiv.org/content/10.1101/2021.02.10.430656v1) should also be
included and discussed in the Background section.

We thank the reviewer for the recommendation of other scRNA-seq mapping
benchmark papers. As suggested, we included all of the mentioned papers and added
the following paragraph in the Background section of the manuscript:

“Specifically for scRNA-Seq tools, comprehensive benchmarking papers are sparse
[34]. Until now, only a limited number of benchmarking papers for scRNA-seq mappers
were published. Du et al. [35] conducted a benchmark between STAR and Kallisto on
different scRNA-seq platforms and showed a higher accuracy and read mapping
number with the STAR alignment. However, STAR has about 4 times higher
computation time and 7 fold increase in memory consumption than Kallisto. Chen et al.
and Vieth et al. performed a pipeline comparison with human and mouse in vitro and
simulated datasets with a vast combination of tools concentrating on imputation,
normalization and calculation of differential expression [36,37]. Very recently,
Booeshaghi and Pachter [38] published a preprint paper comparing Alevin and Kallisto
on 10X datasets and stated that Alevin is significantly slower and requires more
memory than Kallisto. As a direct answer to this preprint Zakeri and Patro [39] showed
opposing results by using identical reference genomes and adjusting the parameters to
establish an equal configuration of the tools. In their preprint, they showed that Alevin
is faster and requires less memory than Kallisto. In a third preprint the group from
STARsolo performed a benchmark of STARsolo, Alevin and Kallisto and claimed that
STARsolo is more precise and outperforms the pseudo-alignment tools Alevin and
Kallisto with simulated data. With a real dataset STARsolo replicated the results from
Cell Ranger significantly faster, while consuming much less memory [32].
These contradictory results show that an independent evaluation of all five alignment
tools is needed urgently. Therefore, we performed an in-depth and combined
comparison of the five most common alignment tools (Cell Ranger 6, STARsolo,
Alevin, Alevin-fry and Kallisto) on different 10X datasets.”

2.)
Benchmark with latest versions of the software. The choice of Cell Ranger, STARsolo,
Alevin and Kallisto-BUStools is good because they are four major gene count matrix
generation tools. However, I urge the authors also include Cell Ranger v6 and Alevin-
fry (Alevin_sketch/Alevin_partial-decoy/Alevin_full-decoy, see STARsolo manuscript),
which are currently lacking, into their benchmarking efforts. The authors may also
consider add STARsolo_sparseSA into the benchmark. Since single-cell RNA-seq tool
development is a fast-evolving field, benchmarking of the up-to-date versions of tools is
super critical for a benchmarking paper.

We agree with the reviewer that benchmarking the most up-to-date versions of the
tools is critical. Therefore we included Cell Ranger v6 as well as Alevin-fry to the
updated version of the manuscript. The manuscript now includes Cell Ranger 6,
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STARsolo, Alevin, Alevin-fry and Kallisto. STARsolo_sparseSA, STARsolo with a
sparse suffix array (SA) was primarily designed to reproduce Cell Ranger results and
to reduce memory consumption. Karminov et. al., bioRxiv 2021 already compared
STARsolo_sparseSA to STARsolo and Cell Ranger and showed almost identical
results. As the comparison of the full and the sparse SA showed almost no differences
and in order to keep the paper in a comprehensive scope, we decided to use only the
standard parameters for STARsolo. We hope that the reviewer agrees with this
decision and that the existing benchmarks between STARsolo and
STARsolo_sparseSA from the Karmoniv paper are sufficient.

3.)
Conclusions. The authors summarized the observed differences between tools based
on the benchmarking results. This is good but very helpful for end-users. I recommend
the authors to emphasize their recommendations for end-users more clearly in the
discussion/results section. For example, do the authors recommend one tool over the
others under certain circumstances? If so, which tool and which circumstance and
why? I like Figure 5 a lot and hope the authors can summarize this figure better in the
manuscript.

To give helpful recommendations to end-users we adjusted Figure 5 and added the
following paragraph to the paper:
“In general, we could show that STARsolo is an ideal substitute for Cell Ranger 6, as it
is faster but otherwise performs similarly. If high-quality cell counts need to be
obtained, Alevin appears to be the most suitable method, as average gene counts are
high- and poor-quality barcodes are seldom reported. Kallisto, while reporting the
highest number of barcodes, also contains many barcodes that could not be assigned
to cells expected in the heart based on known marker genes. Therefore, we generally
recommend STARsolo or Alevin-fry for most end-users as an alternative to Cell Ranger
as these tools perform very stable over all datasets. For very large projects with a high
number of samples, pseudo-alignment tools such as Alevin-fry or Kallisto can be
advantageous in terms of runtime and storage efficiency, at the cost of a slight
reduction in accuracy.”

4.)
This manuscript concluded that differential expression (DEG) results showed no major
differences among the alignment tools (Figure 4). However, the STARsolo manuscript
suggested DEG results are strongly influenced by quantification tools (Sec. 2.6, Figure
5). Please explain this discrepancy.

We thank the reviewer for pointing out this discrepancy. In order to clarify this point, we
adjusted Figure 4 of the manuscript according to the STARsolo manuscript. Thereby
we could show that using Cell Ranger as a reference and comparing all DEGs against
Cell Ranger indeed STARsolo shows almost identical results while the other tools had
a lower correlation to the DEGs detected by Cell Ranger. The advantage of the upset
plot is that it also shows DEGs which are detected by the other tools, therefore we
have included it as Figure 4c in the manuscript. We changed the text in the result
section accordingly

“Analysis of the differential expressed genes for the cell types of the PBMC dataset did
show the highest agreement of STARsolo, Alevin-fry and Cell Ranger. Major
differences among the alignment tools are summarized in Figure 4.
The accuracy of the barcode detection per tool in each cell type can be seen Figure
4A. The highest accuracy can be seen in Cell Ranger, STARsolo and Alevin. Lower
accuracies are present in Alevin and Alevin-fry. Overall, cell types with a low amount of
cells present in the dataset are difficult to detect in all tools. Comparing significant
DEGs (p<0.05) in PBMC, we see in Figure 4A and B that STARsolo or Alevin has the
highest overlap and correlation with Cell Ranger, respectively. Overall, Kallisto shows
the lowest overlap and Alevin has intermediate overlaps. For the correlation (Figure
4C) this ranking is not as clear as it highly depends on the cell type. Despite the
differences most of DEGs were detected by all tools in the PBMC dataset (Figure 4D).
Small groups of DEGs were detected by a single tool or when one or two tools have
not detected DEGs. This is often the case in Alevin, Alevin-fry and Kallisto. In Figure
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4E-H we compare significant DEGs (p<0.05) from the T-cells CD4+ cell type of Cell
Ranger against the other tools, similar to Kaminov et.al.[32]. The highest correlation
can be observed in STARsolo and Alevin-fry. Kallisto shows the lowest correlation
against Cell Ranger and Alevin and intermediate correlation. These results are largely
consistent with the results from Kaminow et.al. [32]. The uniquely overrepresented
genes in Kallisto are likely the OLFR and VMN genes we showed in Figure 3.”

“Analysis of the differential expressed genes for the cell types of the PBMC dataset did
show the highest agreement of STARsolo, Alevin-fry and Cell Ranger among the
alignment tools (Figure 4). These results are largely consistent with the results from
Kaminow et.al. (Kaminow et al. 2021). The uniquely overrepresented genes in Kallisto
and Alevin_sketch are the OLFR and VMN genes we showed in Figure 3.”

5.)
This manuscript suggested simulated data is not as helpful as real data. However, the
STARsolo manuscript reported drastic differences between tools using simulated data.
Please comment on this discrepancy.

 The STARsolo manuscript created a simulated dataset by using the PBMC 5k dataset
from 10x. The reads were mapped with bwa-mem and for each read the true alignment
was chosen from the top scoring alignments. Then, simulated reads were generated
based on the genomic sequence from the position of the mapped reads. Sequencing
errors from Illumina sequencing were introduced by randomly inserting errors of an
error rate of 0.05%.
This procedure does not result in viable simulated reads by using a real dataset, as the
alignment positions are already set. Instead, we choose a consensus scheme based
on barcodes from all mapper to create an artificial ground truth for validating the tools.
Specifically, we extended Figure 4 to show similar plots as in the STARsolo
manuscript. There, we see similar differences in regard to marker genes and DEGs.

6.)
I have big concerns regarding the filtered vs. unfiltered annotation comparison. In
particular for pseudogenes, we know that many of them are merely transcribed or lowly
transcribed. As a result, many of these pseudogenes would not be captured by the
single-cell RNA-seq protocol. At the same time, because these pseudogenes share
sequence similarities with functional genes, they would bring trouble for read mapping.
This is one of the main reasons for using a carefully filtered annotation. Actually,
whether and how to filter annotation is in active debate in big cell atlas consortia such
as Human Cell Atlas. Thus, I would be super careful about describing results
comparing filtered vs. unfiltered annotation. For example, in Suppl. Figure 8D, there
are 6 mitochondrial genes that have 100% sequence similarity to their corresponding
pseudogenes. It is impossible to distinguish if a read comes from a gene or a
pseudogene for these 6 genes and it is also not necessary --- the
transcribed RNA should also be exactly the same. Thus, I encourage the authors
remove their pseudogenes from the annotation and I suspect the mouse data results
should look similar to the human data in the Suppl. Figure 8A.

We completely agree with the reviewer by stating that a carefully filtered annotation is
of utmost importance. We also agree that it is impossible for any alignment tool to
distinguish 100% identical pseudogenes from highly expressed MT-genes. However, to
our knowledge, no one has clearly published the effects of an unfiltered annotation on
the expression values of scRNA-SEQ data. We could show that an unfiltered
annotation has several detrimental effects, which are especially severe in mice
because the mouse genome contains several pseudogenes which have 100%
sequence similarity to MT genes. Therefore, we used the filtered annotation throughout
the whole paper except for the analysis, which was performed for Suppl. Fig 7. Yet we
could show that the presence of these pseudogenes leads to a lower MT content of
cells which then leads to a higher number of retained cells. We could also show that
these retained cells cluster with ‘normal’ cells and don’t yield a new cluster of dead or
broken cells. We anticipate that these findings could initiate future debates on how to
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filter the annotation set of different species.

7.)
The endothelial dataset was only run on Cell Ranger 3 because the UMI sequence is
one base shorter. Could the authors augment the UMI sequence with one constant
base and run this dataset through Cell Ranger 4/5/6?

After we changed the UMI sequences as suggested by the reviewer, we were able to
run Cell Ranger 6 also on the endothelial dataset. This dataset is now fully included in
all analyses and we changed all the figures accordingly. We thank the reviewer for this
helpful suggestion.

8.)
I think it is more appropriate to call the tools benchmarked as "gene count matrix
generation tools" instead of "alignment tools".

We do not agree with this statement. All of these methods use a standard alignment or
pseudo-alignment technique for generating the gene count matrix. Nevertheless, we
changed the text throughout the manuscript in order to distinguish pseudo-alignment
from alignment tools and avoid confusion.

Minor concerns:

1.)
The Suppl Table 2 mentioned in the main text corresponds to Suppl. Table 3 in the
attachment. In addition, there is no reference to Suppl Table 2.
We changed the paper accordingly.
2.)
Suppl Table 3 PBMC, why do I see endothelial cell markers in PBMC dataset?
We agree with the reviewer one should not expect Endothelial cells in PBMC’s. We
renamed the mislabeled endothelial cells to platelets now.

3.)
Suppl Figure 7 is never referenced in the main text.
Supl. Figure 7 is now referenced in the main text in the result section “Effects on
Downstream Analysis”.

4.)
Suppl Figure 8D is never referenced in the main text.
Supl. Figure 8D is now referenced in the main test in the result section “Comparing
filtered to unfiltered annotations”.

Responds to Reviewer #2
1.)
Abstract contains. Confusing terminology, for example became available can be
replaced by developed.
We thank the reviewer for this valuable input. We changed the text accordingly.

2.)
Also analyzed several data sets, can be replaced by benchmarking to clear indicate
that that refers to benchmarking rather than analysis. Some terminology needs to be
explained. For example, white listing should be defined
We thank the reviewer for this suggestion and changed the text accordingly.

3.)
KALISTO is not alignment tool in a proper sense, as it doesn't report position of the
read instead only the transcript of origin. Instead, this is pseudo alignment. Alignment
needs to be defined, or word pseudo alignment used
We thank the reviewer for this suggestion and changed the text regarding pseudo-
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alignment tools in the main text. We also added a clear distinction of alignment and
pseudo-alignment tools with the following section:

“In general, the Cell Ranger 6 software suite developed for 10X Genomics Chromium
platform [4] data uses STAR [5] as the standard alignment tool. STAR, originally
designed for bulk-seq data, performs a classical alignment approach by utilizing a
maximal mappable seed search, thereby all possible positions of the reads can be
determined. In contrast, Kallisto [6], Alevin-fry [7] and Alevin [8] perform an alignment-
free approach, so called pseudo-alignment in Kallisto and selective alignment in Alevin
and Alevin-fry. The idea of alignment-free RNA-Seq quantification was introduced by
Patro et al. [9] and promised much faster alignments. Here, k-mers of reads and the
transcriptome are compared,  and no complete alignment between read and reference
is computed, which leads to huge speed-ups.”

4.)
How the ground truth or gold standard was defined? Is the assumption of the paper
that the tool with the highest number of mapped reads perform the best?
This needs to be explained in the introduction.
In order to define a ‘ground truth’ for the cell-types for each individual cell, we used an
external tool called SCINA, which assigns cells to a certain cell-type by preselected
marker genes. In our case we chose the correct cell to cell-type assignment if 2 or
more tools led to the same cell-type assignment by SCINA. The generation of the
‘ground truth’ cell-type assignment is explained in the method section “SCINA cluster
comparison” as follows:

“To evaluate the effects of the different alignment and pseudo-alignment algorithms on
clustering analysis, we created an artificial “ground truth”, where we assigned each
barcode to a cell type. For this task we choose SCINA v1.2 [22] as an external
classification tool. The semi-supervised classification method in SCINA requires a set
of known marker genes for each cell type to be classified. Marker gene sets were
obtained from Skelly et. al. [23] and combined with other marker gene sets, as
suggested by Tombor et.al. [24] (Suppl. Table 23). An expectation–maximization (EM)
algorithm uses the marker genes to obtain a probability for each provided cell type.
After the classification each cell will be assigned a cell type that shows the highest
probability based on the provided marker genes. Alignments with different mappers
might result in different cell classifications for each barcode. Therefore, a consensus
scheme is applied to each sample to create a cell type agreement for each barcode.
Consensus of a cell classification for each barcode is achieved if two or more mappers
agree on a cell type.”

5.)
In general. I read alignment is artificial rather than biological problem, so that molecular
gold standard cannot be defined. See for example
https://www.nature.com/articles/s41467-019-09406-4. It would be helpful to explain this
upfront when talking about gold standard and cite this.

We agree with the reviewer that read alignment is an artificial problem rather than a
biological one. Therefore, we never used the term gold standard within the paper.
Instead we used the term ‘ground truth’, which defines in our case the consensus of at
least two tools in their cell-to-cell-type assignment. This consensus was later used to
compare cells from all alignment tools to detect rare or wrongly assigned cells.
Furthermore we already cited the Mangul et.al., Nature Comm paper (reference 38 in
first submission) and also followed their principles for rigorous, reproducible,
transparent and systematic benchmarking. To highlight this more we have included the
following sentences in the paper.

“Here, we performed a benchmark of four of the most common scRNA-seq alignment
and pseudo-alignment tools (Cell Ranger 6, STARsolo, Alevin and Kallisto). We used
different scRNA-seq data sets of mouse and human to highlight specific differences
and effects on downstream analysis with a focus on clustering and cell annotation as
prominent goals of droplet-based sequencing. Hereby we followed the guidelines for
reproducible, transparent, rigorous and systematic benchmarking studies by Mangul
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et.al, Nat. Comm, 2019.”

6.)
It is unclear how the tools were selected. What was the reasoning to select only 4 tools
and how do offer know that those tools are common? For the complete list of RNA-
based alignment tools author can refer to https://arxiv.org/abs/2003.00110
A reasonable criteria to select would be to take the tools, which are available, for
example, in bioconda, which will make installing those tools easy. However, randomly
selecting tools is not acceptable. For example, why the SALMON was not included.
However, KALISTO was included.

We have selected the most popular tools currently used for the alignment and
generation of count matrices in the community. To our knowledge we included all of the
most common tools for the generation of count matrices from raw single cell seq reads.
General alignment tools like SALMON, which were designed for bulk RNA-Seq data,
are the foundation for single cell tools e.g. Alevin and Alevin-fry. Yet these tools are
separately not applicable to single cell sequencing data

7.)
Language of the paper needs to be improved, for example, in the background section
the word great was used, which  can be replaced by a more appropriate scientific
wording.

We thank the reviewer for this comment and changed the text accordingly.

8.)
More explanation needs to be provided for cell ranger. Is it essentially the wrapper
around the star? Does  it have  any novel Algorithms or software development
involved?

Cell Ranger uses STAR for mapping reads. The barcode correction and UMI
deduplication are novel algorithms which were first developed in Cell Ranger. These
are explained in the Background section of the manuscript. Additionally, we provide a
link to a detailed description of Cell Ranger where the algorithm is explained in full
detail. The description of Cell Ranger specific algorithms is described in the manuscript
as follows:

“In order to remove PCR duplicates (reads with the same mapping position, the same
cell barcode) an identical unique molecular identifier (UMI) sequence is required for
pooling these PCR duplicates. To correct errors in UMI sequences, Cell Ranger 6 and
STARsolo group reads according to their barcode, UMI and gene annotation, while
allowing 1 mismatch (MM) in the UMI sequence. As error prone UMIs are rare, they will
be replaced by the higher abundant (supposedly correct) UMI. Afterwards a second
round is done by grouping the barcode, corrected UMI and gene annotation. When
groups differ only by their gene annotation, the group with the highest read count is
kept for UMI counting. The other groups are discarded, as these reads originate from
the same RNA construct but were mapped to different genes. A detailed description of
the whitelisting and UMI correction methods, which are unique for Cell Ranger, can be
found on the 10X website [10].”

9.)
Needs me to explain why they chose only 10x genomics among the available single
cell platforms.

10X single cell sequencing is the most established method in science and has become
widely used for quantifying RNA at the single cell level. Additionally, there are other
benchmarking papers, which compare different single cell technologies to each other.
Namely Du et.al. G3 Genes; 2020; Chen et.al. Nat. Biotech 2020 and Vieth et.al. Nat
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Communication 2019 used several approaches to benchmark different single cell
technologies and showed strength and weaknesses for each technology and pipeline.
For these reasons, we limit this study to 10X datasets in order to have the purest
possible comparison of the different algorithms for the most widely used scRNA-Seq
technology

10.)
And the annotations indeed may influence the alignment when they are provided for
alignment tools.  is every alignment tool able to take custom annotations?The paper is
lacking the Figure providing results on which annotation performs the best for a given
data sent.

We thank the reviewer for this remark. Indeed, all of the benchmarked tools are able to
take custom annotations into account. Yet, the tools react differently when we provide
a full or a filtered annotation. This is one point we wanted to highlight in our manuscript.
To emphasize this point even more we adjusted the summarizing figure (Figure 5). We
now stated for each tool how a full or a prefiltered annotation influence the resulting
expression matrix. Furthermore, we show in Suppl. Fig.3 and Suppl. Fig. 8 a detailed
overview, which biotypes are influenced and how the overall clustering changes by
using a full annotation set.

11.)
Datasets and reference genomes section

Gold standard data sets are not reported. It was not clear if the paper is having such
data set or such data set is missing in case such data set, is missing. How the authors
are able to say which read alignment tool performs the best?
The PBMC 5k can be considered as a reference or gold standard as it has a specified
number of 5000 cells.
However, we also choose a consensus scheme based on barcodes from all mapper to
create an artificial ground truth for validating the tools. Specifically, we extended Figure
4 to show differences in regard to marker genes and DEGs to be able to select tools
with the highest performance.

12.)
The paper contains a single human sample. Any particular reason for that? The paper
would benefit from having multiple human samples as a as it was done for the mouse.
Did the authors performed a systematic search to identify as many single cell sample
as possible. If not, that will be desirable.

We thank the reviewer for this input. In order to increase the statistical power and  to
strengthen the findings of our paper, we added an additional human dataset from Nicin
et.al. Eur. Heart Journal 2020 to our study. This dataset contains 5 independent single
nuclei RNA-SEQ samples from human cardiac tissue. As the single nuclei isolation
protocol requires to break the extracellular matrix and release the nuclei from the cell,
the sequencing library of single nuclei RNA-SEQ (snRNA-SEQ) has a higher amount of
debris which leads to more background RNA contamination (Nguyen Front. Cell Dev.
Biol. 6, 108 (2018).). In order to estimate how the different tools handle these noisy
datasets we decided to include this snRNA-SEQ dataset. We hope that the reviewer
appreciates the inclusion of this dataset and that we have been able to answer his
comment sufficiently.

13.)
Was that 10x data human data only available on 10x website, and not available on
SRA or Geo

The PBMC dataset can be downloaded from the resource page of the 10X Website
(https://www.10xgenomics.com/resources/datasets). There, one can download the raw
fastq files, which we did to align these datasets with the different mappers. Additionally,
one can download the prebuild expression matrices. Yet, these datasets are not
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available on SRA or GEO

14.)
Paper provides a GitHub link with data sets and the code used for this analysis. Does
the GitHub has also the BAM files? If not, those needs to be uploaded. Additionally is
the code and summary data behind the figures provided?
We provided all the source code that was generated for the analysis for this study on
Github (https://github.com/rahmsen/BenchmarkAlignment).
However, uploading the BAM files to github is not possible due to two reasons:
Github does not allow the upload of such huge files and is also not designed to host
deep sequencing data
Not all mapping tools generate BAM files by default (Only STARsolo and Cell Ranger )
Yet, we made sure that the raw files of all the datasets used in this paper are publically
available. Detailed sources for each dataset are provided in the method section of the
manuscript.

15.)
Results section, the beginning of results section would benefit with the short
description of the datasets, for example.
How many samples were in total? What was the read length for each sample? what
was the number of reads for each sample? Was a different. So providing the mean and
the variance can be helpful.
We thank the reviewer for these comments. We added a list of all the required meta
information of the samples as Suppl. Table 3 to the manuscript.

16.)
In general, figures needs to be improved in terms of  visualization. It's very hard to
understand what are the figures are trying to convey. For example, figure 2 is
absolutely impossible to understand. And also, what is the purpose of that figure is also
unclear? The same for the figure 3 It's very busy, figure. However, what it is trying to
convey? It's hard to know.
Figure 4 is also very hard to understand. So maybe making the log scale can improve.
What is the X axis, for example, that's unclear those details. And in general figures
needs to be improved.
In general figures need to be  visually understandable and more effective.

In order to simplify the figure, we changed the color scheme of the intersection to make
it more clear which intersection belongs to which sample.
Additionally, we changed the y axis of Fig 4 and Suppl. Fig 3 to a log scale.

Responds to Reviewer #3
Producing single-cell count matrix from the raw barcoded read sequences consists of
several contributing steps such as whitelisting, correcting cell barcodes, resolving
multi-mapped reads, etc. Each step can potentially introduce variability in the resulting
count matrix depending on the specific algorithm adapted by the tool used. Bruning et
al. attempted to disentangle these effects using the most popular scRNA-seq
quantification tools such as Cell Ranger 5, STARsolo, Kallisto, and Alevin. The
manuscript is well-written and would add considerable value to the broad single-cell
research community. I have a few concerns about the current draft of the manuscript
that can be addressed in a revision.

1.)
The `scina` tool is used to construct an "artificial ground truth". The consensus of two
or more mappers are used to arrive at this reference annotation. In my opinion, the
consensus can lead to a biased reference, especially since STARSolo and Cell
Ranger5 follow a very similar pipeline; it is expected, by design, that those tools would
have highly-overlapping results.
I suggest that the simulated datasets from the pre-decided clusters might be more
appropriate for an unbiased evaluation (The recent paper from Kaminow et al.
https://www.biorxiv.org/content/10.1101/2021.05.05.442755v1.full has similar
simulations). Having said that,  the current consensus-based analysis in my opinion
should give a reasonable reference for most of the cells, but a more principled
simulation is required to identify the extreme cases where each of the tools might show
variable assignments.
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Here the reviewer makes a critical point which also came to our mind when we first
thought about the study and sample design. Indeed, Cell Ranger and STARsolo follow
similar approaches in their pipelines, therefore we also thought that they have a high
consensus in the resulting barcodes. If this would be the case then our approach would
lead to a biased benefit for Cell Ranger and STARsolo. However when we compared
the valid barcodes from each mapper, we recognised that there is no higher consensus
between Cell Ranger and STARsolo (See Reviewer Fig. 1 A-D). We could show that all
the four mappers have a similar amount of unique barcodes and also the intersection
between the mappers are similarly distributed. Therefore, we do not assume that our
“ground truth” analysis is skewed by Cell Ranger and STARsolo.
A second argument against the use of simulated data for the assessment of barcode
and UMI assignment has already been mentioned in the proposed Kaminow et al.
paper. There they wrote:
“Our simulation approach does not deal with the full complexity of real scRNA-seq
data: for instance, it avoids the issues of CB and UMI error correction. However, by
simulating reads from a realistic distribution of transcriptomic and genomic loci, we can
evaluate the accuracy of the most crucial steps of the algorithms: read mapping and
read-to-gene assignment.” Karminov et.al., BioRxiv
(https://www.biorxiv.org/content/10.1101/2021.05.05.442755v1.full)
The simulation approach used by Karminov et. al. is mainly designed to benchmark
read mapping and read-to-gene assignment. However, we wanted to study if certain
mappers certain variations in the detected cell-types and the barcode and UMI
correction. For this purpose, the simulation approach from Karminov et. al. is not
applicable. To our knowledge, there is no other published approach for simulating
single cell RNA-SEQ data that includes the simulation of UMI and barcodes. Therefore,
we are convinced that our consensus based approach is not ideal yet an adequate
approach to study the barcode and UMI assignment of different alignment tools.

2.)
The Sankey plots (Supp Figure 5) and the heatmaps (Supp Figure 6) represent the
mutual agreement from different tools. As the `scina` clusters are used as ground truth,
a more direct qualitative measure such as precision/recall would be more helpful. To
be more specific, the resolution parameter of `FindCluster` could be tuned (now set to
0.12/0.15) to produce the same number of clusters present in the ground truth. Each
predicted cluster can then be assigned to a ground truth cluster greedily. The number
of `mismapped` cells can be further categorized as `false-positive` or `false-negative`.

We agree with the reviewer here and also think that the addition of recall and precision
measurements would be beneficial. Therefore, we calculated the precision and recall
by greedily assigning the barcodes to cell-types, as suggested by the reviewer. The
recall and precision rates are plotted in heatmaps of Suppl. Fig. 6. Additionally, we
revised Fig. 4 and added the F1 scores for each mapper and cell-type.

3.)
The variability of different tools on the three real datasets is worth exploring in depth.
For example, quoting from the paper, "Alevin detected more cells with less genes per
cell in the PBMC and Endothelial dataset. However, it detected less cells with more
genes per cell in the Cardiac dataset." It would be interesting to understand the origin
of these variations and what authors hypothesize, e.g. apart from mapping/alignment
there are other additional steps in the quantification pipeline that could potentially lead
to variation in the detected cells and respective gene count. The tools can also have
underlying algorithmic biases that are worth exploring.

In order to address this point and to get a better idea of the origin of these variations,
we added an additional dataset of 5 independent single nuclei RNA-SEQ samples from
human cardiac tissue from Nicin et.al. Eur. Heart Journal 2020. For this dataset we
saw similar trends as in the Cardiac dataset for Alevin. Like the Cardiac dataset, this
dataset is also single nuclei RNA-SEQ (snRNA-SEQ). Therefore, we assume that
these trends arise due to the library preparation protocol. As the single nuclei isolation
protocol requires to break the extracellular matrix and release the nuclei from the cell,
the sequencing library of single nuclei RNA-SEQ (snRNA-SEQ) has a higher amount of
debris which leads to more background RNA contamination (Nguyen Front. Cell Dev.
Biol. 6, 108 (2018).). An indication of the increased background RNA contamination
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can be found in the number of barcodes, which were classified as noisy barcodes by
Alevin. These noisy barcodes are removed prior to alignment. As the increase of noisy
barcodes was specific for the snRNA-SEQ datasets (Suppl. Table 5), we suspect a
connection with the library preparation protocol.
We changed the text in the manuscript accordingly:

“Compared to the other tools, Alevin detected more cells with less genes per cell in the
PBMC and Endothelial dataset. However, it detected less cells with more genes per
cell in the Cardiac and HF dataset. This is caused by the initial whitelisting in Alevin. It
calculates a knee point in which all barcodes above the knee point are considered as a
putative whitelist. Barcodes below the knee point are then considered as erroneous
barcodes. In order to correct these barcodes the algorithm tries to find a barcode in the
putative whitelist by a substitution, insertion or deletion. If this approach fails the
barcode is considered a noisy barcode and will be removed.
The percentage of noisy barcodes for Alevin is especially high for the HF and the
Cardiac dataset. One possible explanation for this could be the library preparation
protocol, as these datasets are single nuclei RNA-SEQ (snRNA-SEQ). The single
nuclei isolation protocol requires to break the extracellular matrix in order to release the
nuclei. This leads to a higher amount of debris which results in a higher percentage of
background RNA contamination [29]. The percentage of barcodes which were
discarded as “noisy barcodes” by Alevin are summarized for each sample in Suppl.
Table 5.
We think the knee point is higher than expected in the Cardiac and HF datasets and
the correction fails on many barcodes and, therefore, are removed prior to the
mapping. More details with respect to these differences can be found in Suppl. Figure
1. In the PBMC and the Endothelial datasets, Alevin shows small peaks in the lower
left corner of the density plots for UMI counts and genes per cell. These peaks
represent cells which have low UMI counts. For the Cardiac dataset Alevin did not
detect these cells with low UMI content, which might explain the lower cell count for
this dataset. However, in the Cardiac dataset, we observed more low content cells for
Kallisto. This is consistent with the finding that Kallisto detects most cells in the Cardiac
dataset.”

4.)
 "We could show that Alevin often detects unique barcodes, which were not identified
by the other tools. These barcodes had very low UMI content and were not listed in the
10X whitelist.", the alevin --whitelist option
(https://salmon.readthedocs.io/en/develop/alevin.html#whitelist)  enables use of any
external filtered whitelist while running alevin. I wonder if using this option would
change the behavior mentioned in the manuscript.

We thank the reviewer for this remark and we tried to incorporate the “--whitelist” option
to the Alevin run. However, when we run Alevin with this option and the 10X whitelist
file we got the following error message:

[2021-08-20 16:48:58.256] [alevinLog] [info] Done importing white-list Barcodes
[2021-08-20 16:48:58.256] [alevinLog] [error] Wrong whitelist provided
Please check https://salmon.readthedocs.io/en/develop/alevin.html#whitelist

The only whitelist which worked in our hands was a whitelist from the barcodes which
were detected after a Cell Ranger run in combination with the empty drops filtering
method. However, this would require to run Cell Ranger first and afterwards use the
resulting barcode list for Alevin. Since this is impractical in reality and the resulting
barcodes (cells) would be similar to the Cell Ranger barcodes we have not further
analyzed this variant of the analysis pipeline in the manuscript.

5.)
 The manuscript raises the important question of multi-mapped reads across cell-types,
it would be interesting to quantify the percentage of reads that are discarded as multi-
mapped by different tools (those which discard). If that percentage is substantial, then
the difference in handling such ambiguous reads through EM-like algorithms might be
promising.
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Indeed this would be an interesting point for follow-up studies. In order to estimate the
percentage of multi-mapped reads, we parsed the log files for each individual tool.
Starsolo is the only tool which directly reports the number of multi-mapped reads. For
Kallisto we were able to calculate a value for multi-mapped reads by subtracting the
percentage of pseudo-aligned reads (“p_pseudoaligned”) and the  percentage of
uniquely mapped reads (“p_unique”).
The results are shown in the Reviewer Table 1. Cell Ranger, Alevin and Alevin-Fry do
not report statistics about the number of uniquely or multi-mapped reads. Therefore we
were not able to calculate the percentage of multi-mapped reads for these tools.
We have seen that the percentage of multiple mapped reads is significantly higher for
Kallisto, but also varies greatly between samples. We agree with the reviewer, that in
cases of high percentages of multi-mapped reads, an EM-like algorithm might be very
efficient, as shown in the paper of Srivastava et.al. Bioinformatics 2020.

To highlight this point, we added the following sentence to the discussion section of the
manuscript:

“In datasets with a high percentage of multi-mapped reads EM-like algorithms, as
suggested by Srivastava et.al [44] can be advantageous and improve gene
quantification in scRNA-SEQ datasets.”

Plots and Figures

1.)
Intersection Plots
The minor differences in the $y$ axis of the intersection plots (Fig. 4, supp fig. 3 etc.)
are not pronounced. (log-scale might help)
We thank the reviewer for this comment and revised the figures as suggested.
Additionally, we improved the figure descriptions and inserted a color coding for the
intersection plots in Figure 4 and Suppl. Figure 3.

2.)
Overview Figure

The manuscript correctly pointed out how different intermediate steps contribute to the
general variance in the downstream results. An overview figure with a flow chart of a
typical scRNA-seq quantification pipeline will be beneficial.

We generated an overview figure, which summarizes the steps which are performed in
the individual mapping tools. This overview figure was included as Supp. Table 2.

Minor Concerns

There is a spelling mistake in the abstract `celtype` -> `cell-type`
We thank the reviewer for this comment and revised the manuscript accordingly.

Possible incomplete sentence : "The recommended annotation from 10X, which only
contains genes with the biotypes protein coding and long non-coding, might lead to an
overestimation of mitochondrial gene expression respectively the absence of other
gene types."
We thank the reviewer for this suggestion and rewrote the sentence in the manuscript

Additional Information:

Question Response

Are you submitting this manuscript to a
special series or article collection?

No

Experimental design and statistics Yes
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Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

Resources

A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely
identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Have you included the information
requested as detailed in our Minimum
Standards Reporting Checklist?

Yes

Availability of data and materials

All datasets and code on which the
conclusions of the paper rely must be
either included in your submission or
deposited in publicly available repositories
(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Have you have met the above
requirement as detailed in our Minimum
Standards Reporting Checklist?

Yes
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Background: With the rise of single cell RNA sequencing new bioinformatic tools 

have been developed to handle specific demands, such as quantifying unique 

molecular identifiers and correcting cell barcodes. Here, we benchmarked several 

datasets with the most common alignment tools for scRNA-seq data. We evaluated 

differences in the whitelisting, gene quantification, overall performance and potential 

variations in clustering or detection of differentially expressed genes.  

We compared the tools Cell Ranger 6, STARsolo, Kallisto and Alevin on three 

published datasets for human and mouse, sequenced with different versions of the 

10X sequencing protocol. 

Results: Striking differences have been observed in the overall runtime of the 

mappers. Besides that Kallisto and Alevin showed variances in the number of valid 

cells and detected genes per cell. Kallisto reported the highest number of cells, 

however, we observed an overrepresentation of cells with low gene content and 

unknown cell type. Conversely, Alevin rarely reported such low content cells. 

Further variations were detected in the set of expressed genes. While STARsolo, 

Cell Ranger 6, Alevin-fry and Alevin released similar gene sets, Kallisto detected 

additional genes from the Vmn and Olfr gene family, which are likely mapping 

artifacts. We also observed differences in the mitochondrial content of the resulting 

cells when comparing a prefiltered annotation set to the full annotation set that 

includes pseudogenes and other biotypes.  

Conclusion: Overall, this study provides a detailed comparison of common scRNA-

seq mappers and shows their specific properties on 10X Genomics data.  
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Background 

Major advances could be achieved in the transcriptomics field by using single cell 

RNA sequencing (scRNA-seq) to conduct differential expression analysis, clustering, 

cell type annotation and pseudotime analysis on a single cell level [1]. Analysis of 

scRNA-seq data helped to reveal new insights into cellular heterogeneity, e.g. the 

altered phenotypes in circulating immune cells of patients with chronic ischemic 

heart diseases [2] or the transcriptional diversity of aging fibroblasts [3]. However, 

the analysis of scRNA-seq data is resource intensive and requires deeper 

knowledge of specific characteristics of each analysis tool. The most resource 

intensive step during single cell NGS data analysis is the alignment of reads to a 

reference genome and/or transcriptome. Therefore, a common question relates to 

the choice of the best scRNA-seq alignment tool that can be incorporated into a fast, 

reliable and reproductive analysis pipeline. Here we evaluated five popular alignment 

tools Cell Ranger 6, STARsolo as well as the pseudo-alignment tools Alevin, Alevin-

fry and Kallisto.  

 

Technological properties of these mappers are summarized in Supplementary table 

1. In general, the Cell Ranger 6 software suite developed for 10X Genomics 

Chromium platform [4] data uses STAR [5] as the standard alignment tool. STAR, 

originally designed for bulk-seq data, performs a classical alignment approach by 

utilizing a maximal mappable seed search, thereby all possible positions of the reads 

can be determined. In contrast, Kallisto [6], Alevin-fry [[7]] and Alevin [8] perform an 

alignment-free approach, so called pseudo-alignment in Kallisto and selective 

alignment in Alevin and Alevin-fry. The idea of alignment-free RNA-Seq 

https://paperpile.com/c/0B28Le/3pH7
https://paperpile.com/c/0B28Le/jqD9
https://paperpile.com/c/0B28Le/xVCQ
https://paperpile.com/c/0B28Le/UIOZ
https://paperpile.com/c/0B28Le/6L9d
https://paperpile.com/c/0B28Le/VeM9
https://paperpile.com/c/0B28Le/VM8R
https://paperpile.com/c/0B28Le/9WgW
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quantification was introduced by Patro et al. [9] and promised much faster 

alignments. Here, k-mers of reads and the transcriptome are compared,  and no 

complete alignment between read and reference is computed, which leads to huge 

speed-ups. However, it has been shown that pseudo-alignment tools have limitations 

in the quantification of lowly expressed genes [10]. 

In contrast to bulk-RNA-seq, preprocessing of scRNA-seq requires specific features. 

Essential features are cell calling, removing PCR duplicates and assigning reads to 

individual genes and cells. These features can be achieved through barcode and 

UMI sequences, which are sequenced along with the reads. Therefore, the correct 

handling of barcode and UMI sequences are crucial steps while processing scRNA-

seq data. Each alignment tool applies different strategies to handle these errors.  

The most important step for cell calling is the correction of sequencing errors within 

the barcodes. Cell Ranger 6, STARsolo and Kallisto correct barcodes by comparing 

the sequenced barcodes to a set of all barcodes that are included in the library 

preparation kit, the so-called whitelist. This whitelist is provided by 10X Genomics. If 

no exact match of a sequenced barcode can be found in the whitelist, this barcode is 

replaced with the closest barcode from the whitelist, if the Hamming distance is not 

bigger than 1. Alevin, however, generates a putative whitelist of highly abundant 

barcodes that exceed a previously defined knee point. Afterwards Alevin assigns 

error prone barcodes to the closest barcode from the putative whitelist, while 

allowing an edit distance of 1. 

In order to remove biases from PCR duplicates (reads with the same mapping 

position, the same cell barcode) an identical unique molecular identifier (UMI) 

sequence is required for pooling these PCR duplicates. To correct errors in UMI 

sequences, Cell Ranger 6 and STARsolo group reads according to their barcode, 

https://paperpile.com/c/0B28Le/VWCP
https://paperpile.com/c/0B28Le/izDw
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UMI and gene annotation, while allowing 1 mismatch (MM) in the UMI sequence. As 

error prone UMIs are rare, they will be replaced by the higher abundant (supposedly 

correct) UMI. Afterwards a second round is done by grouping the barcode, corrected 

UMI and gene annotation. When groups differ only by their gene annotation, the 

group with the highest read count is kept for UMI counting. The other groups are 

discarded, as these reads origin from the same RNA construct but were mapped to 

different genes. A detailed description of the whitelisting and UMI correction 

methods, which are unique for Cell Ranger, can be found on the 10X website[11]. 

Alevin builds a UMI graph and tries to find a minimal set of transcripts for UMI 

deduplication [8]. In this process, similar UMIs are corrected. Kallisto applies a naive 

collapsing method which removes reads that originate from different molecules but 

contain the same UMI [6]. 

The third important preprocessing step of scRNA-seq data is the assignment of 

reads to individual genes and cells. Here, the alignment tools have striking 

differences handling these multi mapped reads. In STARsolo, Cell Ranger 6 and 

Kallisto multi-mapped reads are discarded when no unique mapping position can be 

found within the genome/transcriptome. Whereas Alevin equally divides the counts 

of a multi mapped read to all potential mapping positions. The order of necessary 

steps for quantification i.e. the alignment and barcode and UMI correction can vary 

for each tool. Therefore, Suppl Table 2 shows this order. Kallisto has the most 

different order where the barcode correction is executed after the alignment and a 

UMI correction is not performed. The other tools perform the barcode correction 

before the alignment and the UMI correction afterwards. 

Apart from the choice of the mapper, other decisions can influence the mapping 

results. One aspect is the choice of an appropriate annotation, which was shown to 

https://paperpile.com/c/0B28Le/Wfvz
https://paperpile.com/c/0B28Le/9WgW
https://paperpile.com/c/0B28Le/VeM9
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influence gene quantifications [12]. 10X Genomics recommends a filtered gene 

annotation that contains only a small subset that includes the biotypes protein 

coding, lncRNA and Immunoglobulin and T-cell receptor genes. Other biotypes e.g. 

pseudogenes are not included. Therefore, we were interested if a full annotation set 

affects the gene composition and the results of secondary analysis steps of scRNA-

seq. Thus, we compared the mapping statistics of the filtered annotations to the 

complete (unfiltered) Ensembl annotation.  

Specifically for scRNA-Seq tools, comprehensive benchmarking papers are sparse 

[13]. Until now, only a limited number of benchmarking papers for scRNA-seq 

mappers were published. Du et al. [14] conducted a benchmark between STAR and 

Kallisto on different scRNA-seq platforms and showed a higher accuracy and read 

mapping number with the STAR alignment. However, STAR has about 4 times 

higher computation time and 7 fold increase in memory consumption than Kallisto. 

Chen et al. and Vieth et al. performed a pipeline comparison with human and mouse 

in vitro and simulated datasets with a vast combination of tools concentrating on 

imputation, normalization and calculation of differential expression [15,16]. Very 

recently, Booeshaghi and Pachter [17] published a preprint paper comparing Alevin 

and Kallisto on 10X datasets and stated that Alevin is significantly slower and 

requires more memory than Kallisto. As a direct answer to this preprint Zakeri and 

Patro [18] showed opposing results by using identical reference genomes and 

adjusting the parameters to establish an equal configuration of the tools. In their 

preprint, they showed that Alevin is faster and requires less memory than Kallisto. In 

a third preprint the group from STARsolo performed a benchmark of STARsolo, 

Alevin and Kallisto and claimed that STARsolo is more precise and outperforms the 

pseudo-alignment tools Alevin and Kallisto with simulated data. With a real dataset 

https://paperpile.com/c/0B28Le/2Kvi
https://paperpile.com/c/0B28Le/owGg
https://paperpile.com/c/0B28Le/hWdp
https://paperpile.com/c/0B28Le/IOVK+d13o
https://paperpile.com/c/0B28Le/RtKR
https://paperpile.com/c/0B28Le/yxd3
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STARsolo replicated the results from Cell Ranger significantly faster, while 

consuming much less memory [19]. 

These contradictory results show that an independent evaluation of all five alignment 

tools is needed urgently. Therefore, we performed an in-depth and combined 

comparison of the five most common alignment tools (Cell Ranger 6, STARsolo, 

Alevin, Alevin-fry and Kallisto) on different 10X datasets. 

. We used different scRNA-seq data sets of mouse and human to highlight specific 

differences and effects on downstream analysis with a focus on clustering, cell 

annotation, differentially gene expression analysis as prominent goals of droplet-

based sequencing. Hereby, we followed the guidelines for reproducible, transparent, 

rigorous and systematic benchmarking studies by Mangul et.al [20] .  

We are convinced that this benchmark of commonly used mappers is a valuable 

resource for other researchers to help them to choose the most appropriate mapper 

in their scRNA-seq analysis. 

Methods 

Datasets  and Reference Genomes     

10X Drop-Seq Data 

We used four publicly available data sets.  

https://paperpile.com/c/0B28Le/dv6K
https://paperpile.com/c/0B28Le/gob1
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PBMC 

The first data set is human Peripheral blood mononuclear cells (PBMCs) from a 

healthy donor provided by 10X. It was downloaded from the 10X website [21]. It was 

sequenced with the v3 chemistry of the Chromium system from 10X.  

Cardiac 

The second data set consists of 7 samples of mouse heart cells at individual 

timepoints (Homeostasis, 1 day, 3 days, 5 days, 7, days, 14 days, 28 days) after 

myocardial infarction [22]. Data was downloaded from the ArrayExpress database 

under the accession E-MTAB-7895. This dataset was sequenced with the v2 

chemistry of the Chromium system from 10X.  

Endothelial 

The third dataset is from the mouse single cell transcriptome atlas of murine 

endothelial cells from 11 tissues (n=1) [23]. Data was downloaded from the 

ArrayExpress database under the accession E-MTAB-8077. It was sequenced with 

the v2 chemistry of the Chromium system from 10X. The dataset can not be mapped 

with Cell Ranger 4 and higher because the UMI sequence is one base shorter than 

is expected in the v2 chemistry (9 than 10 bases). To be able to map this dataset we 

added an A to all UMI sequences (R1 files) in the fastq file.  

Heart Failure (HF) 

The fourth dataset contains five samples of patients with aortic stenosis. Single 

nuclei sequencing was performed on tissue from the septum of the heart. The v3 

chemistry from 10x Genomics was applied. 

 

https://paperpile.com/c/0B28Le/RF1e
https://paperpile.com/c/0B28Le/KFzP
https://paperpile.com/c/0B28Le/1ysb
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A technical summary of all datasets can be found in Suppl. Table 3 that contains the 

read composition and quality of each sample. 

 

Gene annotation databases 

Mouse and human genome and transcriptome sequences as well as gene 

annotations were downloaded from the Ensembl FTP server (Genome assembly 

GRCm38.p6 release 97 for mouse and GRCh38.p6 release 97 for human) [24]. The 

annotation for Cell Ranger 6 is the GENCODE version M22 for mouse and version 

31 for human that match the Ensembl release 97 [25]. 

In this study, we compare two annotations (filtered and unfiltered). The filtered 

annotation file was generated applying the mkgtf function for Cell Ranger v3.0.2 and 

mkref for Cell Ranger 6 according to the manual from 10X [26]. Therefore, the 

filtered annotation file contains the following features: protein coding, lncRNA and 

the immunoglobulin and thyroid hormone receptor genes. For the unfiltered 

annotation, the complete Ensembl GTF file was used without any alterations. 

Software 

Source Code 

An index of the reference genome has been built for each tool individually, using the 

default parameters according to the manual pages of the individual tools. The exact 

commands for the creation of the indices and the mapping of the data are published 

at [27]. 

https://paperpile.com/c/0B28Le/0lu4
https://paperpile.com/c/0B28Le/0lyD
https://paperpile.com/c/0B28Le/sd34
https://paperpile.com/c/0B28Le/VEYX
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Cell filtering 

Cells were filtered with the R package DropletUtils v1.6.1 [28]. All raw gene-count 

matrices were processed with the emptyDrops method [29]. The emptyDrops 

function applies the emptyDrops method and 50000 iterations of the Monte Carlo 

simulation were chosen, to avoid low resolution p-values due to a limited number of 

sampling rounds.  

Downstream clustering analysis 

Seurat v3.1.5 [30] was used for the downstream analysis. For all secondary analysis 

steps, we retained cells with a number of genes between 200 and 2500 and a 

mitochondrial content < 10%. 

To compare the clustering we integrated the expression matrices of the samples 

from each mapper to remove technical noise and compare all combined samples. 

This was done for the Cardiac and PBMC data set. The data sets were first 

normalized with the SCTransform function. We then ranked the features with the 

function SelectIntegrationFeatures and controlled the resulting features with the 

function PrepSCTIntegration. Anchors were determined by FindIntegrationAnchors 

and afterwards used with the IntegrateData function. The UMAP algorithm was run 

on the first 20 principal components of a PCA. To determine clusters, the 

FindClusters function was utilized with the parameter resolution=0.15 to receive a 

number of clusters that is similar to the expected major cell types in the data set. The 

Endothelial matrices were only merged and not integrated because the resulting 

clustering would not yield appropriate tissue clusters due to the lack of different cell 

https://paperpile.com/c/0B28Le/xEve
https://paperpile.com/c/0B28Le/sc01
https://paperpile.com/c/0B28Le/SkNp
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types. Yet, after merging the matrices we could obtain a similar clustering to the 

original study. 

SCINA cluster comparison 

To evaluate the effects of the different alignment and pseudo-alignment algorithms 

on clustering analysis, we created an artificial “ground truth”, where we assigned 

each barcode to a cell type. For this task we choose SCINA v1.2 [31] as an external 

classification tool. The semi-supervised classification method in SCINA requires a 

set of known marker genes for each cell type to be classified. Marker gene sets were 

obtained from Skelly et. al. [32] and combined with other marker gene sets, as 

suggested by Tombor et.al. [33] (Suppl. Table 4). An expectation–maximization (EM) 

algorithm uses the marker genes to obtain a probability for each provided cell type. 

After the classification each cell will be assigned a cell type that shows the highest 

probability based on the provided marker genes. Alignments with different mappers 

might result in different cell classifications for each barcode. Therefore, a consensus 

scheme is applied to each sample to create a cell type agreement for each barcode. 

Consensus of a cell classification for each barcode is achieved if two or more 

mappers agree on a cell type. 

The remaining barcodes were used as a global barcode set for SCINA. Sankey plots 

were generated with the R-package ggalluvial 0.12.3 [34] to illustrate the 

representation of cell types in each Seurat cluster (Suppl. Figure 5). In addition, to 

convey the differences between SCINA and the seurat clusters from each mapper,  

metrics were calculated. We show the precision, recall and F1-score in Suppl Figure 

6. The F1-score of the Cardiac dataset is in Figure 4A. 

https://paperpile.com/c/0B28Le/VAlF
https://paperpile.com/c/0B28Le/HAXJ
https://paperpile.com/c/0B28Le/ZotO
https://paperpile.com/c/0B28Le/Ddbv
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DEG analysis 

For the differential gene expression (DEG) analysis each cluster from the integration 

in Seurat was assigned to a cell type by known marker genes for the PBMC dataset. 

The marker genes were obtained by the Seurat workflow for a similar 10X dataset  

[35]. DEGs were then calculated by using the FindAllMarkers function with the 

Wilcoxon-Rank-Sum test in Seurat and all DEGs above an adjusted p-value of 0.05 

were removed. Upset plots were then created with the remaining DEGs (Figure 4). 

Additional Software 

The R-package ComplexHeatmap 2.6.2 [36] was used to create the Upset-plots 

(Figures 2, 4; Suppl. Figure 2). 

Hardware 

All computations were executed on a workstation with Intel Xeon E5-2667 CPU and 

128 GB RAM. The OS was Ubuntu 18.04 LTS. 

Results 

For the comparison of the five different alignment tools Cell Ranger 6, STARsolo, 

Alevin, Alevin-fry and Kallisto, we analysed four representative datasets which are 

denoted as PBMCs, Endothelial, Cardiac (Endothelial) and HF (see method section 

for a detailed description of the datasets) in the following.  

https://paperpile.com/c/0B28Le/MmqS
https://paperpile.com/c/0B28Le/Uq4T
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General statistics 

The overall performance and basic parameters like runtime, genes per cell, cell 

number and mapping rate are summarized in Figure 1. In terms of runtime 

STARsolo, Alevin and Kallisto clearly outperformed Cell Ranger 6 and were at least 

three times faster. Kallisto showed the shortest runtimes and was on average 4 to 6 

times faster than Cell Ranger 6. Additionally, Kallisto and Alevin-fry showed the 

highest transcriptome mapping rate whereas Alevin showed a slightly decreased 

mapping rate across all datasets. The cell count and the average genes per cell 

were similar for Cell Ranger 6 and STARsolo across all datasets. Overall Cell 

Ranger and STARsolo had almost identical results regarding the cell count and the 

genes per cell which is expected from the similarity of both tools. In contrast, Alevin 

and Kallisto showed different behavior for the genes per cell across the datasets. 

Compared to the other tools, Alevin detected more cells with fewer genes per cell in 

the PBMC and Endothelial dataset. However, it detected less cells with more genes 

per cell in the Cardiac Endothelial and HF dataset. This is caused by the initial 

whitelisting in Alevin. It calculates a knee point in which all barcodes above the knee 

point are considered as a putative whitelist. Barcodes below the knee point are then 

considered as erroneous barcodes. In order to correct these barcodes the algorithm 

tries to find a barcode in the putative whitelist by a substitution, insertion or deletion. 

If this approach fails the barcode is considered a noisy barcode and will be removed.  

The percentage of noisy barcodes for Alevin is especially high for the HF and the 

Cardiac dataset. One possible explanation for this could be the library preparation 

protocol, as these datasets are single nuclei RNA-SEQ (snRNA-SEQ). The single 

nuclei isolation protocol requires to break the extracellular matrix in order to release 
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the nuclei. This leads to a higher amount of debris which results in a higher 

percentage of background RNA contamination [37]. The percentage of barcodes 

which were discarded as “noisy barcodes” by Alevin are summarized for each 

sample in Suppl. Table 5. 

We think that the knee point is higher than expected in the Cardiac and HF datasets 

and the correction fails on many barcodes and, therefore, are removed prior to the 

mapping. More details with respect to these differences can be found in Suppl. 

Figure 1. In the PBMC and the Endothelial datasets, Alevin shows small peaks in the 

lower left corner of the density plots for UMI counts and genes per cell. These peaks 

represent cells, which have low UMI counts. For the Cardiac dataset Alevin did not 

detect these cells with low UMI content, which might explain the lower cell count for 

this dataset. However, in the Cardiac dataset, we observed more low content cells 

for Kallisto. This is consistent with the finding that Kallisto detects most cells in the 

Cardiac dataset. 

Cell and gene identification 

In 10X droplet based single cell sequencing, the individual cells are usually identified 

via the randomized cell barcodes, which are predefined by the whitelist. In order to 

determine if the different mapping tools detected identical cells, we merged the 

resulting cells based on their barcodes (Figure 2A). The majority of barcodes were 

identified by all alignment tools. However, Cell Ranger 6, STARsolo and Kallisto 

detected more barcodes as compared to Alevin and Alevin-fry in the Cardiac and HF 

dataset. These cells had far less reads per cell compared to the cells that were 

detected in all mappers, as shown in the panel 1 and 2 of Suppl. Figure 2 A&B. 

Alevin-fry and Kallisto also detected a set of barcodes. Their gene content is lower 

https://paperpile.com/c/0B28Le/FRAJ
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than the total dataset as can be seen in panel 3 of Suppl. Figure 2 A&B.  Similarly, 

Alevin detected unique barcodes for the PBMC and Endothelial datasets, which also 

had less gene content compared to the other cells detected by Alevin (panel 4 of 

Suppl. Figure 2 A&B). Additionally, we recognised that the majority of these 

barcodes are not included in the whitelist from 10X (Suppl. Table 6). Panel 5 of 

Suppl. Figure 2 B shows the unique barcodes for Kallisto in the HF dataset, which 

also have less gene content than the other cells. Overall, we saw a reduced number 

of genes per cell for the barcodes that were only detected by one or two of the five 

alignment tools. 

By comparing the expressed genes, we could show that all alignment tools detect a 

similar set of genes (Figure 2B). Only Kallisto detected additional genes leading to a 

higher number of protein coding and lncRNA genes compared to the other tools 

(Suppl. Fig. 3). In the HF dataset a small number of  genes were not detected by 

Alevin-fry and Alevin.   

One gene family that occurred more frequently in Kallisto is the Olfr (Olfactory 

receptor) gene family, that is represented with higher UMI counts in the analysis 

performed with Kallisto (Figure 3A). Another Kallisto-enriched gene family is the Vmn 

(Vomeronasal receptors) family, which is detected with lower UMI counts compared 

to the Olfr family, but is still elevated compared to the other tools (Figure 3B). This 

leads to an increase in total gene counts for Kallisto (red line in Figure 3) and an 

increase of the respective biotypes (Suppl. Figure 3). The increased expression of 

genes from the Olfr gene family is exemplified in Suppl. Figure 3. The HF dataset 

shows an increased UMI count of Vmn genes in only 2 or 3 samples. Vomeronasal 

genes are non-functional in humans because they were deactivated by mutations 

and therefore should not be expressed in human tissue [38]. 

https://paperpile.com/c/0B28Le/BQMI
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Effects on downstream analysis 

In order to evaluate downstream effects of the different alignment tools, we 

performed a semi-supervised cell type assignment with SCINA. Therefore, we used 

all cells that were found by more than two mappers and assigned them to a 

corresponding cell type based on the marker genes documented in Suppl. Table 2. 

Thereby, the majority of barcodes could be assigned to a specific cell type. Then we 

compared the clusters from each alignment tool to the assigned cell types from 

SCINA. Using the barcodes to identify each cell, we traced the cells from their 

respective clusters to the assigned cell type.  

The fate from the predicted cell types to the clusters for each mapper can be 

observed in the sankey plots in Suppl. Figure 5. Suppl Figure 6 provides metrics in 

order to further evaluate the detection of barcodes in each tool and cell type. Here, 

we used a greedy assignment of Seurat clusters with the cell type classification from 

SCINA. The cluster will be assigned with its highest abundance cell type. Then, 

precision, recall and F1-scores were calculated.  

In general, the clustering was similar when comparing the alignment tools. Minor 

differences were observed for Kallisto and Alevin. In the PBMC dataset, Kallisto 

showed a higher number of missing barcodes (M.b.), predominantly from monocytes. 

Missing barcodes are barcodes that were found in at least two of the other mappers, 

but not in the present one. Which means that these monocytes were not present or 

filtered out in Kallisto. This results in a lower recall in Suppl. Figure 6B. 

In the Cardiac data set, the lower cell count found by Alevin leads to more barcodes 

associated with missing barcodes demonstrating that these cells are not detected in 

Alevin. The majority of these missing cells were assigned as endothelial cells. Which 
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means that in the Cardiac dataset Alevin detected only around 50% of the 

endothelial cells that were found with the other tools. Also the number of B-cells and 

granulocytes were decreased due to the lower cell counts. This decrease is reflected 

in a lower recall in Suppl. Figure 6D and a lower F1-score in Figure 4A. However, the 

decrease in the latter cell types could not be confirmed in the PBMC dataset. 

In summary, Cell Ranger 6 and STARsolo showed the highest agreement with the 

predicted cell types from SCINA, which is not surprising as they use the same 

internal algorithm. The overlaps of Alevin and Kallisto were lower due to varying cell 

counts.  

Analysis of the differential expressed genes for the cell types of the PBMC dataset 

did show the highest agreement of STARsolo, Alevin-fry and Cell Ranger. Major 

differences among the alignment tools are summarized in Figure 4.  

The accuracy of the barcode detection per tool in each cell type can be seen Figure 

4A. The highest accuracy can be seen in Cell Ranger, STARsolo and Alevin. Lower 

accuracies are present in Alevin and Alevin-fry. Overall, cell types with a low amount 

of cells present in the dataset are difficult to detect in all tools. Comparing significant 

DEGs (p<0.05) in PBMC, we see in Figure 4A and B that STARsolo or Alevin has 

the highest overlap and correlation with Cell Ranger, respectively. Overall, Kallisto 

shows the lowest overlap and Alevin has intermediate overlaps. For the correlation 

(Figure 4C) this ranking is not as clear as it highly depends on the cell type. Despite 

the differences most of DEGs were detected by all tools in the PBMC dataset (Figure 

4D). Small groups of DEGs were detected by a single tool or when one or two tools 

have not detected DEGs. This is often the case in Alevin, Alevin-fry and Kallisto. In 

Figure 4E-H we compare significant DEGs (p<0.05) from the T-cells CD4+ cell type 

of Cell Ranger against the other tools, similar to Kaminov et.al. [19]. The highest 

https://paperpile.com/c/0B28Le/dv6K
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correlation can be observed in STARsolo and Alevin-fry. Kallisto shows the lowest 

correlation against Cell Ranger and Alevin and intermediate correlation. These 

results are largely consistent with the results from Kaminow et.al. [19]. The uniquely 

overrepresented genes in Kallisto are likely the OLFR and VMN genes we showed in 

Figure 3. 

Comparing filtered to unfiltered annotations 

The default transcriptome annotation dataset, which is recommended for Cell 

Ranger 6 by 10X Genomics, misses some important biotypes like pseudogenes and 

TEC’s, sequences that indicate protein coding genes that need to be experimentally 

confirmed. These differences in gene model compositions can have profound effects 

on the read mapping and the gene quantification as reported by Zhao et al. [12]. In 

order to evaluate the effects of different annotation sets on 10x scRNA-seq data, we 

compared the mapping statistics of the filtered annotations to the complete 

(unfiltered) Ensembl annotation.  

Besides the increase of processed pseudogenes (Suppl. Fig. 3), the usage of the 

unfiltered annotation led to a decrease in mitochondrial (MT) content across all 

alignment tools as shown in Suppl. Fig 7A. Especially the two mouse datasets 

showed a strong reduction of MT content in the unfiltered annotation. Suppl. Fig. 7B 

shows the amount of reads per mitochondrial gene which are not mapped. Further 

investigation revealed that the unfiltered annotation includes pseudogenes which are 

identical to MT genes (Suppl. Fig. 7E). A potential explanation for the reduced MT-

content with the unfiltered annotation is that the mapping algorithms cannot uniquely 

assign a read to the MT-gene, as the read can simultaneously map to the MT-gene 

and the identical pseudogene (Suppl. Fig. 7D&E). Therefore, this read is discarded. 

https://paperpile.com/c/0B28Le/dv6K
https://paperpile.com/c/0B28Le/2Kvi
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As high MT-content is a sign for damaged or broken cells, cells with an MT-content 

above a certain threshold are usually filtered out. However due to the reduced MT 

content less cells surpassed the MT content threshold and we could retrieve more 

cells. These additional cells clustered along with the other cell types, indicating that 

the cell quality is good and that these additional cells are not broken or damaged 

cells as exemplified in Suppl. Fig. 7C. Using the unfiltered annotation yielded up to 

10% more cells per sample. However deeper research is required to ensure the 

quality of these additional cells.  

Discussion 

Since handling of scRNA-seq data is a moving target, the constant revision of new 

tools is important to ensure reliable results. Therefore, independent benchmarking 

and evaluation of uncertainties of analysis tools is of central importance [39].  

Our study of real 10X Genomics data sets demonstrated advantages and 

disadvantages of five popular scRNA-seq mappers for gene quantification in single 

cells and adds to the growing number of benchmarks. The tools benchmarked in this 

study are widely used in many labs, thus, our results are relevant for many scientists 

working with scRNA-seq data. All mappers have been evaluated on in vivo datasets 

as these data might reveal unexpected differences or characteristics that probably 

could not have been found with simulated data as is highlighted by Srivastava et al 

[40]. From our perspective, the only advantage of simulated datasets is that it allows 

the assessment of read accuracy, which has already been done for the mappers we 

used in this study [20,41,42]. 

https://paperpile.com/c/0B28Le/aBaX
https://paperpile.com/c/0B28Le/mhrY
https://paperpile.com/c/0B28Le/7yQs+gob1+rOTp
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The runtime is one of the most important factors when choosing a tool, but the 

quality of the results is of equal importance. In our detailed analysis, we show that 

Cell Ranger 6 could be easily replaced with STARsolo, as they show almost identical 

results but STARsolo is up to 5x faster in comparison with Cell Ranger 6. The low 

variance in the PBMC dataset for the cell counts and genes per cell for Cell Ranger 

6 and STARsolo can be explained by the predefined sample size by 10X. 

Du et al. 2020 [14] reported that Kallisto was even faster than STARsolo; a finding 

which is consistent with our results as Kallisto had overall the shortest runtime 

across all mappers. However, the number of cells and the genes per cell varied 

across datasets for Alevin and Kallisto. 

Additionally, Kallisto seems to detect genes of the Vmn and Olfr family as highly 

expressed in several single cell data sets, although these genes are typically not 

expressed in these tissues. As these gene families belong to the group of sense and 

smell receptors, they are expected to be expressed at lower levels or be absent in 

PBMCs and heart tissue and likely represent artefacts. We consistently show that 

these genes are overrepresented in the Kallisto results (Figure 3 and Suppl. Figure 

4). As Kallisto does not perform quality filtering for UMIs this might have influenced 

the reported number of genes per cell as is indicated by Parekh et al [43].  

 

Another major difference of the tested mapping tools is the handling of errors in the 

barcodes. We could show that Alevin often detects unique barcodes, which were not 

identified by the other tools. These barcodes had very low UMI content and were not 

listed in the 10X whitelist. It can therefore be assumed that these barcodes were 

poorly assigned (Suppl. Figure 2, Section 3). A possible explanation might be the 

usage of a putative whitelist in Alevin that was calculated prior to the mapping, 

https://paperpile.com/c/0B28Le/hWdp
https://paperpile.com/c/0B28Le/1x7m
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instead of using the one provided by 10X. Alevin-fry seems to have improved its 

barcode correction as here the decrease is not present. 

 

While comparing the resulting cell clusters generated by each tool, we recognised 

only minor differences between the tools. Especially the clusters from Cell Rranger 

and STARsolo were similar. However, Kallisto detected fewer monocytes in the 

PBMC dataset and Alevin detected fewer endothelial cells in the cardiac dataset. 

Overall, we saw a much higher variance in the clustering in the cardiac dataset. This 

could be due to the use of an older version of the library extraction protocol (10X v2), 

which has short barcode and UMI sequences, or a lower sequencing quality of the 

Cardiac dataset. 

The comparison of the complete annotation from Ensembl and the filtered 

annotation, as suggested by 10X, revealed that multi-mapped reads play an 

important role in scRNA-seq analysis. In this study, we showed that using an 

unfiltered annotation reduces the MT-content of cells compared to the filtered 

annotation. Therefore, the mitochondrial content as a way to distinguish valid cells 

and dead or damaged cells has to be carefully conducted as it depends on the 

annotation. The recommended annotation from 10X, which only contains genes with  

the biotypes protein coding gene and long non-coding gene, might lead to an 

overestimation of mitochondrial gene expression. However, on the other side all of 

these genomic loci that are identical to MT genes, so called nuclear mitochondrial 

DNA (NUMT), are unprocessed pseudogenes and are not yet experimentally 

validated and could well be artifacts from the genome assembly. For human samples 

we could not see major differences in the downstream results while using the 

complete annotation, therefore it might well be used instead of the filtered 
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annotation. However for mouse samples a clear recommendation of whether to use 

the filtered or the complete annotation cannot be made, as more research into this 

issue is required. These results suggest that there is still a need to improve the 

handling of multi-mapped reads in scRNA-seq data. In datasets with a high 

percentage of multi-mapped reads EM-like algorithms, as suggested by Srivastava 

et.al [44] can be advantageous and improve gene quantification in scRNA-SEQ 

datasets.  Future mapping tools might for example consider the likelihood of a gene 

to be expressed in a certain cell type. This might enhance the quantification of cell 

type-specific genes and prevent multi-mapped reads for cell types, where a certain 

gene is rarely expressed. Inclusion of mapping uncertainties may be another fruitful 

direction. 

Srivastava et al. [40] observed that there are significant differences between 

methods that align against the transcriptome with quasi-mapping (e.g. Alevin) and 

methods that do full spliced alignments against the genome (e.g. STAR) [40]. The 

observed discrepancies, when using the filtered annotation in our experiments, often 

result from genes that share the same sequences, and therefore, the true alignment 

origin cannot be determined. The reported positions of reads contained annotated 

transcripts e.g. from the mitochondria and a few unprocessed pseudogenes. 

In conclusion, our analysis shows that Alevin, Kallisto and STARsolo are very fast 

and reliable alternatives to Cell Ranger 6. They also scale to large datasets. A 

summary of advantages and disadvantages of each individual tool is provided in 

Figure 5.  

In general, we could show that STARsolo is an ideal substitute for Cell Ranger 6, as 

it is faster but otherwise performs similarly. If high-quality cell counts need to be 

obtained, Alevin appears to be the most suitable method, as average gene counts 

https://paperpile.com/c/0B28Le/uQc5
https://paperpile.com/c/0B28Le/mhrY
https://paperpile.com/c/0B28Le/mhrY
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are high- and poor-quality barcodes are seldom reported. Kallisto, while reporting the 

highest number of barcodes, also contains many barcodes that could not be 

assigned to cells expected in the heart based on known marker genes. Therefore, 

we generally recommend STARsolo or Alevin-fry for most end-users as an 

alternative to Cell Ranger as these tools perform very stable over all datasets. For 

very large projects with a high number of samples, pseudo-alignment tools such as 

Alevin-fry or Kallisto can be advantageous in terms of runtime and storage efficiency, 

at the cost of a slight reduction in accuracy. 

Availability of Source Code and Requirements 

● Project name: Comparative Analysis of common alignment tools for single cell 

RNA sequencing 

● Project home page:  https://github.com/rahmsen/BenchmarkAlignment 

● Operating system(s): x86_64-pc-linux-gnu (64-bit) 

● Programming language: R (version 3.6.2) 

● Other requirements: Cell Ranger 6.0, STARsolo 2.7.4a, Alevin 1.1.0, Alevin-

fry 0.4.0, Kallisto 0.46.1, Seurat 4.0.3, DropletUtils 1.6.1, SCINA v1.2, 

ggalluvial 0.12.3, ComplexHeatmap 2.6.2, reshape2 1.4.4, ggplot 3.3.5, 

ggpubr 0.4.0, dplyr 1.0.7, svglite 2.0.0, jsonlite 1.7.2, egg 0.4.5 

● License: MIT 
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scRNA-seq: single cell RNA sequencing; NGS: next generation sequencing; UMI: 

unique molecular identifier; PCR: Polymerase chain reaction; PBMC: Peripheral 

blood mononuclear cell; lncRNA: long non-coding RNA; MM: mismatch; GTF: 

https://github.com/rahmsen/BenchmarkAlignment
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General Feature Format; DEG: Differentially expressed genes; UMAP: Uniform 

Manifold Approximation and Projection; SCINA: Semi-Supervised Subtyping 

Algorithm; Vmn: Vomeronasal receptor; Olfr: Olfactory receptor; PCA: Principal 

component analysis; M.b.: Missing barcodes; MT: mitochondrial; NUMT: nuclear 

mitochondrial DNA 

Competing Interests 

The authors declare that they have no competing interests 

 

Figure Descriptions 

Figure 1: Summary of major measurements including runtime in hours (A), Genes 

per cell (B), cell count (C) and the mapping rate in percent (D). All bar plots show the 

mean of all samples with the standard error. 

 

Figure 2: The chart shows the barcodes (A) or genes (B) that have been detected by a 

certain number of mappers according to datasets. The number of mappers increases from 

right to left. First the barcodes or genes that have only been detected by one mapper up to 

the barcodes or genes that have been detected in all tools. 

 

Figure 3: UMI counts of all detected (A) Vmn (Vomeronasal receptor genes) and (B) 

Olfr (Olfactory receptor genes) genes per mapper in each sample. The red line indicates the 

total number of expressed genes in the gene families. 

 

Figure 4: Accuracy of cell annotation in Seurat compared with the barcode consensus 

scheme from SCINA (A). Differential gene expression (DEGs) between Cell Ranger and the 
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other tools as overlap (B) and correlation (C). Intersection that shows the detection of DEGs 

by a varying number of tools. The number of tools increases from right (DEGs that were 

detected by one tool) to left (DEGs that were detected by all tools) (D). Log2FC of DEGs 

CD4+ T-cells between Cell Ranger and each of the other tools (E-H). The adjusted R² is the 

sample correlation of a linear model. 

 

Figure 5: Summary of the results for each evaluated section of interest and mapper. Good 

results are colored in green, intermediate in yellow and poor results in red. 

 

Suppl. Figure 1 Distribution of UMI-counts and genes per cell for the individual data sets. 

Distribution is a kernel density estimate with a gaussian kernel of all samples for the PBMC, 

Endothelial and Cardiac data set. The left column displays the UMI counts per cell and on 

the right column the number of genes per cell. 

 

Suppl. Figure 2 (A) Amount of common and unique barcodes (mean± s.e.m.) detected by 

the individual alignment tools. Intersections of interest are marked by numbers. (B) Gaussian 

distribution of genes per cells the interesting intersection and dataset from A. The 

distributions of the tools from the intersection (non-transparent) are compared with all 

detected barcodes of each tool (transparent lines (in the background); denoted with ‘*’ in the 

legend) 

 

Suppl. Figure 3 Number (mean+s.e.m) of biotypes per dataset with at least 1 UMI count 

after mapping with a filtered (solid dots) or unfiltered annotation (square-triangles). IG = 

Immunoglobulin genes, TR = T-cell receptor genes, TEC = Sequences that need To be 

Experimentally Confirmed. 
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Suppl. Figure 4 Expression of the OLFR gene family per cell in the PBMC data set for (A) 

Cell Ranger, (B) Cell Ranger 6, (C) STARsolo, (D) Alevin and (E) Kallisto. Cells are sorted 

by clusters that are denoted by the color code above each heatmap. 

 

Suppl. Figure 5 Sankey plots demonstrating the fate of each cell from SCINA cell types to 

the clusters obtained by Seurat. Only cells were kept if more than two mappers detected a 

barcode. (A) represent the PBMC data set and (B) the Cardiac data set. M.b. stands for 

missing barcodes. These are barcodes that were found in at least two of the other mappers, 

but not in the present one. 

 

Suppl. Fig. 6 Consistency of cells detected by each mapper (“ground truth”) by greedy 

assignment of the barcodes to the SCINA classification. (A) F1-Score, (B) Recall and ( C) 

precision for the PBMC dataset. The recall (D)and precision (E) for the Cardiac dataset. 

 

Suppl. Figure 7 Difference in mitochondrial content (mt-content) of cells due to usage of a 

filtered and unfiltered annotation. A) MT-content of cells separated by filtered and unfiltered 

annotation. B) Reads mapped to the mitochondrial genes for the PBMC and Rosenthal data 

set with unfiltered annotation. Orange indicating the amount of reads that are removed due 

to multimapping when an unfiltered annotation is used. C) UMAP showing cells in green that 

are retained because the MT-content is below the filtering threshold when the unfiltered 

annotation was used in the mapping. D) Mitochondrial genes and its closest pseudogene 

when the mappers reported the secondary mapping position along with the sequence 

similarity to the MT gene. E) Example of the mapping process of a read from a MT gene with 

a filtered/unfiltered annotation. As the filtered annotation does not include potential NUMT’s, 

the read is uniquely mapped to the MT gene. Whereas the complete set contains NUMT’s 

and therefore the read cannot be uniquely mapped to the MT genes (multi-mapped) and 

therefore is discarded from counting. 
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Practical 
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- qualitative issues 
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detection
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