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Abstract 31 

Background. The increasing number of chromosome-level genome assemblies has advanced 32 

our knowledge and understanding of macroevolutionary processes. Here, we introduce the 33 

genome of the desert horned lizard, Phrynosoma platyrhinos, an iguanid lizard occupying 34 

extreme desert conditions of the American southwest. We conduct analysis of the chromosomal 35 

structure and composition of this species and compare these features across genomes of 12 36 

other reptiles (5 species of lizards, 3 snakes, 3 turtles, and 1 bird).  37 

Findings. The desert horned lizard genome was sequenced using Illumina paired-end reads and 38 

assembled and scaffolded using Dovetail Genomics Hi-C and Chicago long-range contact data. 39 

The resulting genome assembly has a total length of 1,901.85 Mb, scaffold N50 length of 40 

273.213 Mb, and includes 5,294 scaffolds. The chromosome-level assembly is composed of 6 41 

macrochromosomes and 11 microchromosomes. A total of 20,764 genes were annotated in the 42 

assembly. GC content and gene density are higher for microchromosomes than 43 

macrochromosomes, while repeat element distributions show the opposite trend. Pathway 44 

analyses provide preliminary evidence that microchromosome and macrochromosome gene 45 

content are functionally distinct. Synteny analysis indicates that large microchromosome blocks 46 
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are conserved among closely related species, whereas macrochromosomes show evidence of 47 

frequent fusion and fission events among reptiles, even between closely related species.  48 

Conclusions: Our results demonstrate dynamic karyotypic evolution across Reptilia, with 49 

frequent inferred splits, fusions, and rearrangements that have resulted in shuffling of 50 

chromosomal blocks between macrochromosomes and microchromosomes. Our analyses also 51 

provide new evidence for distinct gene content and chromosomal structure between 52 

microchromosomes and macrochromosomes within reptiles. 53 

 54 

Key words: microchromosome; macrochromosome; gene content; synteny; Reptilia 55 

Background 56 

The increasing number of available chromosome-level genome assemblies of non-57 

traditional model organisms has advanced our understanding of genome evolution over large 58 

time scales, including intra- and inter-chromosomal rearrangements and karyotype evolution 59 

across amniote vertebrates. A major gap in our understanding of amniote genome structure, 60 

composition, and evolution has been due to the lack of representative reptilian genomes of high 61 

enough quality to compare chromosome composition and structure. From data that is available, 62 

reptiles (the clade of Sauropsida) appear to exhibit particularly high levels of karyotypic variation 63 

(Fig. 1)[1, 2]. Much of this karyotypic variation is apparently due to frequent merging, splitting, 64 

and rearrangements among chromosomes, resulting in varying numbers and sizes of 65 

chromosomes even among closely related taxa (Fig. 1). Unlike mammalian genomes which lack 66 

microchromosomes, most reptilian genomes contain both macrochromosomes and 67 

microchromosomes [3]. The condition of possessing both macro- and microchromosomes 68 

appears to represent an ancient ancestral state that spans 400–450 million years of 69 

evolutionary history, as microchromosomes are present in many ancient chordates, fish, and 70 

amphibians, and all amniote vertebrates except mammals and crocodilians [3]. 71 
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Microchromosomes are generally identified by their smaller size (50 Mb threshold in squamates 72 

[4]). In the chicken, for example, microchromosomes range from 3.5 to 23 Mb [5], compared to 73 

macrochromosomes which range from 40 to 250 Mb [6].  74 

Although microchromosome organization in avian species is relatively conserved at a 75 

karyotypic level [7], microchromosomes of non-avian reptiles vary considerably in number and 76 

size [8,9], potentially due to relatively high recombination rates [10] that lead to higher rates of 77 

chromosomal rearrangement [3,11]. Despite being a promising system in which to study 78 

karyotypic evolution, relatively little is known about the genomic features of macrochromosomes 79 

and microchromosomes and how these features evolve across Reptilia [12]. Moreover, 80 

microchromosomes appear structurally and functionally distinct from macrochromosomes [13], 81 

and a deeper characterization of these distinctions may improve our understanding of the 82 

functional and evolutionary significance of the presence/absence of microchromosomes, and 83 

the presence of genes on micro- versus macrochromosomes. Despite interest in the processes 84 

and patterns related to chromosome evolution in reptiles, progress has been limited by the 85 

availability of relatively few high-quality reptile genomes available for comparative study. In 86 

lizards, only five genomes are annotated and assembled at the level of chromosomes (i.e., 87 

chromosome-size scaffolds that in many cases have been ascribed to specific chromosomes): 88 

the green anole, Anolis carolinensis with 6 chromosomes and 7 microchromosomal linkage 89 

groups [14], the viviparous lizard, Zootoca vivipara with 19 chromosomal linkage groups [15], 90 

the sand lizard, Lacerta agilis with 18 autosomes and Z and W sex chromosomes [16], the 91 

common wall lizard, Podarcis muralis with 18 autosomes and a Z sex chromosome [17], and the 92 

Argentine black and white tegu, Salvator merianae, with chromosome-scale scaffolds that have 93 

not been fully ascribed to specific chromosomes [18].   94 

Here we present a new chromosome-level genome assembly of the desert horned lizard 95 

(P. platyrhinos; NCBI:txid52577) and use this genome to conduct comparative analysis of 96 

chromosome content and evolution across reptiles. This species is widely distributed across the 97 
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southwestern deserts of north America, including some of the hottest and driest places on Earth 98 

(e.g. Death valley in the Mojave Desert; [19]) which makes it an attractive model organism to 99 

study adaptation to extreme thermal environments. We have annotated the genome assembly 100 

and assessed large-scale structure and composition of the genome across macrochromosomes 101 

and microchromosomes. Using this new resource, we conduct synteny analyses to explore 102 

major changes in genome organization by making comparisons with existing chromosome-level 103 

annotated genomes of other lizards (A. carolinensis, S. merianae, L. agilis, Z. vivipara and P. 104 

muralis), snakes (Crotalus viridis [20], Thamnophis elegans [21], and Naja naja [22]), a bird 105 

(Gallus gallus [23]), and turtles (Trachemys scripta [24], Gopherus evgoodei [25], and 106 

Dermochelys coriacea [9]). Our findings reveal differences in structure and gene content of 107 

macrochromosomes and microchromosomes in P. platyrhinos and highlight numerous 108 

chromosomal rearrangements among reptiles.  109 

Analysis 110 

Genome assembly, transcriptome assembly, and chromosome identification 111 

The genome of P. platyrhinos was sequenced at 21,053.74-fold physical coverage using 112 

the Dovetail Genomics HiRise™ [26] sequencing and assembly approach that combines a 113 

contig-level assembly produced from shotgun Illumina sequencing with long-range scaffolding 114 

data from Chicago and Hi-C library preparations (Table 1). The final assembly included 5,294 115 

total scaffolds, with 7 large scaffolds and 10 smaller scaffolds comprising 99.56% of the genome 116 

assembly. The known karyotype of the species is composed of 6 macrochromosomes and 11 117 

microchromosomes [27,28] and we assumed this karyotype when linking chromosomes to their 118 

representative assembly scaffolds. Using chromosome-linked gene markers from A. 119 

carolinensis and Leiolepis reevesii [29], the 7 largest scaffolds were assigned to 120 

macrochromosomes 1-6 (two scaffolds corresponded to the two arms of macrochromosome 3; 121 
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Table S1 and Table S2). Ten smaller scaffolds were assigned to microchromosomes, and one 122 

of these scaffolds was manually split into two microchromosomes (Table S1). We followed 123 

previous studies [8] to infer the location of the putative split between chromosomes by 124 

combining evidence from physically-linked Chicago scaffolds that cannot span multiple 125 

chromosomes, repeat element and GC composition, and synteny with chromosomes of other 126 

species (see Methods).  127 

The chromosome-linked gene markers used to identify chromosome scaffolds do not 128 

identify specific microchromosome numbers (Table S2), so we ordered the assembled P. 129 

platyrhinos microchromosomes by descending length and numbered them microchromosomes 130 

1-11 (Table S1). Sex chromosomes are conserved across iguanid lizards [30] and we identified 131 

microchromosome 9 as the X chromosome in P. platyrhinos based on homology with X-linked 132 

markers in A. carolinensis (ATP2A2, FZD10, and TMEM132D [30]; Table S2).   133 

RNA-sequencing of 8 tissues (liver, lungs, brain, muscle, testes, heart, eyes, and 134 

kidneys) was used to assemble the transcriptome of P. platyrhinos using Trinity r2014 0413p1 135 

[31]. The final transcriptome assembly contained 199,541 transcripts comprising 199,500 136 

Trinity-annotated genes, with an average length of 1,438 base pairs and an N50 length of 2,420 137 

bp. 138 

Genome annotation and chromosomal composition 139 

We annotated 20,764 protein-coding genes in the P. platyrhinos genome assembly 140 

(JAIPUX010000000) using the gene prediction software MAKER v. 2.31.10 [32] and gene 141 

predictions based on AUGUSTUS v. 3.2.3. [33]. Among the total annotated genes, 16,384 142 

genes were identified using searches against protein sequences in databases NCBI and 143 

Interpro [34]. We identified 4,324 complete and fragmented BUSCO markers in the P. 144 

platyrhinos genome annotation from the total 5,310 BUSCO markers present in the library 145 

“tetrapoda_odb10.2019-11-20” (Table 2). Our repeat annotation identified 44.45% of the 146 
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genome as repetitive elements (Table S3) using RepeatModeler v. 1.0.11 [35] and 147 

RepeatMasker v. 4.0.8 [36]. The major components of the genomic repeat content included 148 

simple sequence repeats (6.90%), as well as L2/CR1/Rex (6.88%), hobo-Activator (5.98%), and 149 

Tourist/Harbinger (4.90%) transposable element families (Table S3).  150 

Chromosomal composition analyses indicate that overall gene density (GD) and GC-151 

content tended to be lower on P. platyrhinos macrochromosomes (mean ± sd GD = 0.19 ± 0.14, 152 

median = 0.17 per Mb; mean ± sd GC% = 35.9 ± 1.2%, median = 35.9%) than 153 

microchromosomes (mean ± sd GD = 0.27 ± 0.16, median = 0.29 per Mb; mean ± sd GC% = 154 

38.5 ± 2.8%, median = 38.2%; Fig. 2 and S1). Conversely, repeat elements density tended to 155 

be higher on macrochromosomes (mean ± sd = 44.6 ± 5.6%, median = 43.3% per Mb) than 156 

microchromosomes (mean = 39.4 ± 10%, median = 38.1% per Mb; Fig. 2 and S1). These 157 

differences in GD, GC-content, and repeat elements between macro and microchromosomes 158 

were statistically significant (Wilcoxon-W = 137011, p-value = 5.7*10-16 for GD; Wilcoxon-W = 159 

68322, p-value < 2.2*10-16 for GC-content; and Wilcoxon-W = 283330, p-value < 2.2*10-16 for 160 

repeat elements). 161 

Pathway analysis 162 

We assessed whether macrochromosomes and microchromosomes contain distinct 163 

functional classes of genes using pathway analyses. From the total of 16,384 protein coding 164 

genes that were identified by homology search, 9,590 gene IDs on macrochromosomes and 165 

3,129 on microchromosomes were identifiable by PANTHER16.0 [37,38] using the protein 166 

family/subfamily library (Fig. S2). These genes were classified into a total of 164 pathways from 167 

about 177 available pathways in PANTHER. The highest number of genes belonged to the 168 

“Wnt signaling pathway (P00057)” and “Gonadotropin-releasing hormone receptor pathway 169 

(P06664)”, which together accounted for more than 10% (more than 5% each) of the 170 
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macrochromosomal and microchromosomal genes. We compared the frequencies of genes in 171 

each PANTHER pathway between macrochromosomes and microchromosomes and found 37 172 

pathways where all genes were located on macrochromosomes (Table S4), with 13 pathways 173 

having all genes localized to a single macrochromosome. Among microchromosomes, we found 174 

that three pathways have genes exclusively found on only microchromosomes and in all three 175 

pathways, these genes were located on a single microchromosome (Table S4). These 40 176 

pathways (37 for macrochromosomes + 3 for microchromosomes) mostly belong to 177 

biosynthesis, signaling, metabolism, and degradation pathways (in descending order).  178 

Synteny analysis 179 

We investigated how reptilian genome composition has been impacted by chromosomal 180 

rearrangements through evolutionary time using comparative synteny analyses among reptiles. 181 

We conducted pairwise analyses of synteny between the P. platyrhinos genome and 12 species 182 

(five lizards, three snakes, three turtles, and a bird) for which chromosome-level genome 183 

assemblies were available (Fig. 3)[25]. The genome of S. merianae has not been assembled to 184 

chromosomes but the karyotype of this species is known (5 macrochromosome and 14 185 

microchromosomes; [39]) so in this study we used 19 largest scaffolds from the S. merianae 186 

assembly with 5 scaffolds > 200 Mb, and 75 Mb > 14 scaffolds > 6 Mb). We performed synteny 187 

analyses using a ‘chromosome painting’ technique (see Methods), which established homology 188 

between sets of 100 bp in silico ‘markers’ from the P. platyrhinos chromosome scaffolds and 189 

regions of the genomes of the other reptile species (Table S5). We quantitatively assessed the 190 

degree to which syntenic blocks from each P. platyrhinos chromosome scaffold are dispersed 191 

across chromosomes of the other species (Fig. 4) using a dominance analysis [40], more 192 

commonly used in ecological community assessments. Specifically, dispersion was measured 193 

using the Simpson’s Dominance Index reciprocal (SR), with which we consider an effective 194 

number of target chromosomes in other species onto which the homologies of a given P. 195 
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platyrhinos chromosome appear. This index ranges from 1 to m, where m is the number of 196 

chromosomes of the target species being compared to P. platyrhinos. A value of 1 represents 197 

high dominance, which in this context indicates that syntenic blocks from a chromosome of P. 198 

platyrhinos are restricted to a single chromosome of another species. A value of m would mean 199 

all chromosomes of the target species contain an even proportion of P. platyrhinos syntenic 200 

blocks. If a large syntenic block is retained in one chromosome while a few proportionally small 201 

syntenic blocks are distributed across other target chromosomes, the resulting dominance value 202 

will trend toward 1.  203 

Our results show that macrochromosomes tend to have a higher degree of dispersion 204 

across different chromosomes of other species than microchromosomes (e.g., 205 

macrochromosome 1 SR = 2.38 ± 0.96; microchromosome 1 SR = 1.45 ± 0.45), except for 206 

macrochromosome 6 (SR = 1.44 ± 0.27; Fig. 5a). However, this chromosomal rearrangement 207 

does not follow the same pattern across species (Fig. 4). For example, A. carolinensis shows 208 

the highest values for SR in microchromosomes (Fig. 5b), but this may be an artifact of this 209 

species having an incomplete genome assembly for microchromosomes. In other lizards and 210 

snakes (with the exception of C. viridis), SR ~ 1 for all microchromosomes (except 211 

microchromosome 6). In G. gallus, SR ~ 1 for all microchromosomes except microchromosome 212 

1. In turtles, mean SR values for microchromosomes are > 1, but this is largely driven by higher 213 

SR values on microchromosomes 1, 4, and 6 (Fig. 4).  214 

Macrochromosome synteny appears highly conserved between P. platyrhinos and S. 215 

merianae. Among the closest relatives of P. platyrhinos, A. carolinensis has the same 216 

macrochromosome arrangement as P. platyrhinos (Figs. 3-5). In the more distantly related 217 

snakes, N. naja and C. viridis, however, macrochromosomes 3 and 5 show high SR values and 218 

the remaining macrochromosomes have SR ~ 1. Compared to the other snakes, T. elegans 219 

(along with lizards in the family Lacertidae) generally possess a greater number of smaller 220 

macrochromosomes than P. platyrhinos and associated higher SR values. At greater 221 
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phylogenetic distances, the breakdown of chromosomal synteny from lizards to other reptilian 222 

lineages becomes more apparent (cumulative SR ~ 30 in turtles) and showing greater 223 

rearrangements and partitions of syntenic blocks in macrochromosomes than in 224 

microchromosomes (Fig. 4 and 5b).  225 

Our results also show that rearrangements between macro- and microchromosomes are 226 

apparently common throughout the evolution of Reptilia, including macro and 227 

microchromosomes fusing together to form single macrochromosomes. For example, 228 

microchromosomes 5 and 6 in P. platyrhinos form a macrochromosome in L. agilis, Z. vivipara, 229 

and P. muralis, chromosome 6 of P. platyrhinos is syntenic with a macrochromosome and a 230 

microchromosome in S. merianae, and microchromosome 6 of P. platyrhinos comprises two 231 

microchromosomes in S. merianae, G. gallus, and turtle species (Fig. 3).  232 

 233 

Discussion 234 

The P. platyrhinos genome is only the second chromosome-level assembly available for the 235 

diverse lizard family Iguanidae (after A. carolinensis), and the only member of this family with 236 

well assembled microchromosomes, thereby contributing a new valuable resource for 237 

comparative genomics of reptiles. For P. platyrhinos, we identified scaffolds representing the 6 238 

macrochromosomes and 11 microchromosomes that comprise the known karyotype for the 239 

genus Phrynosoma [27,28,41]. We note that the chromosome number designations especially 240 

for microchromosomes, however, may differ from that of the known karyotype due to multiple 241 

factors, including the lack of chromosome linked markers for individual microchromosomes, our 242 

post-hoc bioinformatic-driven inferences of microchromosome boundaries, and the 243 

completeness of our genome assembly potentially impacting the accuracy of estimates of the 244 

true relative sizes (and size differences) of all microchromosomes. Despite this, the higher 245 

contiguity and completeness of microchromosomal scaffolds in the P. platyrhinos genome 246 
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relative to that of A. carolinensis does enable some of the first comparisons of chromosome 247 

evolution in lizards that incorporates patterns distinct to macro- versus microchromosomes. Our 248 

analyses of this and other comparative reptilian genomes highlight distinct functional classes of 249 

genes, chromosomal structure, and rearrangement patterns in microchromosomes compared to 250 

macrochromosomes. 251 

Consistent with previous studies of reptilian chromosome composition [8,10,42], we find 252 

that in P. platyrhinos, GC content, gene density, and repeat element density differ between 253 

macrochromosomes and microchromosomes, with gene density and GC content being higher 254 

on microchromosomes and repeat elements being more densely distributed on 255 

macrochromosomes. Patterns of high gene density on microchromosomes have been 256 

hypothesized to be an evolutionary solution to reduce overall DNA mass and increase 257 

recombination rates between coding regions, predominantly by reducing repeat element content 258 

[3]. High recombination rates further increase GC content due to GC-biased gene conversion 259 

[43], leading to a higher frequency of GC bases on microchromosomes that can house 260 

functionally different gene content compared to macrochromosomes [13], a pattern we also 261 

observed in the P. platyrhinos genome (Fig. 2 and S1).  262 

Our synteny analyses across reptile genomes revealed that splitting, fusion, and 263 

rearrangement events among chromosomes have occurred frequently and repeatedly 264 

throughout reptile evolution. This pattern of chromosome blocks shifting between macro-, and 265 

microchromosome-linkage likely explains some unusual patterns of gene density, GC-content, 266 

and repeat elements, such as blocks of high gene density on a macrochromosome that may 267 

represent ancestral fragments derived from microchromosomes.  For example, high GC content 268 

and gene density relative to other macrochromosomes on one end of macrochromosome 6 of P. 269 

platyrhinos (extending for ~40 Mbp; Fig. 2) supports the scenario that a microchromosomal 270 

region with higher gene and GC density was recently translocated to a macrochromosome in 271 

the ancestor of P. platyrhinos. This process may have also contributed to the observed variation 272 
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in the numbers and sizes of macro- and microchromosomes, even among closely related 273 

species (e.g., P. platyrhinos versus A. carolinensis, and C. viridis versus T. elegans). Among 274 

macrochromosomes, fusion, splitting, and translocation to other chromosomes in more distantly 275 

related species such as turtles and chicken are common, whereas microchromosomes of P. 276 

platyrhinos typically remain in single homologous blocks in these other reptilian lineages, though 277 

there seem to be exceptions based on our analysis (Fig. 4 and Fig. 5b). Broadly, these findings 278 

suggest that ancestral chromosomal rearrangements may have resulted in regions of reptilian 279 

genomes that have not yet reached mutational and compositional equilibria, which are 280 

otherwise characteristic of macro- and microchromosomal regions, following ancestral 281 

chromosomal rearrangement events.  282 

Adding to the growing body of evidence for the structural, compositional, and 283 

evolutionary distinctions between micro- and macrochromosomes [10,13,44,45,46,47,48], our 284 

analyses suggest that the gene content of these two classes of chromosomes may be distinct in 285 

function. Our preliminary observation of enrichment of genes from certain pathways on 286 

individual chromosomes or on macro- and microchromosomes more generally warrants further 287 

investigation. These biases could be driven by ancestral contingencies of gene content or active 288 

translocations of genes across chromosome classes, which may suggest a functionally driven 289 

basis for such biases. Our results, however, need to be interpreted with caution because these 290 

pathways are incomplete. Many genes are still functionally unknown, and our genome assembly 291 

is partially fragmented and missing some expected genes in Tetrapoda (Table 2). Nevertheless, 292 

our inferences, together with other emerging evidence for the compositional and functional 293 

distinctiveness between micro- and macrochromosomes [10,13,44] suggest that there may be 294 

key functional, evolutionary, and mechanistic features that distinguish these chromosome 295 

classes that explain the significance of the presence and abundance of microchromosomes 296 

across eukaryote lineages.  297 

 298 
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Methods 299 

Genome and transcriptome assembly 300 

We sequenced and assembled the reference genome from a female desert horned lizard 301 

collected in Dry Lake Valley, Nevada (NCBI accession SAMN17187150). This specimen was 302 

collected and euthanized according to Miami University Institutional Animal Care and Use 303 

Committee protocol 992_2021_Apr. Liver tissue was snap frozen in liquid nitrogen and sent to 304 

Dovetail Genomics (Scotts Valley, CL) for extraction of DNA and construction of shotgun, 305 

Chicago, and Dovetail Hi-C paired end libraries. DNA was extracted using buffer G2, and Qiagen 306 

protease. Three initial shotgun sequencing libraries were constructed by fragmenting DNA 307 

extracts to 475 bp and using a TruSeq PCR-free library prep kit to ligate sequencing adapters 308 

and amplify each library. The resulting libraries were sequenced on an Illumina HiSeqX (Illumina 309 

HiSeq X Ten, RRID:SCR_016385) and resulted in 859.9 million read pairs from paired end 310 

libraries (totaling 246 Gbp; see Table 3 for the number of sequenced reads for each library). 311 

Reads were trimmed for quality, sequencing adapters, and mate pair adapters using Trimmomatic 312 

(Trimmomatic, RRID:SCR_011848) [49], Using these data, contigs and small scaffolds were 313 

assembled using Meraculous 2.2.4 (diploid_mode 1; RRID:SCR_010700) [50] with a kmer size of 314 

49-mers. which produced an assembly with a scaffold N50 of 0.013 Mb.  315 

The original assembly was first scaffolded using a Chicago library according to the manufacturer’s 316 

protocol. Three Chicago libraries were prepared as described previously [26]. Briefly, for each 317 

library, ~500ng of HMW gDNA was reconstituted into chromatin in vitro and fixed with 318 

formaldehyde. Fixed chromatin was digested with DpnII, the 5’ overhangs filled in with biotinylated 319 

nucleotides, and then free blunt ends were ligated. After ligation, crosslinks were reversed, and 320 

the DNA purified from protein. Purified DNA was treated to remove biotin that was not internal to 321 

ligated fragments. The DNA was then sheared to ~350 bp mean fragment size and sequencing 322 
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libraries were generated using NEBNext Ultra enzymes and Illumina-compatible adapters. Biotin-323 

containing fragments were isolated using streptavidin beads before PCR enrichment of each 324 

library. The libraries were sequenced on an Illumina HiSeqX. The number and length of read pairs 325 

produced for all libraries was 528 million 2x150 bp paired end reads (see Table 3 for the number 326 

of sequenced reads for each library). The resulting scaffolded assembly was far more contiguous 327 

with a scaffold N50 of 63.431 Mb. Lastly, a final round of scaffolding was performed using data 328 

from the Dovetail Hi-C library according to the manufacturer’s protocols. Three Dovetail Hi-329 

C libraries were prepared in a similar manner as described previously [51]. Briefly, for each library, 330 

chromatin was fixed in place with formaldehyde in the nucleus and then extracted. The following 331 

steps were the same as creating Chicago libraries. The number and length of read pairs produced 332 

for all libraries was 515 million 2x150 bp paired end reads (see Table 3 for the number of 333 

sequenced reads for each library). The input  de novo  assembly, Chicago library reads, 334 

and Dovetail Hi-C library reads were used as input data for HiRise [52], a software pipeline 335 

designed specifically for using proximity ligation data to scaffold genome assemblies. First, 336 

Chicago library sequences were aligned to the draft input assembly using SNAP v1.0.0 [53]. The 337 

separations of Chicago read pairs mapped within draft scaffolds were analyzed by HiRise to 338 

produce a likelihood model for genomic distance between read pairs, and the model was used to 339 

identify and break putative misjoins, to score prospective joins, and make joins above a 340 

threshold. After aligning and scaffolding Chicago data, Dovetail Hi-C library sequences were 341 

aligned and scaffolded following the same method.  The final assembly (NCBI accession 342 

PRJNA685451) has a length of 1,901.85 Mb with a contig N50 of 12.04 kb and a scaffold N50 of 343 

273.213 Mb (see Table 1 for more statistics for this genome assembly). 344 

Transcriptomic libraries were sequenced from 8 tissues (liver, lungs, brain, muscle, testes, 345 

heart, eyes, and kidneys) from a male lizard collected and euthanized according to Miami 346 

University Institutional Animal Care and Use Committee protocol 992_2021_Apr at the same 347 

locality as the genome animal. For each library, total RNA was extracted using Trizol reagent, 348 
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and unstranded mRNAseq libraries were individually prepared using an NEBNext Ultra RNA 349 

Library Prep kit with library insert sizes of 250-300 bp and sequenced on an Illumina Hiseq4000 350 

platform (Illumina HiSeq 4000 System, RRID:SCR_016386) using a paired-end 150 bp run by 351 

Novogene Corporation Inc (Table 4). We used Trinity r2014 0413p1 to assemble transcriptome 352 

reads from all tissues (using min_kmer_cov:1 and default settings).  353 

Chromosome identification  354 

According to the karyotype for phrynosomatid [41] and P. platyrhinos [27,54] (2n=34), we 355 

expected 6 pairs of macrochromosomes and 11 pairs of microchromosomes (one pair of 356 

microchromosomes is expected to be sex linked) for P. platyrhinos, and assumed this karyotype 357 

was correct for organizing our scaffolded genome assembly. Assigning scaffolds to specific 358 

chromosomes was done using blast+2.8.0 [55] using program “blastx” (options 359 

“num_threads”=4, “-max_target_seqs”=10, “-evalue”= 1e-5, and “-outfmt”=11). We used 360 

chromosome-linked gene markers in other close species (A. carolinensis, Leiolepis reevesii) 361 

[29] and X-linked markers in A. carolinensis [39] downloaded from NCBI (Table S1) to identify 362 

the genomic location of each gene marker. Available markers for macrochromosomes in lizards 363 

were matched to seven of the largest scaffolds (two scaffolds for chromosome 3), which we 364 

sorted by size and named macrochromosomes 1-6. From the remaining scaffolds, 10 scaffolds 365 

(> 8 Mbp) were selected as potential microchromosomes. This suggested that one scaffold 366 

comprises two microchromosomes fused together as the expected number of 367 

microchromosomes was 11. Synteny analysis suggested that scaffold “Scf4326_4427” (Fig. 6) 368 

has at least three origins in other closely related species. For example, in S. merianae, three 369 

microchromosome account for this scaffold, while the rest of scaffolds were linked to a specific 370 

microchromosome. Given that Chicago libraries reconstitute chromatin in vitro, interactions 371 

between distinct chromosomes are significantly reduced compared to in vivo Hi-C libraries [56]. 372 

Also, microchromosomes may have a greater frequency of inter-chromosomal contact [12] than 373 
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expected in models used to scaffold based on Hi-C sequencing data. Therefore, we scanned for 374 

breakpoints between Chicago scaffolds in microchromosome scaffolds and for each of these 375 

breakpoints, we used multiple forms of evidence to assess whether a scaffold should be 376 

manually split. Following Schield [8], patterns of GC content, repeat density, and gene density at 377 

each breakpoint were assessed and we looked for instances in which there were abrupt shifts in 378 

these measures near breakpoints between Chicago scaffolds. At two of these breakpoints on 379 

the putatively artificially-merged (with a window of about 100 bp Ns/gaps) scaffold 380 

“Scf4326_4427”, we observed elevated GC content, and reduced repeat elements density (Fig. 381 

S3). Based on these patterns, we chose to split this scaffold at the breakpoint location with 382 

reduced gene density to produce a final, curated assembly with the expected number of 383 

microchromosomes and finally numbered them based on their size.  384 

Genome annotation 385 

Repeat elements were first identified using RepeatModeler v. 1.0.11 (RepeatModeler, 386 

RRID:SCR_015027) [35] for de novo prediction of repeat families. To annotate genome-wide 387 

complex repeats, we used RepeatMasker v. 4.0.8 (RepeatMasker, RRID:SCR_012954) [36] 388 

with default settings to identify known Tetrapoda repeats present in the curated Repbase 389 

database release 20181026 [57]. We then ran 2 iterative rounds of RepeatMasker to annotate 390 

the known and the unknown elements identified by RepeatModeler, respectively, where the 391 

genome sequence provided for each analysis was masked based on all previous rounds of 392 

RepeatMasker.  393 

We used MAKER v. 2.31.10 [32] as a consensus-based approach to annotate protein-coding 394 

genes in an iterative fashion. For annotation, a genome with complex, interspersed repeats hard 395 

masked as Ns was supplied and we set the ‘model_org’ option to ‘simple’ in the MAKER control 396 

file (maker_opts.ctl) to have MAKER soft mask simple repeats prior to gene annotation. The full 397 

de novo P. platyrhinos transcriptome assembly and protein datasets consisting of all annotated 398 
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proteins for A. carolinensis [14] from NCBI were used as the evidence for protein coding gene 399 

prediction. For the first round of annotation, “est2genome” and “protein2genome” were set to 1 400 

to predict genes based on the aligned transcripts and proteins. Using the gene models from the 401 

first round of MAKER, we were able to train gene prediction software AUGUSTUS v. 3.2.3. 402 

(Augustus, RRID:SCR_008417) [33]. To do so, we used Benchmarking Universal Single-Copy 403 

Orthologs (BUSCOs) v. 2.0.1 (BUSCO, RRID:SCR_015008), which has an internal pipeline to 404 

automate the training of Augustus based on a set of conserved, single-copy orthologs for 405 

Tetrapoda (Tetrapoda odb9 dataset) [58]. We ran BUSCO in the ‘genome’ mode and specified 406 

the ‘--long' option to have BUSCO perform internal Augustus parameter optimization. Then we 407 

ran MAKER with ab initio gene prediction (‘est2genome=0’ and ‘protein2genome=0’ options set) 408 

using transcripts, proteins, and repeat elements resulted from the first MAKER round as the 409 

empirical evidence (in GFF format) to produce gene models using the AUGUSTUS within the 410 

MAKER. For all MAKER analyses, we used default settings, except for ‘trna’ (set to 1), 411 

‘max_dna_len’ (set to 300,000) and ‘split_hit’ (set to 20,000). We used the gene models from 412 

our second round of MAKER annotation to re-optimize AUGUSTUS as described above before 413 

running one final MAKER analysis (round 3) with the re-optimized AUGUSTUS settings (all 414 

other settings are identical to round 2). We compared Annotation Edit Distance (AED) 415 

distributions, gene numbers, and average gene lengths across each round of Maker annotation 416 

to assess quality and used our final MAKER round (round 3; N = 20,764 genes) as our final 417 

gene annotation.  418 

We ascribed gene IDs based on homology using reciprocal best-blast (with e-value thresholds 419 

of 1e-5) and stringent one-way blast (with an e-value threshold of 1e-8) searches against 420 

protein sequences from NCBI for A. carolinensis, Pogona vitticeps [59], P. muralis [17], Gekko 421 

Japanese [60], Python molurus [61], Pseudonaja textilis [62], Notechis scutatus [62], 422 

Protobothrops mucrosquamatus [63], Thamnophis sirtalis [64], Alligator mississippiensis [65], 423 

Alligator sinensis [66,67], Crocodylus porosus [68], Chrysemys picta [69], Terrapene carolina 424 
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[70], Chelonia mydas [71], Pelodiscus sinensis [71], G. gallus, Homo sapiens [72], Mus 425 

musculus [73], and Swiss-Prot [74] using a custom reciprocal best blast (RBB) script (orthorbb 426 

2.2) [75]. We also searched our annotated transcriptome against Interpro database via 427 

Interproscan--5.36-75.0 [76].  428 

Pathway analysis 429 

To compare macrochromosomes and microchromosomes functionally, protein coding genes on 430 

each chromosome were analyzed using gene IDs resulted from homology search. An ID list of 431 

all annotated genes on each chromosome was used for pathway analysis in PANTHER16.0 (via 432 

browser and “Gene List Analysis” tools option) classification system. Four model organisms (A. 433 

carolinensis, G. gallus, M. musculus, and H. sapiens) were selected as the reference for gene 434 

IDs. PANTHER assigned each gene to at least one of the 164 pathways identified for P. 435 

platyrhinos genome annotation (with a range from 2 to 759 genes in each pathway; Fig. S4). 436 

The distributions of each pathway among different chromosomes were compared using pathway 437 

results for each chromosome to identify potential pathways that belong to a specific 438 

chromosome/group of chromosomes.  439 

Synteny and chromosomal composition 440 

We used a python script “slidingwindow_gc_content.py” [77] to estimate GC content genome 441 

wide in windows of 1 Mbp. We estimated gene and repeat elements densities for the final 442 

genome assembly using python script “window_quantify.py” with a window size of 1 Mbp. As the 443 

distribution of these variables (GD, GC-content, repeated elements) was highly skewed/non-444 

normal, we performed Wilcoxon rank sum tests to check for statistically significant differences 445 

between macro and microchromosomes. 446 
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We explored broad-scale structural evolution across reptilian genomes using synteny analyses. 447 

We obtained chromosome-level genome assemblies from NCBI database for five lizards (A. 448 

carolinensis (GCA_000090745.2), S. merianae (GCA_003586115.2), L. agilis 449 

(GCA_009819535.1), P. muralis (GCA_004329235.1), and Z. vivipara (GCA_011800845.1)), 450 

three snakes (C. viridis (GCA_003400415.2), T. elegans (GCA_009769535.1), and N. naja 451 

(GCA_009733165.1)), one bird (G. gallus (GCA_000002315.5)), and three turtles (T. scripta 452 

(GCA_013100865.1), G. evgoodei (GCA_007399415.1), and D. coriacea (GCA_009764565.3)).  453 

We used a previously established method for in silico painting [44,78] to partition the P. 454 

platyrhinos genome to 18.39 million 100-bp markers. As input for this approach, we used 455 

blast+2.9.0 to blast the markers against each genome (with “blastn” program and setting “-456 

max_hsps” and “-max_target_seqs” to 1, “outfmt”=6 qseqid sseqid sstart length pident, 457 

“num_threads”=3, and the rest as default). Following Schield et al. (2019), homology signals for 458 

chromosome painting had two main conditions: 1) each marker should have an alignment length 459 

of 50 bp or greater, and 2) at least five consecutive markers must be present to infer homology 460 

(Table S5). This was determined for scaffolds from each species. For posterior analyses based 461 

on the synteny results, only the assembled chromosomes of each species (based on the 462 

reference assembly) were considered. Salvator merianae was the only species in our analysis 463 

without assembled chromosomes, so we analyzed the 19 longest scaffolds (since karyotype 464 

analysis showed 2n=38) containing the majority of confirmed markers [39].  465 

To assess the distribution of syntenic blocks of P. platyrhinos across scaffolds from the 12 466 

target species, we calculated Simpson’s Dominance Index (D) and its reciprocal, which, in this 467 

context, can be considered the effective number of target chromosomes (C) containing 468 

homologies from a given P. platyrhinos chromosome: 469 

𝐷𝑖𝑗 =  ∑ 𝑝𝑖𝑗𝑘
2

𝑚

𝑘=1

 470 
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𝐶𝑖𝑗 =
1

𝐷𝑖𝑗
 471 

Where 𝑖 represents a P. platyrhinos chromosome, 𝑗 represents a target species, 𝑚 is the 472 

number of scaffolds in the target species 𝑗 containing homologies from the 𝑖𝑡ℎ P. platyrhinos 473 

chromosome, and 𝑘 represents a specific target scaffold. Values of D can range between 0 (low 474 

dominance, i.e., high spread of homologies) and 1 (full dominance, i.e., homologies remained in 475 

one target scaffold). Values of C can range between 1 (full dominance) and 𝑚 (low dominance, 476 

i.e., equal spread of the 𝑖𝑡ℎ homologies across 𝑚 target scaffolds).  477 
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FIGURES 815 

 816 

Figure 1. For each major clade, we list diploid chromosome numbers, macrochromosome numbers, and 817 

microchromosome numbers based on previous research [1]. The phylogeny was adapted from [2].  818 

Figure 2. The genome content of P. platyrhinos. The outer circle shows gene density on each chromosome, the 819 

middle circle shows repeat element density, and the inner one shows GC content. Each estimate is calculated per 1 820 

million base pair window in each chromosome. “Ma” indicates macrochromosomes and “mi” stands for 821 

microchromosomes. Two scaffolds for macrochromosome 3 are attached together (the black line) and two 822 

microchromosomes (mi6 and mi10) resulted from a single scaffold were showed separately and in size order with the 823 

rest of the microchromosomes.  824 

 825 

Figure 3. Synteny between P. platyrhinos and 12 reptilian taxa: three snakes (N. naja, T. elegance, and C. viridis), 826 

five lizards (A. carolinensis, L. agilis, Z. vivipara, P. muralis, and S. merianae), three turtles (T. scripta, G. evgoodei, 827 

and D. coriacea), and a bird (G. gallus). The cladogram shows the phylogenetic relationships among the sampled 828 

taxa [80] (two scaffolds for macrochromosome 3 (3a and 3b) are concatenated in this figure). 829 

 830 

Figure 4. Effective number of chromosomes (C) assessed using the dominance analysis. Values close to 1 represent 831 

full dominance (homologies from a given P. platyrhinos chromosome are contained within a single 832 

chromosome/scaffold of another species). Values higher than 1 mean a spread of homologies across multiple 833 

chromosomes/scaffolds. 834 

 835 

Figure 5. Summary of the effective number of chromosomes of P. platyrhinos in comparison with the 12 target 836 

species based on SR a) Mean and SD of SR for each chromosome among 12 species. Values close to 1 represent 837 

full dominance (homologies from a given P. platyrhinos chromosome are contained within a single 838 

chromosome/scaffold). Values higher than 1 mean a spread of homologies across multiple chromosomes/scaffolds. 839 

b) Cumulative SR for chromosomes of 12 reptilian species. The total amount of SR at greater phylogenetic distances, 840 
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is higher (cumulative SR ~ 30 in turtles) and showing greater rearrangements and partitions of syntenic blocks in 841 

macrochromosomes than in microchromosomes 842 

 843 

Figure 6. Synteny between P. platyrhinos potential microchromosomes (before assigning scaffolds to specific 844 

chromosomes) and the 12 reptilian genomes. The cladogram shows the phylogenetic relationships among the 845 

assessed taxa [80]. 846 

 847 

Figure S1: Repeat elements, GC content, and gene density calculated in 1Mb windows for each chromosome of P. 848 

platyrhinos (two scaffolds for macrochromosome 3 are concatenated). 849 

 850 

Figure S2: Proportion of identified gene IDs from protein-coding annotation to unidentified gene IDs by PANTHER a) 851 

across the chromosomes (Ma stands for macrochromosome, and mi stands for microchromosome). b) between two 852 

groups of chromosomes (Macros = macrochromosomes, and Micros = microchromosomes). 853 

 854 

Figure S2. Investigating potential misassembled point on a final scaffold. a) Chicago scaffolds assembled to a final 855 

scaffold “Sc4326_4427” were used to investigate a possible misassembled point. b) repeat elements, GC content, 856 

and gene density calculated in 1Mb windows were used as evidence to find break point on this final scaffold. Outlined 857 

cells are where the breakpoint was placed. Then microchromosomes were numbered based on size so these two 858 

scaffolds were numbered as microchromosome 10 (left portion) and microchromosome 6 (right portion). 859 

 860 

Figure S4: Distribution of P. platyrhinos total annotated protein coding genes with identified IDs in PANTHER database. 861 

Among 164 PANTHER pathways assigned to P. platyrhinos protein coding genes, each pathway accounts for different 862 

number of genes (2< genes per pathway <759) that may belong to a specific chromosome (24 pathways only on 863 

macrochromosomes, and 3 only on microchromosomes) or group of chromosomes (13 pathways only in 864 

macrochromosomes group). 865 

 866 
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TABLES 867 

Table 1. Basic information about the P. platyrhinos genome assembly.  868 

 Assembly Chicago Assembly Chicago + Hi-C Assembly 

Longest Scaffold (bp) 361,415,485 396,190.715 

Number of Scaffolds 5,458 5,294 

Number of Scaffolds > 1 kb 5,458 5,294 

Contig N50 (kb) 12.04 12.04 

Scaffold N50 (kb) 63,431 273,213 

Number of Gaps 258,150 258,317 

Percent of Genome in Gaps 1.54% 1.54% 

 869 

Table 2: BUSCO summary results.  870 

BUSCO benchmark  Number Percentage 

Present BUSCOs 4,324 81.5% 

Complete BUSCOs 3640 68.6% 

Complete single-copy BUSCOs 3609 68.0% 

Complete duplicated BUSCOs 31 0.6% 

Fragmented BUSCOs 684 12.9% 

   

Missing BUSCOs 986 18.5% 

Total BUSCO groups searched  5310 100 

 871 

 872 
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Table 3. Sequencing libraries used for the genome assembly of P. platyrhinos. 873 

Library Read Type Number of Reads Assembly Version NCBI accession number 

Shotgun library 1 (150 bp) paired end 311,540,000 Primary  SRR16071941 

Shotgun library 2 (150 bp) paired end 239,630,000 Primary SRR16071940 

Shotgun library 3 (150 bp) paired end 308,750,000 Primary SRR16071939 

Chicago library 1 (151 bp) paired end  402,000,000  Intermediate SRR13811242 

Chicago library 2 (151 bp) paired end  398,000,000  Intermediate SRR13811241 

Chicago library 3 (151 bp) paired end 256,000,000 Intermediate SRR13811240 

Hi-C library 1 (151 bp) paired end  332,000,000  Final SRR13811239  

Hi-C library 2 (151 bp) paired end  374,000,000  Final SRR13811238  

Hi-C library 3 (151 bp) paired end 324,000,000 Final SRR13811237  

  874 
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Table 4. Number of reads obtained from 8 tissues of P. platyrhinos, used for transcriptome assembly. 875 

Sample ID Tissue Raw Reads Quality Trimmed Reads NCBI accession number 

TRO180600001 

TRO180600002  

TRO180600003 

TRO180600004 

TRO180600005 

TRO180600006 

TRO180600007 

TRO180600008 

liver 

lungs 

brain 

muscle 

testes 

heart 

eyes 

kidneys 

49,736,350 

40,643,066 

85,097,044 

37,712,026 

62,536,762 

34,757,154 

46,140,488 

41,776,926 

47,699,266 

39,124,052 

81,754,486 

34,653,428 

58,283,654 

32,027,338 

42,334,272 

38,635,176 

SRR13326553 

SRR13326552 

SRR13326551 

SRR13326550 

SRR13326549 

SRR13326548  

SRR13326547 

SRR13326546 

 876 
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Table S1. The corresponding scaffolds (first column) for each chromosome of P. platyrhinos (second column) and 877 

scaffold length (third column) in base pairs. *This scaffold was broken down into two microchromosomes (6 and 10). 878 

Scaffold name  Chromosome(s) name length (in base pairs) 

Sc3291_377 Chromosome 1 396,190,715 

Sc439 _455 Chromosome 2 336,734,411 

Sc1234_1274 Chromosome 3-a 178,616,284 

Sc1882_1940 Chromosome 3-b 123,146,639 

Sc5292_5410 Chromosome 4 273,212,746 

Sc5293_5450 Chromosome 5 219,432,639 

Sc521_540 Chromosome 6 129,273,435 

Sc3285_3371 Microchromosome 1 31,685,405 

Sc3778_3872 Microchromosome 2 28,086,253 

Sc415_430 Microchromosome 3 27,277,973 

Sc35_37 Microchromosome 4 27,087,043 

Sc3441_3531 Microchromosome 5 26,097,904 

Sc4326_4427* 

Sc4326a4427 

Sc4326b4427 

Microchromosome 10 

microchromosome 6 

11,894,615 

23,702,528 

Sc26_27 Microchromosome 7 20,466,995 

Sc5294_5452 Microchromosome 8 16,009,790 

Sc1213_1253 Microchromosome 9/X 15,721,303 

Sc953_986 Microchromosome 11 8,897,685 

  879 
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Table S2. Best blast hits of cDNA [29] and * indicates sex linked markers [30] from A. carolinensis and L. 880 

reevesii  against the genome of P. platyrhinos.  881 

Marker Accession Chromosomal location E-value 

A. carolinensis L. reevesii P. platyrhinos 

DYNC1H1 AB490348  1q Chr1 2.95E-179 

ESR1 AB490345  1p Chr1 1.02E-113 

WT1 XM_016992885 1  Chr1 2.19E-158 

WT1 AB490347  1q Chr1 7.53E-80 

XAB1 AB490344  1p Chr1 2.31E-35 

CHD1 XM_008103079 2  Chr2 0 

CHD1 AB480289  2p Chr2 1.25E-144 

DMRT1 XM_003216553 2  Chr2 0 

DMRT1 AB480288  2p Chr2 2.15E-64 

GHR XM_008102837 2  Chr2 0 

GHR AB480290  2p Chr2 1.01E-104 

RPS6 XM_003216606 2  Chr2 5.32E-123 

RPS6 AB480287  2p Chr2 2.39E-88 

RUFY1 XM_008104854 2  Chr2 0 

RUFY1 AB490352  2q Chr2 3.45E-22 

EIF2S3 XM_003218845 3  Chr3-a 0 

EIF2S3 AB490361  3q Chr3-a 5.58E-104 

OCA2 XM_008107106 3  Chr3-a 0 

OCA2 AB490360  3q Chr3-a 1.78E-89 

SH3PXD2A XM_016992171 3  Chr3-b 0 

SH3PXD2A AB490356  3p Chr3-b 5.98E-166 

TLOC1 AB490355 3p  Chr3-b 1.71E-79 

HDAC3 XM_003219886 4  Chr4 0 

HDAC3 AB490365  4p Chr4 4.16E-97 

RBM12 XM_008109953 4  Chr4 0 

RBM12 AB490367  4q Chr4 3.92E-137 
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SS18 XM_003219645 4  Chr4 0 

SS18 AB490397  4p Chr4 1.75E-70 

ZNF326 XM_008109275 4  Chr4 0 

ZNF326 AB490366  4q Chr4 1.00E-128 

ACSL1 XM_008111814 5  Chr5 0 

ACSL1 AB490370  5p Chr5 1.00E-95 

DCLK2 XM_008111991 5  Chr5 0 

DCLK2 AB490369  5p Chr5 2.06E-73 

EXOC1 XM_008111693 5  Chr5 0 

EXOC1 AB490371  5p Chr5 3.08E-176 

RANGAP1 XM_008110743 5  Chr5 0 

RANGAP1 AB490374  5q Chr5 6.70E-80 

SOX5 XM_008110345 5  Chr5 0 

SOX5 AB490376  5q Chr5 1.78E-104 

UCHL1 XM_003221541 5  Chr5 2.55E-63 

UCHL1 AB490372  5p Chr5 3.46E-59 

CTNNB1 AB490379  6q Chr6 0 

GAD2 XM_003222133 6  Chr6 0 

GAD2 AB490380  6q Chr6 1.98E-76 

MYST2 AB490378  6p Chr6 0 

WAC XM_008112381 6  Chr6 0 

WAC AB490381  6q Chr6 3.60E-159 

AR AB490385  micro microchr3 2.72E-152 

TMEM132D* XM_008113640.2 micro “b”/X  microchr9/X 0 

FZD10* XM_003222753.3 micro “b”/X  microchr9/X 0 

ATP2A2* XM_008113715 micro “b”/X  microchr9/X 0 

ATP2A2 AB490391  micro microchr9/X 4.05E-167 

ATRX AB490386  micro microchr3 7.88E-127 

BRD7 AB490390  micro microchr2 3.95E-68 

HSPA8 XM_003222794 micro “a”  Chr1 0 

HSPA8 AB490395  micro microchr4 3.70E-162 
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 882 

Table S3. Number, length, and percentage of annotated repeat elements identified.  883 

Families of repeat elements Numbers of 

elements 

Length masked 

(bp) 

% of sequence % element 

masked 

Retroelements 2,082,017 451,287,018 23.83 20.37 

SINEs 648,720 89,280,596 4.72 6.35 

Penelope 254,722 35,799,757 1.89 2.50 

LINEs 1,311,944 319,965,632 16.90 12.84 

L2/CR1/Rex 702,907 160,952,766 8.50 6.88 

R1/LOA/Jockey 36 3,068 0.00 0.00 

R2/R4/NeSL 5,129 640,551 0.03 0.05 

RTE/Bov-B 257,696 83,172,778 4.39 2.52 

L1/CIN4 87,958 38,708,200 2.04 0.86 

LTR elements 121,353 42,040,790 2.22 1.19 

BEL/Pao 4,074 768,559 0.04 0.04 

Ty1/Copia 18,376 7,918,963 0.42 0.18 

Gypsy/DIRS1 39,227 14,661,509 0.77 0.38 

Retroviral 34,521 5,663,234 0.30 0.34 

DNA transposons 1,527,111 204,435,133 10.80 14.94 

hobo-Activator 610,832 73,847,731 3.90 5.98 

Tc1-IS630-Pogo 314,462 42,728,561 2.26 3.08 

PiggyBac 1,795 445,424 0.02 0.02 

Tourist/Harbinger 500,329 78,020,620 4.12 4.90 

Unclassified 828,472 146,176,330 7.72 8.11 

Total interspersed repeats 9,351,681 

 

801,898,481 42.35 
91.51 

Small RNA 33,490 3,376,969 0.18 0.33 

Satellites 51,860 7,242,936 0.38 0.51 

Simple repeats 705,413 27,116,672 1.43 6.90 

Low complexity 77,452 3,957,871 0.21 0.76 
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Total masked  10,219,896 841,750,763 44.45 100.00 

 884 

Table S4: Comparison of molecular pathways analysis on macrochromosomes and microchromosomes. Second 885 

column shows the specific pathways identified on each chromosome. Third column shows the pathways that belong 886 

to specific group of chromosomes.   887 

Chromosome location Specific pathways for each 

chromosome 

Specific pathways for macros versus micros 

Chromosome 1 

Allantoin degradation (P02725), 

Methionine biosynthesis 

(P02753) 

5-Hydroxytryptamine biosynthesis (P04371), Acetate 

utilization (P02722), Activin beta signaling pathway 

(P06210), Anandamide degradation (P05728), 

Androgen/estrogene/progesterone biosynthesis 

(P02727), Ascorbate degradation (P02729), ATP 

synthesis (P02721), Biotin biosynthesis (P02731), 

BMP/activin signaling pathway-drosophila (P06211), 

DPP signaling pathway (P06213), DPP-SCW signaling 

pathway (P06212), Glutamine glutamate conversion 

(P02745), Isoleucine biosynthesis (P02748), Leucine 

biosynthesis (P02749), Methylmalonyl pathway 

(P02755), Proline biosynthesis (P02768), Purine 

metabolism (P02769), Pyridoxal phosphate salvage 

pathway (P02770), Pyridoxal-5-phosphate biosynthesis 

(P02759), SCW signaling pathway (P06216), Succinate 

to proprionate conversion (P02777), Toll pathway-

drosophila (P06217), Valine biosynthesis (P02785), and 

Vitamin B6 metabolism (P02787) 

Chromosome 2 

ALP23B signaling pathway 

(P06209), GBB signaling 

pathway (P06214), MYO 

signaling pathway (P06215) 

Chromosome 3 

Cysteine biosynthesis 

(P02737), Lysine biosynthesis 

(P02751) 

Chromosome 4 Thiamin metabolism (P02780) 

Chromosome 5 

Cobalamin biosynthesis 

(P02735), Sulfate assimilation 

(P02778) 

Chromosome 6 

Carnitine metabolism (P02733), 

Coenzyme A linked carnitine 

metabolism (P02732), and 

Threonine biosynthesis 

(P02781) 

Microchromosome 1 None. None.  

Microchromosome 2 Tyrosine biosynthesis (P02784) 

Microchromosome 3 None. 
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Microchromosome 4 

Bupropion degradation 

(P05729) 

Microchromosome 5 

Triacylglycerol metabolism 

(P02782) 

Microchromosome 6  None. 

Microchromosome 7 None. 

Microchromosome 8 None. 

Microchromosome 9/X None. 

Microchromosome10 None 

Microchromosome 11 None.  

 888 

 889 

890 
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Table S5. Genome assemblies and number of markers used for in silico painting. All assemblies are 891 

available through NCBI under the appropriate accession. 892 

Organism Potential 

single 

markers 

Total confirmed (5 

consecutive) 

markers  

Scaffolds with 

confirmed 

homologies 

Confirmed 

markers in 

Scaffolds (%) 

Assembly 

accession 

A. carolinensis 2,616,045 87,155 13 57,006 

(65.41) 

GCA_000090745.2 

S. merianae 390,847 31,955 19 31,805 

(99.53) 

GCA_003586115.2 

L. agilis 755,639 44,200 20 44,199 

(99.99) 

GCA_009819535.1 

 

P. muralis 719,822 46,093 19 45,731 

(99.21) 

GCA_004329235.1 

Z. vivipara 751,121 43,371 19 42,224 

(97.35) 

GCA_011800845.1 

C. viridis 299,173 18,161 18 17,891 

(98.51) 

GCA_003400415.2 

T. elegans 282,458 17,817 18 17,725 

(99.48) 

GCA_009769535.1 

N. naja  291, 209 19,898 19 19,805 

(99.52) 

GCA_009733165.1 

T. scripta 177,241 15,287 25 15,252 

(99.77) 

GCA_013100865.1 

G. evgoodei 152,748 14,864 24 14,614 

(98.32) 

GCA_007399415.1 

D. coriacea 137,161 14,075 29 14,075 

(100.00) 

GCA_009764565.3 

G. gallus  88,397 10,934 33 10,934 

(100.00) 

GCA_000002315.5 

 893 
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