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1 Abstract 27 

Background: This study analyzed whole rumen metagenome using long reads and 28 

considering its compositional nature in order to disentangle the role of rumen microbes 29 

in methane emissions. Efficient and low-cost strategies must be developed to characterize 30 

the taxonomical and functional composition of the rumen microbiome. 31 

Methods: Rumen samples from 437 Holstein cows were sequenced using nanopore 32 

technology. After filtering, data were treated as compositional using a centered log-ratio 33 

transformation before statistical analyses. The association between overall microbiota 34 

composition and methane emissions was evaluated with PERMANOVA analysis. 35 

Differential abundance analyses were implemented to detect microbial taxa and functions 36 

associated to methane production. These associations were depicted in microbial 37 

networks. 38 

Results: The beta-diversity analyses suggested an association between methane 39 

production and overall microbiota composition (0.01 < R2 < 0.02). Differential abundance 40 

analysis identified 36 genera and 279 KEGGs as significantly associated to methane 41 

production (Padj<0.05). Those genera associated to high methane production were 42 

Eukaryota from Alveolata and Fungi clades, while Bacteria were associated to low 43 

methane emissions. The genus-level association network showed two clusters grouping 44 

Eukaryota and Bacteria, respectively. Regarding microbial gene functions, 41 KEGGs 45 

resulted to be differentially abundant and were mainly involved in metabolic pathways. 46 

No KEGGs included in the methane metabolism pathway (ko00680) were detected as 47 

associated to high methane emissions. The KEGG network showed three clusters 48 

grouping KEGGs associated to high emissions, low emissions and not differentially 49 

abundant in either of them. A deeper analysis of the differentially abundant KEGGs 50 
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revealed that genes related with anaerobic respiration through nitrate degradation were 51 

more abundant in low emissions animals. 52 

Conclusions: This experiment has generated the largest ONT ruminal metagenomic 53 

dataset currently available. Methane emissions are largely associated to the relative 54 

abundance of ciliate and fungi. The role of nitrate electron acceptors can be particularly 55 

important as this respiration mechanism directly competes with methanogenesis. 56 

Therefore, whole metagenome sequencing is necessary to jointly consider relative 57 

abundance of Bacteria, Archaea and Eukaryota in the statistical analyses. Nutritional and 58 

genetic strategies to reduce CH4 emissions should focus on reducing the relative 59 

abundance of Alveolata and Fungi in the rumen. 60 

2 Introduction 61 

Next generation sequencing technologies have provided special relevance to microbial 62 

communities from different niches, as they allow identifying their taxonomic and 63 

functional profile. It has made possible to unravel the relationships between host and 64 

microbiota, as well as the complex interactions between microbes, with a special 65 

contribution to the role of digestive microbiome on complex traits both in humans 1 (e.g. 66 

type II diabetes, cancer, mental diseases) and in domestic animals 2,3 (e.g. feed efficiency, 67 

methane emissions, animal health). 68 

Microbial communities are of special relevance in livestock. In ruminants, one of the 69 

main microbial communities lays in the rumen, due to its high diversity and large 70 

microbial mass 4 and its main role in feed fermentation to provide substrate to the animal, 71 

which is then transformed into product. Additionally, enteric methane is produced in the 72 

rumen by methanogenic microorganisms during feed fermentation 5 and is the main 73 

contributor of greenhouse gases (GHG) from livestock, with around 2,448 million tonnes 74 
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of CO2-equivalent (CO2e) per year 6,7. The ongoing climate emergency urgently calls for 75 

efficient strategies to mitigate the carbon footprint from all sectors, including agriculture 76 

and livestock farming. Former studies have proven that complex traits in ruminants are 77 

usually influenced by global changes in microbial communities, more than by fluctuations 78 

in the abundance of specific microorganisms 8,9. These global changes are usually due to 79 

the intricate interactions between different species in these communities (i.e., predation, 80 

competition of ecological niche or co-dependency). Consequently, a better understanding 81 

of the interactions between microbial genes during methanogenesis is needed to propose 82 

strategies for reducing methane emissions. Promising strategies have been proposed to 83 

modulate the metagenome, nutrition and genetics 10.  84 

Classical statistical approaches do not allow to accurately assess the results of 85 

microbiome studies. The high sparsity of these data and their compositional nature 86 

generate multiple problems in statistical analysis, including subcompositional 87 

incoherence, increase of false positive rates in differential abundance analyses and 88 

detection of spurious correlations 11. 89 

As a consequence, new approaches considering both compositionality and multiple 90 

correlations are needed. It is also important to point out the advantages of whole 91 

metagenome sequencing over metataxonomic studies, because the latter cannot be used 92 

to determine functionality and because they pose some difficulties at simultaneously 93 

analyzing different superkingdoms 12, which is necessary to account for the total 94 

variability of microbiomes and the interactions among their components. Different 95 

amplicons must be used to correctly classify Bacteria, Archaea, Protozoa and Fungi, 96 

increasing the cost of the studies and involving additional bias due to PCR 13. They pose 97 

the additional difficulty of a proper comparison between communities sequenced in 98 

different reactions with different primers. Nanopore sequencing offers a cost-efficient 99 



5 

sequencing strategy for metagenomics studies providing both taxonomical and functional 100 

information simultaneously and for microbes from all superkingdoms. This technology 101 

has been improved in recent years, allowing to perform taxonomic and functional 102 

assignments with an accuracy comparable to Illumina 14. 103 

The objective of this study was to characterize the taxonomical and functional 104 

composition of rumen microbiota using long sequence reads obtained with Nanopore 105 

technology, and their relationship with enteric methane emission.  106 

3 Results 107 

3.1 Cohort description 108 

Our cohort included 437 Holstein lactating cows sampled at 14 different herds from 109 

northern Spain (Cantabria, Euskadi, Navarra and Girona regions).  110 

3.2 Taxonomy of microbial composition 111 

After initial quality control, 6,394,671 reads with N50=4194 bp were classified in 3,921 112 

taxonomical features up to genus level. A filtering strategy was implemented to filter out 113 

low abundance microbes while keeping the core microbiome relevant for methane 114 

emissions. This filtering excluded 48,517 reads (<1%) which reduced the sparsity of the 115 

metagenome from 87% to 68%, although a large number of singleton and doubleton 116 

features remained (Figure 1A). The final core subcomposition included a total of 117 

6,318,344 reads, in 437 samples, classified in 1,240 taxonomical features: 967 known 118 

genera (722 bacteria, 13 archaea and 232 eukaryotes), and 273 that only reached family 119 

rank (i.e., Unclassified denomination). Overall, 503 families, 277 orders, 158 classes and 120 

86 different phyla (37 bacterial phyla, 3 archaeal phyla and 46 eukaryotic clades) were 121 

classified.  122 
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Predominant microorganisms in this core rumen subcomposition were bacteria (91.6% ± 123 

6.93 of total average RA) from Bacteroidetes, Firmicutes and Fibrobacteres (Figure 2), 124 

representing an average relative abundance (RA) of 63%, 16% and 5%, respectively. The 125 

Bacteroidetes fraction was majorly composed by Prevotella, and was the main 126 

representative genus in the total community (19.4% average RA), along with other 127 

Prevotellaceae members. The Firmicutes group included a large number of genera. The 128 

order of Clostridiales dominated in terms of RA, with Lachnospiraceae and 129 

Ruminococcaceae families being the most representative ones. The remaining phyla (34) 130 

from the Bacteria superkingdom represented 7.6% averaged RA of the core metagenome. 131 

Eukaryotes represented a total average RA of 8.2% (±6.95) of the core subcomposition. 132 

Predominant eukaryotic clades were those included in the SAR supergroup 133 

(Stramenopiles-Alveolata-Rhizaria) 15, accounting for 6% of total average RA, followed 134 

by Fungi (1.3% of total average RA). Alveolata clade was the most abundant among the 135 

eukaryotes, with a high representation of unclassified Ophryoscolecidae, Stentor and 136 

Paramecium. Archaea representation in the core subcomposition (0.24% ± 0.25 of total 137 

average RA) consisted mostly of Methanomicrobia, Methanobacteria and 138 

Thermoplasmata members. Yet, a large number of reads could not be assigned to a known 139 

genus. The relative abundance per animal of the most relevant taxonomic groups is 140 

depicted in Figure 3. 141 

3.3 Functionality of microbial composition 142 

A total of 30,326,550 reads were assigned to KEGGs. After quality control and 143 

prevalence filtering, a total of 84,219 reads (0,28%) were removed and the sparsity was 144 

reduced from 72% to 39% (Figure 1B). The final KEGG table was composed by 145 

30,145,459 reads from 437 samples, classified in 6,644 KEGGs. These KEGG pathways 146 

and BRITE hierarchies 16–18 were represented in a Treemap according to their average 147 
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RA (Figure 4). Most of the rumen metagenome functions were in pathways that represent 148 

the metabolism of carbohydrate, amino acid and other biological compounds, as well as 149 

of energy metabolism. In addition, functions involved in cellular generic processes (cell 150 

growth, transport, or genetic and environmental information processing) were also 151 

present. KEGG BRITE classification showed a high presence of proteins involved in 152 

cellular processes and metabolism. 153 

3.4 Beta-diversity and PERMANOVA analysis 154 

Beta-diversity was represented in PCA between samples at five different taxonomic 155 

levels (phylum, class, order, family and genus), as well as with KEGG, using centered 156 

log-ratio (CLR) transformed datasets. Then a permutational analysis of variance 157 

(PERMANOVA) was implemented (Gloor et al., 2017), sequentially adding the effect of 158 

farm-batch (B), stage of lactation (SL), number of lactation (NL) and level of methane 159 

emissions (CH4) discretized in four groups (LOW, L-MID, H-MID and HIGH). The 160 

visualization did not show a clear visual clustering of samples by methane emission levels 161 

(Figure 5). However, a generalized additive model (GAM) smooth fitting allowed 162 

visualizing non-linear distribution patterns of the microbial samples according to CH4 163 

emissions inside the ordination at all taxonomic levels. The non-linear pattern was more 164 

evident at the phylum, class and genus levels, although the proportion of methane 165 

variability explained was low (≃4.8% according to GAM model fitting). No relevant 166 

differences were visually appreciated using the KEGG information. Nonetheless, some 167 

differences in the overall rumen microbiome composition between animals with different 168 

methane emissions were evidenced by the PERMANOVA analysis, both for taxonomy 169 

and functionality (Table 1). The results showed significant differences for the centroid 170 

distance between methane emission groups at every taxonomic level and also for KEGGs, 171 

but they explained a low percentage of total variance (0.01 < R2 < 0.02).  172 
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3.5 Rumen microbes associated to CH4 emissions 173 

The effect of taxonomical features on methane emission levels was evaluated through 174 

differential abundance analysis. Thirty-three genera were found as differentially abundant 175 

(DA) (Padj <0.05) between LOW and HIGH emitters (Figure 6A), while 15 genera 176 

showed DA between LOW and H-MID emitters and one genus between LOW and L-177 

MID emitters (Supplementary Data 1). Note that 13 out of the 15 genera showing DA 178 

(Padj <0.05) between LOW and H-MID groups were also significant in the LOW vs HIGH 179 

contrast, but not in LOW vs L-MID contrast, indicating gradual abundance change from 180 

low to high emitters. Accounting for all contrasts and duplicated genera, 36 DA genera 181 

resulted significant. We classified these genera according to in which group they resulted 182 

overabundant (OA). Thus, 10 of them were more abundant in the LOW group (LOW-183 

OA) and 1 in the L-MID group. The remaining 25 genera were OA in the HIGH groups 184 

(HIGH-OA): HIGH (12), HIGH and H-MID (11) or H-MID (2). HIGH-OA genera 185 

represented an overall RA of 4.15%, whereas LOW-OA genera accounted for 0.25% of 186 

total RA. The two genera over-abundant in H-MID were Dictyostelium and Unclassified 187 

Eimeriidae, and the one associated to L-MID was classified as Candidatus Izimaplasma 188 

(Tenericutes). The log2FC values ranged between 0.7 and -0.7 in genera showing DA for 189 

methane emission levels, highlighting that the differences between groups were moderate. 190 

Overall, DA results indicate that taxa associated to higher methane levels belong to the 191 

Eukaryota superkingdom, while those associated to lower emissions were bacteria. We 192 

found multiple Ciliophora genera associated to the HIGH group (mostly Parameciidae, 193 

Stentoridae and Pseudocohnilembidae members) but also Amoebozoa and some Fungi or 194 

Pseudo-fungi. Other bacterial genera associated to lower methane production were 195 

Hespellia, from Clostridiales, and Sutterella, an asaccharolytic genus from 196 

Betaproteobacteria. 197 
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3.6 Microbial gene function associated to CH4 emissions 198 

Differential abundance analysis was also performed for KEGG features on methane 199 

emission levels. A total of 192 KEGGs were DA between the LOW and HIGH emissions 200 

groups (Figure 6B). Differences were also found between the LOW and H-MID groups 201 

(Supplementary Data 1). As in the taxonomy dataset, some of the KEGGs presented 202 

significant DA in both LOW vs HIGH and LOW vs H-MID contrasts. Accounting for 203 

these duplicates and all the contrasts, 182 were over-abundant in the high emissions 204 

groups (HIGH-OA), whereas 97 KEGGs were over-abundant in low emissions groups 205 

(LOW-OA). The overall RA for HIGH-OA KEGGs was 2.31% and 0.64% for LOW-OA 206 

KEGGs. Of these, 13 HIGH-OA KEGGs and 28 LOW-OA KEGGs were assigned to 207 

metabolic pathways. No KEGGs from the ko00680 pathway were found as HIGH-OA. 208 

KEGGs related to inositol-phosphate metabolism (K00889, K01110, K18082 and 209 

K20279), starch and sucrose metabolism (K01203) or several lipid metabolism pathways 210 

were present in the HIGH-OA group. According to LOW-OA KEGGs, some of them 211 

were involved in volatile fatty acid (VFA) metabolism (e.g., K00209 enoyl-[acyl-carrier 212 

protein] reductase [EC:1.3.1.9], K01902 succinyl-CoA synthetase alpha subunit 213 

[EC:6.2.1.5] and K01682 aconitate hydratase 2 [EC:4.2.1.3]) and the K09251 putrescine 214 

aminotransferase [EC:2.6.1.82] related to putrescine and cadaverine degradation to 4-215 

amino-butanoate (GABA) or 2-oxoglutarate. Also, several KEGGs in the LOW-OA 216 

group were related to N metabolism (K00370 and K00371 nitrate reductase subunits 217 

[EC:1.7.5.1]), oxidative phosphorylation (K03885 NADH dehydrogenase [EC:1.6.99.3]) 218 

and to carbohydrate, lipid or vitamin metabolism pathways. The ko00680 KEGG K13788 219 

was also over-abundant in the LOW emissions group. 220 

3.7 Interaction networks 221 
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Interaction networks were built using the previous results in order to visualize the 222 

association between taxa and genes using pairwise correlations between features. 223 

Pairwise proportionality correlation coefficients (ρp) were calculated on the CLR-224 

transformed datasets for phylum, genus and KEGG features to avoid spurious correlations 225 

that can potentially surge in compositional data 19.  226 

The most relevant pairwise proportionalities between genera and between KEGGs were 227 

visualized as interaction networks, classifying features as associated to high methane 228 

emissions (HIGH), low methane emissions (LOW) or not associated to methane 229 

emissions (N/A), according to the results from the differential abundance analyses. The 230 

interaction networks for genera and KEGGs are shown in Figure 7 and Figure 8, 231 

respectively. 232 

Eukaryotes clustered together in the network with large representation of the SAR 233 

supergroup, and showed negative proportionality to Bacteria.  The genera that were 234 

associated to higher methane emissions belonged to the Eukaryota superkingdom 235 

(Ciliophora and Fungi), whereas Bacteria were associated to lower CH4 production. The 236 

strongest inverse proportionalities between both subpopulations connected several 237 

eukaryotes with Unclassified Veillonellaceae and Oribacterium (−0.64 < 𝜌𝑝 <  −0.53), 238 

i.e., microbiomes with lower abundance of Oribacterium or Veillonellaceae tend to 239 

present larger abundances of protozoa and Fungi, and were therefore associated to larger 240 

emissions. Unclassified microbes from Neocallimastigaceae, Oxytrichidae and 241 

Vibrionaceae families showed the highest centrality and a large connectivity degree.  242 

The functional network showed three main clusters that grouped KEGGs associated to 243 

HIGH methane level (cluster H), KEGGs not related to methane emissions (cluster N), 244 

and a small one including KEGGs associated to lower emissions (cluster L). Connections 245 
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between clusters were not symmetric: H cluster was connected to N cluster by inverse 246 

proportionalities between some of their components, but the L cluster appeared connected 247 

only to N cluster by direct proportionalities through non-clustered KEGGs. Also, most of 248 

the ko00680 KEGGs (i.e., directly involved in methanogenesis or participating in 249 

pathways leading to methanogenesis precursors) did not appear as differentially abundant 250 

between high-emission and low-emission cows. 251 

3.8 Taxonomy of genes 252 

A traceback of genes’ taxonomy was carried out, separately for ko00680 KEGGs and for 253 

DA KEGGs. Thirty out of the 85 ko00680 KEGGs were predominant in Archaea groups, 254 

one predominated in Eukaryota (K05979) and the rest were predominant in Bacteria 255 

(Figure 9). Although the RA distribution of these KEGGs was normally between 60% 256 

and 100% in the predominant superkingdom, 4 KEGGs were more evenly distributed 257 

between clades: K01007 and K00863 had a RA < 60% in Bacteria and showed RA > 30% 258 

in Eukaryota; K05979 was the KEGG predominating in Eukaryota, but with a RA near 259 

to 60% (38% in Bacteria and 12% in Archaea); and K14080 had a RA of 57% in Archaea 260 

and 43% in Bacteria.  Regarding the DA KEGGs, those from the LOW-OA group showed 261 

larger abundance in Bacteria, mostly in genera from Proteobacteria, Bacteroidetes and 262 

Firmicutes phyla. Different groups of bacteria also carried KEGGs from the HIGH-OA 263 

group although these KEGGs were more abundant in eukaryotes. The HIGH-OA KEGGs 264 

were mainly mapped to unclassified eukaryotes, but those which could be classified 265 

belonged majorly to Fungi and SAR supergroup (Figure 10). 266 

4 Discussion 267 

In this study we assessed the composition of the ruminal microbiota using long reads from 268 

Nanopore sequencing technology. We observed predominance of Bacteroidetes, 269 
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Firmicutes and Fibrobacteres in the rumen metagenome, as reported in previous studies 270 

8,20. Bacteroidetes and Firmicutes are common bacteria in all kind of ecosystems, 271 

including gut microbiota of multiple animals. The fraction of Bacteroidetes was mainly 272 

composed by Prevotella. This group includes anaerobic gram-negative bacteria involved 273 

in saccharolytic processes 21. Their large abundance in the digestive microbiota has been 274 

previously reported in ruminant 22–25 and monogastric species 26,27. A wide representation 275 

of polysaccharide fermenters is represented in the rumen communities 28. Fibrobacteres 276 

comprises a small group of cellulose-degrading bacteria usually present in ruminant 277 

digestive system 29. Eukaryotes also represented a relevant amount of the rumen core 278 

metagenome. This group has been reported to contribute up to 50% of total ruminal 279 

biomass 30. The SAR supergroup and Fungi were the most relevant ones 15. This group of 280 

Eukaryota is found in a wide variety of ruminants and pseudoruminants 31. Other 281 

eukaryotes included Stentor, aquatic free-living heterotricheans which can be particle 282 

filtrators or predators of other protozoa, and usually live symbiotically with some algae 283 

species 32,33. Also Paramecium are well-known ciliates which predate bacteria and other 284 

microorganisms, including protozoa 34. Archaeal fraction was mostly composed by strict 285 

methanogenic organisms from Methanomicrobia and Methanobacteria clades 35, but also 286 

included Thermoplasmata, which are methylotrophic-methanogenic acidophilic 287 

organisms 36. Gene Ontology associated found KEGGs to several metabolic functions as 288 

well as cellular processes. Additionally, pathways related to pathogenic activity were also 289 

present, in agreement with the RA of several genera that included some known pathogenic 290 

species. For instance, some species from genera such as Vibrio, Haemophilus, 291 

Trypanosoma or Staphylococcus, although not every species from these genera are 292 

pathogenic, but opportunistic or commensal organisms. In addition, pathogenic activity 293 
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presence in our dataset might be biased due to a larger representation of human related 294 

diseases in the databases. 295 

The SqueezeMeta software applies a stringent threshold for taxonomy classification to 296 

ensure that reads have a large probability of being correctly classified, at expense of a 297 

large number of reads remaining unclassified, which explains the larger number of reads 298 

assigned to a known KEGG than to taxa. Despite this strict requirement, this composition 299 

is consistent with other populations reported before 2,3,20. Most studies to date report large 300 

abundance of Bacteroidetes and Firmicutes, with Prevotella spp. as the most prevalent 301 

genus. Some minor discrepancies with other studies were observed in the RA of the core 302 

subcomposition. For example, Wallace et al. 20 showed a higher presence of 303 

Proteobacteria and Euryarchaeota, although using amplicons instead of whole 304 

metagenome sequencing. 305 

We performed several statistical approaches to infer association between the rumen 306 

metagenome and methane emissions. Our approach evidenced the difficulty of inferring 307 

a phenotypic association between microbiome composition and methane production, with 308 

environmental factors covering the statistical signal. However, our compositional 309 

approach showed a meaningful relationship between the microbiome composition and 310 

methane emissions, emphasizing the role of the different phyla, with Eukaryota 311 

superkingdom being of particular relevance. Microbial networks contributed to detect 312 

genes associated to ko00680 pathway and elucidated some methane emission dynamics. 313 

These interactions configure the level of methane production and must be considered 314 

jointly at modulating the rumen microbiome. Former studies already revealed the link 315 

between ruminal microbiota and methane production. For instances, Difford et al. 3 316 

observed clustering of high and low methane emitters within bacterial and archaeal 317 

subcommunities. Danielsson et al. 37 also found clustering for low and high methane 318 
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emitters within bacterial rumen subcompositions. Wallace et al. 20 found that a core set 319 

of rumen microbiome was capable of explaining up to 30% of methane emissions 320 

variability, this set mostly formed by prokaryotes. The aforementioned studies used 321 

different methodologies, like amplicon analysis and OTU clustering, contrasting with our 322 

full-metagenome genus-clustering protocol, which increases the information entropy. 323 

Stewart et al. 38 used Nanopore sequencing and found significant differences between low 324 

and high-methane emitter sheep, with clear clustering between groups but using a lower 325 

number of microbial groups, and animals in the same farm with similar management 326 

practices.  327 

The DA analysis allowed us to define specific taxa that were different between high and 328 

low methane emitters. Ciliates, fungi and pseudo-fungi were more abundant in cows with 329 

higher levels of methane emissions. Microbes associated to lower methane emissions 330 

were saccharolytic members of class Gammaproteobacteria (Anaerobiospirillum 39, 331 

Vibrio 40 or Pseudoalteromonas 41), as well as Negativicutes genera from Veillonellaceae 332 

(Dialister, Megasphaera) and Selenomonadaceae (Mitsuokella). Dialister produce 333 

succinate decarboxylation, and Megasphaera ferment carbohydrate and lactate 42, while 334 

Mitsuokella are saccharolytic bacteria 43. Interestingly, no taxonomic group of 335 

methanogenic archaea showed association with methane emissions. The relationship 336 

between Archaea and methane production in rumen is not consistent in the literature. 337 

Some authors reported either individual relationships between methane emissions and 338 

some archaeal species 37,44 or correlations between overall archaeal gene abundance and 339 

methane emissions level 45,46. However, other studies showed no relationship between 340 

methanogenic Archaea and methane 44,47. Ciliates play a central role in the abundance of 341 

archaea, as many are known to symbiotically engulf a variety of methanogenic archaea 342 

48. The association between protozoa abundance in rumen and methane emissions is well 343 



15 

known, as protozoa have an impact in the archaeal population structure 49 and some 344 

protozoa defaunation experiments, both in vitro 50,51 and in vivo 52,53, have demonstrated 345 

a reduction in methane emissions 54. This may explain the relevant association estimated 346 

between ciliates and fungi with methane. 347 

Despite this association between methane and large taxonomic groups, it is of interest to 348 

infer which specific clades and microbial genes are participating directly or indirectly in 349 

methanogenesis. This may help at disentangling the role of the different microbes in feed 350 

fermentation and methanogenesis. Microbial networks contributed to elucidate methane 351 

emission dynamics and associate genes to pathways indirectly related to methane 352 

metabolism. They clearly clustered eukaryotes together, with many of them being 353 

significantly more abundant in the high emissions group. Other authors have already 354 

established a positive correlation between fungi abundance and methane emissions 8, as 355 

well as a close interdependence of protists and fungi. Although correlation between 356 

methane emissions and protozoa abundances is still a matter of discussion 45,53, current 357 

meta analyses point to a linear relationship between protozoan numbers and methane 358 

emissions (r=0.96) 55. Among eukaryotes, anaerobic protozoa and some Chytridiomycota 359 

produce H2 in their hydrogenosomes 56 (e.g. Neocallimastix sp.). These organelles supply 360 

endosymbiotic methanogenic archaea with substrate for methane production and provide 361 

protection against oxygen toxicity 30,48. Methanogenic taxa and their enzymes were not 362 

highly represented in the high-emissions cluster. The relative abundance of archaea in the 363 

rumen is low compared to eukaryotes and bacteria. However, they are tightly linked to 364 

ciliate protozoa and fungi. Free-living methanogens represent a low-abundant population 365 

55, and CH4 biosynthesis might be more influenced by methanogens engulfed by protozoa, 366 

mostly ciliates 48. Hence, a larger methanogenesis activity is expected to be correlated 367 

with a larger abundance of eukaryotes which are more abundant and better represented in 368 
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the network than archaea. Furthermore, lysis of archaea cell walls often requires specific 369 

protocols during DNA extraction, and they might be under-represented 57 in metagenomic 370 

studies, including this experiment. This could partially explain the lack of association 371 

between archaea abundance and methane in some previous studies 10. On the other hand, 372 

the ruminotype in low-emissions animals has more abundance of Proteobacteria and 373 

Firmicutes genera. Other authors also reported higher abundances of these bacterial phyla 374 

in low methane emissions animals 8. Also, lactate- and succinate-producers have been 375 

reported to be more abundant in low-emitters 58, supporting the higher abundance of 376 

Anaerobiospirillum or Megasphaera in LOW animals. 377 

According to microbial genes, we firstly classified KEGGs according to their presence or 378 

absence in ko00680 pathway (methane metabolism), as a way to evaluate their direct 379 

involvement in methanogenesis or else their participation in pathways leading to 380 

biosynthesis of precursor compounds. Although we found several ko00680 KEGGs 381 

which are presumably involved in the biosynthesis of methanogenesis precursors, most 382 

of them were not associated to methane emissions (i.e., not differentially abundant 383 

between methane groups), as it can be visualized in the KEGG network. The taxonomy 384 

distribution of these KEGGs showed that most of them are mainly present in bacteria or 385 

eukaryotes and might be functioning in metabolic pathways not related with 386 

methanogenesis. For instance, some of the KEGGs inside the methane metabolism 387 

pathway can also be involved in glycine, serine and threonine metabolism (e.g. K00058, 388 

K00831, K01079 and K00600), pyruvate and propanoate metabolism (e.g. K00625 and 389 

K13788), glycolysis (e.g. K01689, K15633, K01624 and K02446) or anaerobic carbon 390 

fixation (e.g. K00198) 16–18. Furthermore, the presence of genes does not mean that they 391 

are transcribed. In a metagenomic analysis, all present genes are sequenced regardless 392 

whether they are transcribed or not. Also, bacterial epigenetic mechanisms affected by 393 
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the animal diet could play a role in this gene expression 59. Another group of ko00680 394 

KEGGs is exclusive from Archaea, but the under-representation of this clade in our 395 

dataset might obscure statistical significance.   396 

Since no methanogenesis KEGGs were detected as associated to methane emissions, a 397 

deeper evaluation of individual DA genes allowed us to find some KEGGs which could 398 

be involved in the biosynthesis of methanogenesis precursors, or else influence the 399 

abundance of methanogenic archaea. 400 

We found some KEGGs which could be indirectly related with methanogenesis through 401 

biosynthesis of precursor compounds.  K00209 and K13788 are involved in butyrate and 402 

propanoate biosynthesis, being essentially carried by primary fermentative bacteria 60. 403 

Their relationship with methanogenesis is indicated by the fact that VFA can be used by 404 

secondary fermenters to produce methanogenesis precursors such as H2, CO2, acetate and 405 

formate 61,62. In fact, K13788 is a phosphate acetyltransferase [EC:2.3.1.8] that can be 406 

involved in the biosynthesis of acetate from acetyl-CoA 63. Also, K09251 is involved in 407 

biosynthesis of GABA and 2-oxoglutarate. GABA has been related with a VFA 408 

concentration increment 64, while 2-oxoacid compounds can be used by archaea has been 409 

linked to synthesize coenzyme M and coenzyme B, which are essential in methane 410 

production in methanogens 65. However, all these KEGGs were observed as over-411 

abundant in LOW methane group, suggesting a strong presence of fermentative bacteria 412 

in these animals, not directly correlated with methane production.  413 

Other KEGGs that were over-abundant in LOW emitters might offer an explanation to 414 

the lower presence of active methanogenesis processes through competence mechanisms. 415 

LOW-OA KEGGs K01682, K01902 and, once more, K13788, are involved in citrate 416 

cycle and pyruvate metabolism, related to respiration. Also, KEGGs K00370 and K00371 417 
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are nitrate oxidoreductase subunits having a role in anaerobic respiration using nitrate as 418 

electron acceptor. This enzyme uses nitrate as electron acceptor, a process that has been 419 

reported as competitive inhibitor of methanogenesis 66,67 and nitrate supplementation has 420 

proven a useful strategy to mitigate methane emissions 68. Furthermore, nitrite produced 421 

by the nitrate-reductases has a known antimicrobial effect and toxicity to animal cells 69–422 

71, which might as well reduce the proportion of free archaea in LOW animals, although 423 

toxicity to archaea must be further studied 72. However, the role of ciliates and fungi must 424 

be clarified, as their abundance is also lower in LOW emitters. We hypothesize that the 425 

predatory nature of these eukaryotes might be a control mechanism for bacterial 426 

populations, and their lower relative abundance in LOW animals might allow overgrowth 427 

of related bacteria. Nevertheless, we cannot discard the possibility that a higher 428 

proportion of facultative anaerobes using nitrate as acceptor might affect ciliate 429 

populations by toxicity, thus reducing the presence of endosymbiotic methanogenic 430 

archaea.  431 

5 Conclusions 432 

This study grants a huge amount of metagenomic information, since we generated the 433 

largest publicly-available ruminal metagenomic dataset sequenced using ONT long reads 434 

approach. The complexity of the rumen microbiome and the compositional nature of their 435 

sequencing data require proper statistical methods to allow disentangling the role of 436 

microbes and their genes in host complex traits such as methane emissions. The full 437 

metagenome compositional analysis used in this study provided novel insights in the 438 

association between the microbiota and CH4 emissions through differential abundance 439 

analysis, pairwise correlation and interaction networks.  440 
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Our approach evidenced a phenotypic association between microbiome composition and 441 

methane production, regardless of the challenges posed by the microbiome complexity 442 

and the compositional nature of the data. This association is mainly driven by the relative 443 

abundance of ciliates and fungi, which carry host specific genetic functions providing 444 

substrate to the methanogenic archaea. On the other side, we detected some bacterial 445 

groups that performed a more efficient feed digestion, leaving less hydrogen available to 446 

archaea and hence associated to lower methane emissions. Further studies must be carried 447 

out to determine proper nutritional and breeding strategies that modulate the microbiome 448 

composition towards lower emissions and larger feed efficiency. 449 

6 Methods 450 

6.1 Animal housing and feeding 451 

The animals received total mixed ration (TMR) diet differently formulated on each 452 

individual herd, although most of them were based on maize and grass silage plus 453 

concentrate. Cows were fed ad-libitum, with concentrate supplementation in the 454 

automatic milking station (AMS) during milking. 455 

6.2 Methane measuring 456 

 Methane concentration was individually recorded through breath sampling during each 457 

cow visit to the AMS (3-7 times daily) in a period of 2-3 weeks. Eructation peaks were 458 

recorded using a non-dispersive infrared methane detector (Guardian NG infrared gas 459 

monitor, Edinburgh Sensors, Scotland, UK) as described by Rey et al. (2019) 73. Each 460 

cow’s peaks were then averaged in order to get a unique methane record per cow, as 461 

described in López-Paredes et al. (2020) 74. Animals were distributed in groups according 462 

to number of lactation (NL) and stage of lactation (SL) criteria. Furthermore, quartile-463 
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based qualitative categories were created for CH4 recordings (ppm), resulting in a 464 

methane factor (CH4) with 4 levels (LOW, L-MID, H-MID and HIGH methane 465 

emissions). 466 

6.3 Ruminal content sampling 467 

Ruminal fluid was sampled using an oral tube (18 mm diameter and 160 mm long) 468 

connected to a 1000 mL Erlenmeyer flask and continued to a mechanical pump 469 

(Vacubrand ME 2SI, Wertheim, Germany), with all the material contacting the cow being 470 

carefully cleaned between cows. Each animal was moved to an individual stall for this 471 

process. The solid fraction of the ruminal content was discarded by filtering through 4 472 

layers of sterile cheesecloth, while the outcoming liquid fraction was instantly frozen 473 

using liquid nitrogen (LN2) and then stored at -80 °C until DNA extraction. 474 

6.4 DNA extraction and sequencing 475 

 Genomic DNA was extracted from 250 µl of each thawed and homogenized ruminal 476 

content sample, using the “DNeasy Power Soil” commercial kit (QIAGEN, Valencia, CA, 477 

USA). Qubit fluorometer (ThermoFisher Scientific, 150 Waltham, MA, USA) and 478 

Nanodrop ND-1000 UV/Vis spectrophotometer (Nanodrop Technologies Inc., DE, USA) 479 

were used to measure DNA concentration and purity. 260/280 and 260/230 ratios were 480 

around 1.8 and 2.0, respectively. Oxford Nanopore Technologies (ONT) SQK-LSK109 481 

Ligation Sequencing kit was used for multiplexed sequencing in MinION automatic 482 

sequencer. The 1D Native barcoding ONT kit (EXP-NBD104 or EXP-NBD114) was used 483 

for multiplexing the samples, pooling barcoded DNA from 12 samples for each run. 484 

Pooling was done using a 1.5 ml DNA LoBind tube to perform adapter ligation and 485 

sequenced using a R9.4.1 flow cell. 486 



21 

6.5 Bioinformatics 487 

Guppy toolkit (ONT) was used for basecalling. A quality control was then applied 488 

removing sequences with QS<7 and length<150 bp. Sequence analysis was performed 489 

using SqueezeMeta (SQM) pipeline for long reads 75, which performs Diamond Blastx 490 

against GenBank nr taxonomic database and against COG and KEGG functional 491 

databases, then identifying and annotating ORFs using the lca (last common ancestor) 492 

method for taxonomy and the fun3 algorithm for functional annotation (based on e-value 493 

and identity scores). This tool is specifically designed to process long reads from ONT. 494 

49,718,901 reads were processed in Blastx by SQM longreads pipeline. Blastx mapped 495 

25,750,755 reads (51.79%) to taxonomy (NCBI-nr database) or function (KEGG 496 

database). All sequences mapped as non-microbial (i.e., virus, animals and plants) were 497 

discarded. Microbial sequences were then filtered by prevalence to reduce data sparsity 498 

and sequencing errors (Supplementary Data 2). A first estimation of sample sparsity and 499 

reads distribution was assessed using R. Two animals were then withdrawn from the 500 

filtered dataset, one due to low read coverage and other due to lack of host information, 501 

leaving 437 animals in the final dataset. 502 

Genera were divided into superkingdom groups (Archaea, Bacteria or Eukaryota) and 503 

KEGGs were sorted by their involvement in methane metabolism (MP): KEGGs included 504 

in the KEGG orthology pathway ko00680 (Methane metabolism) were labeled as 505 

“ko00680”, while the rest were identified as “Other”.  506 

6.6 Compositional data 507 
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 Considering the compositional nature of metagenomic data, a CLR method 76 was 508 

applied using the unweighted option of the CLR function from the easyCODA R package 509 

77 as follows:   510 

𝐱𝐜𝐥𝐫 =  [𝑙𝑜𝑔 (𝑥1/𝐺(𝑥)), 𝑙𝑜𝑔 (𝑥2/𝐺(𝑥)) … 𝑙𝑜𝑔 (𝑥𝐷/𝐺(𝑥))], 511 

with 𝐺(𝑥) =  √𝑥1 ∗ 𝑥2 ∗ … ∗ 𝑥𝐷
𝐷 .  512 

Being x = [𝑥1, 𝑥2,…, 𝑥𝐷]  a vector of counted features (taxa or KEGGs) in one sample and 513 

G(x) the geometric mean of x. Count zero values in the initial data frame were imputed 514 

through the Geometric Bayesian Multiplicative (GBM) procedure, using the 515 

zCompositions R package 78 cmultRepl function, so that logarithms could be computed. 516 

6.7 Beta-diversity and PERMANOVA analysis 517 

The CLR-transformed data (at phylum, class, order, family, genus and KEGG levels) 518 

were used to explore beta-diversity in the samples through PCA using the prcomp 519 

function in R. Fitted smooth surface of methane emissions corrected by SL and NL was 520 

included for principal components 1 and 2 using ordisurf function from the vegan R 521 

package 79. A generalized additive model smooth fitting (GAM) was used in order to 522 

elucidate non-linear distribution of samples in PCA according to methane emissions. 523 

Differences between centroid distances using methane as grouping variable (CH4) were 524 

determined through Permutational Multivariate Analysis of Variance (PERMANOVA) 525 

80,81 following this model and using the matrix of Aitchison distances between samples 526 

(i.e., the Euclidean distance on CLR-transformed data) as input variable: 527 

𝐷𝑗𝑘𝑙𝑛𝑖 = 𝜇 + 𝐵𝑗 + 𝑆𝐿𝑘 + 𝑁𝐿𝑙 + 𝐶𝐻4𝑛 + 𝑒𝑗𝑘𝑙𝑛𝑖  528 
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with 𝐵𝑗 being the farm-batch effect (j = 24 levels), 𝑆𝐿𝑘 being the stage of lactation at the 529 

day of sampling (k = 3 levels), 𝑁𝐿𝑙 the number of lactation (l = 2 levels) and 𝐶𝐻4𝑛 the 530 

methane emission level (n = 4 levels: LOW, L-MID, H-MID, HIGH), and 𝑒𝑗𝑘𝑙𝑛𝑖 was the 531 

corresponding residual term. 532 

6.8 Association between microbiota and methane production 533 

Differential abundance of genera and KEGGs between samples regarding the different 534 

methane emissions levels was addressed through linear regression using Limma 82. Count 535 

normalization and log-transformation were addressed using CLR-transformed data as 536 

inputs. P-values were adjusted by Benjamini-Hochberg method, to control false discovery 537 

rate. Differential abundance threshold was set to | log2FC | ≥ 0.5 and the adjusted 538 

significance threshold was set to α = 0.05. 539 

6.9 Pairwise proportionality analysis 540 

Pairwise correlations between phyla, genera and KEGGs were calculated as described in 541 

the propr R package 83. Proportionality coefficient ρp 
84 under CLR data transformation 542 

was chosen. Thresholds were selected according to two conditions: 1) representing the 543 

maximum number of proportionalities avoiding computational issues; 2) FDR lower than 544 

1%. Used threshold were |ρp| ≥ 0.4 for genera proportionalities and |ρp| ≥ 0.7 for KEGG 545 

proportionalities. 546 

6.10 Microbial networks 547 

Microbial networks for taxonomy (at the genus level) and functionality were built from 548 

the proportionality matrices described above. Input edges were defined from the 549 

cytoscape function in propr package in R, which converts a propr object into a data frame 550 

of node connections compatible with Cytoscape software (v. 3.8.0). Results from the DA 551 
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analyses were used to associate each feature (node) to high or low methane emissions 552 

levels. Significantly over-abundant genera and KEGGs in the low methane emitters group 553 

(i.e., more abundant in LOW than in HIGH or H-MID groups) were designated as LOW-554 

associated, while those contrary over-abundant in high methane emitters were appointed 555 

as HIGH-associated. Non-DA features were classified as N/A (not associated). In 556 

addition, SK and MP factors were included as node attributes for genera and KEGGs, 557 

respectively. For graph visualization, Kamada-Kawai algorithm (Edge-weighted spring 558 

embedded layout) was set 85, using ρp coefficient as force parameter.  559 
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16 Tables 834 

Table 1: F statistic and P-values for stage of lactation (SL), number of lactation (NL) and 835 

methane emission (CH4) variables (added sequentially) and P-values from 836 

PERMANOVA of the entire dataset (i.e., including all superkingdoms). 837 

  F statistic R2 P-value 

Phylum 

SL 6.1 0.014 <0.01* 

NL 1.4 0.003 0.11 

CH4 2.8 0.019 <0.01* 

Class 

SL 5.6 0.013 <0.01* 

NL 1.5 0.003 0.07 

CH4 2.4 0.016 <0.01* 

Order 

SL 5.4 0.012 <0.01* 

NL 1.7 0.004 0.03* 

CH4 2.3 0.016 <0.01* 

Family 

SL 4.9 0.011 <0.01* 

NL 1.6 0.004 0.03* 

CH4 2.1 0.014 <0.01* 

Genus 

SL 4.0 0.009 <0.01* 

NL 1.4 0.003 0.03* 

CH4 1.7 0.012 <0.01* 

KEGG 

SL 5.3 0.012 <0.01* 

NL 2.0 0.004 0.02* 

CH4 2.4 0.016 <0.01* 

*P-value < 0.05 838 

  839 
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 840 

17 Figure captions 841 

Figure 1: Feature counts distribution. Features with zero counts, singletons, doubletons 842 

and 3 or more counts per sample in the final taxonomy table (A) and in the final 843 

functionality table (B). 844 

Figure 2: Average relative abundance of genera. A) All features, including those 845 

classified only to family level (i.e., unclassified genera); B) Features classified to genus 846 

level (unclassified genera removed). 847 

Figure 3: Phyla relative abundance per sample. Samples are sorted from lowest to 848 

highest methane emissions. 849 

Figure 4: Metagenome functionality. TreeMap distribution of functionality abundances 850 

classified as KEGG pathways (left) and BRITE hierarchies (right) associated with core 851 

KEGG subcomposition. 852 

Figure 5. Fitted surface representation of Principal Component Analysis. Dots 853 

represent the samples using euclidean distances of CLR-transformed taxa abundances, 854 

colored by CH4 levels. CH4 emissions (ppm) corrected by number and stage of lactation 855 

are represented as smooth fitting following a generalized additive model (GAM) (‒). Dev. 856 

Explained: variability explained by GAM; P-val: approximate significance of the smooth 857 

terms being zero (α=0.05). 858 

Figure 6. Volcano plots. Volcano plot representing the differential abundance (DA) of 859 

genera (A) and KEGGs (B) between LOW and HIGH groups from limma. Significance 860 

thresholds were established at adj.P-val = 0.05 and log2FC = ±0.5. • Significant features 861 

with DA above the fold change (FC) threshold. • Significant features with DA below the 862 



36 

FC threshold. • Non-significant features with DA above the FC threshold. • Non-863 

significant features with DA below the FC threshold. 864 

Figure 7. Taxonomy interaction network. Pairwise proportionalities between genera 865 

with |ρp| ≥ 0.4. Superkingdom: △ Archaea; ▢ Bacteria; ◯ Eukaryota. / CH4 association: 866 

▬ HIGH CH4; ▬ LOW CH4; ▬ No CH4 associated. / Proportionality sense: ↔ direct (> 867 

0); ↔ inverse (< 0). 868 

Figure 8. Functionality interaction network. Presented pairwise proportionalities 869 

between KEGGs with |ρp| ≥ 0.7/ Participation in methane metabolism: ◻ ko00680 (direct 870 

or indirect part.); ◯ Other (no part.) / CH4 association: ▬ HIGH CH4; ▬ LOW CH4; ▬ 871 

No CH4 associated. / Proportionality sense: ↔ direct (> 0); ↔ inverse (< 0). Clusters are 872 

indicated as L (KEGGs associated to LOW methane), H (KEGGs associated to HIGH 873 

methane) and N (KEGGs not related to methane emissions). 874 

Figure 9: Taxonomy of ko00680 KEGGs. Relative abundance of KEGGs present in 875 

ko00680 pathway for each phylum in Archaea (▬), Bacteria (▬) and Eukaryota (▬) 876 

superkingdoms. Relative abundance of each ko00680-KEGG respect to the sum of reads 877 

mapped to all ko00680-KEGGs. 878 

Figure 10. Taxonomic distribution of DA KEGGs. Red density scale represents 879 

KEGGs over-abundant (OA) in HIGH emitters; Blue density scale represents KEGGs OA 880 

in LOW emitters. More intense colors mean a higher number of reads assigned to one 881 

phylum. Superkingdom: • Archaea; • Bacteria; • Eukaryota. 882 
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