
GigaScience
 

Fungal and ciliate protozoa are the main rumen microbes associated with methane
emissions in dairy cattle

--Manuscript Draft--
 

Manuscript Number: GIGA-D-21-00239R2

Full Title: Fungal and ciliate protozoa are the main rumen microbes associated with methane
emissions in dairy cattle

Article Type: Research

Funding Information: Ministerio de Economía y Competitividad
(RTA2015-00022-C03-02)

Not applicable

INIA: Instituto Nacional de Investigacion y
Tecnologia Agraria y Alimentaria
(reference FPI-SGIT2016-06)

Mr Adrián López-García

Ministerio de Ciencia, Innovación y
Universidades
(RTI2018-096487-RC33)

Not applicable

Abstract: Background: Mitigating the effects of global warming has become the main challenge
for humanity in the last decades. Livestock farming contributes to greenhouse gas
emissions, with an important output of methane from enteric fermentation processes,
mostly in ruminants. As ruminal microbiota is directly involved in digestive fermentation
processes and methane biosynthesis, understanding the ecological relationships
between rumen microorganisms and their active metabolic pathways is essential for
reducing emissions. This study analyzed whole rumen metagenome using long reads
and considering its compositional nature in order to disentangle the role of rumen
microbes in methane emissions.
Results: The beta-diversity analyses suggested an association between methane
production and overall microbiota composition (0.01 < R  2  < 0.02). Differential
abundance analysis identified 36 genera and 279 KEGGs as significantly associated to
methane production (  P  adj  <0.05). Those genera associated to high methane
production were Eukaryota from Alveolata and Fungi clades, while Bacteria were
associated to low methane emissions. The genus-level association network showed
two clusters grouping Eukaryota and Bacteria, respectively. Regarding microbial gene
functions, 41 KEGGs resulted to be differentially abundant between low and high
emission animals, and were mainly involved in metabolic pathways. No KEGGs
included in the methane metabolism pathway (ko00680) were detected as associated
to high methane emissions. The KEGG network showed three clusters grouping
KEGGs associated to high emissions, low emissions and not differentially abundant in
either of them. A deeper analysis of the differentially abundant KEGGs revealed that
genes related with anaerobic respiration through nitrate degradation were more
abundant in low emissions animals.
Conclusions: Methane emissions are largely associated to the relative abundance of
ciliate and fungi. The role of nitrate electron acceptors can be particularly important as
this respiration mechanism directly competes with methanogenesis. Therefore, whole
metagenome sequencing is necessary to jointly consider relative abundance of
Bacteria, Archaea and Eukaryota in the statistical analyses. Nutritional and genetic
strategies to reduce CH  4  emissions should focus on reducing the relative abundance
of Alveolata and Fungi in the rumen. This experiment has generated the largest ONT
ruminal metagenomic dataset currently available.
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Response to Reviewers: herewith, we re-submit our manuscript entitled “FUNGAL AND CILIATE PROTOZOA
ARE THE MAIN RUMEN MICROBES ASSOCIATED WITH METHANE EMISSIONS IN
DAIRY CATTLE”, to be considered for publication in GigaScience.

The manuscript was previously submitted to GigaScience with manuscript ID: GIGA-D-
21-00239. The manuscript was reviewed by three reviewers. Two of them
recommended acceptance, whereas only one rejection. Unfortunately, the final
decision was rejection. However, you kindly opened the door for a resubmission of the
manuscript if we could address this reviewer’s concerns in a full cover letter.

Hence, we took this opportunity and resubmit the manuscript explaining that we
strongly disagree with the reasons given by the reviewer that led to rejection of the
manuscript:

1)the reviewer stated that the way we annotated genes is not correct. He said "I do not
think it is at all clear that a DIAMOND search against the NR database (which is full of
errors) will accurately reconstruct rumen taxonomy, nor do I believe that a DIAMOND
search against KEGG or COG will reconstruct rumen function". And he provided some
reference as example on how to properly do the search. Our method is actually the
same procedure as the one used in the references he provided as an example on how
to do this (which he actually coauthored): (https://www.nature.com/articles/s41467-018-
03317-6). In this manuscript they stated: "Proteins were predicted using Prodigal
(v.2.6.3) with option ‘-p meta’. Using DIAMOND, each protein was searched against
KEGG (downloaded on 15 September 2018), UniRef100, UniRef90 and UniRef50
(downloaded 3 October 2018), and CAZy (dbCAN2 version, 31 July 2018). The protein
predictions were clustered by CD-HIT68(v.4.7) at 100%, 90% and 50% identity,
mirroring similar methods at UniRef.".
The reviewer assumed that the pipeline is not correct, but it actually follows the same
procedure as the one cited by the reviewer as reference. The reviewer did not take the
time to read how our pipeline works, which is fully described elsewhere: e.g.
https://www.frontiersin.org/articles/10.3389/fmicb.2018.03349/full,
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-020-03703-2.
Detailed descriptions can be also found in the manual
(https://github.com/jtamames/SqueezeMeta/blob/master/SqueezeMeta_manual_v1.4.0.
pdf).

2)The second concern of the reviewer was: "The data presented directly contradict
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previous results (e.g.
https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-015-2032-0) and so
the authors need to ensure they are sound." The manuscript he provided used results
based on 16S and 18S RNA amplicons using abundances from qPCR. I'm not going to
give details on how troublesome using PCR products from different amplicons can be
at comparing bacteria, archaea and protozoa. His manuscript also used the
GREENGENES database which has not been properly updated in the last decade. On
the other hand, our study is free from possible bias caused by PCR, because we are
using a metagenomic approach which is PCR free, and can properly compare relative
abundances of bacteria and eukaryotes. Our results are in agreement with other
studies that do not find a clear relationship between methane emissions and archaea
relative abundance in the rumen (e.g.  Shi W et al. 2014 Methane yield phenotypes
linked to differential gene expression in the sheep rumen microbiome. Genome Res.
2014; doi: 10.1101/gr.168245.113. and Aguinaga Casañas MA, et al 2015. Methyl-
coenzyme M reductase A as an indicator to estimate methane production from dairy
cows. J Dairy Sci. 2015; doi: 10.3168/jds.2015-9310).
However, it must be pointed out that not-significant association does not imply absence
of association, and therefore our results are not in contradiction with the reference
provided by the reviewer. Besides, our results are in agreement with many other
studies that reported an important role of fungi and protozoa with methane emissions,
which we cited in our manuscript. For instances:
-Newbold CJ, et al. 2015 The role of ciliate protozoa in the rumen. Front Microbiol.
2015; doi:678 10.3389/fmicb.2015.01313.
-Williams AG and Coleman GS. The Rumen Protozoa. New York, NY: Springer New
York;
and also Williams CL, et al. 2020. Rumen Protozoa Play a Significant Role in Fungal
Predation and Plant Carbohydrate Breakdown. Front. Microbiol. 11:720. doi:
10.3389/fmicb.2020.00720 (actually not cited in the manuscript).
Thus, our study does not contradict previous results, not even those from the reviewer,
and are actually in agreement with many other studies.

3)Finally, Dr. Watson suggested in his review that we should use some specific rumen
microbiome gene catalogues. Interestingly, these reference databases were built by
the reviewer and his collaborators. We believe this may incur in some conflict of
interest at evaluating the manuscript. His group is currently working on a similar topic,
even building a large database of rumen microbiomes using ONT. The other two
reviewers are also experienced bioinformaticians working with microbial communities
and they did not report any concerns with the methods in our article. Nonetheless, in
order to double check the reviewer’s concern, we used the Hungate database as
reference in our pipeline. Below is a figure that compares the number of reads mapped
to the KEGGs that resulted significant in our statistical analysis using eaither the NCBI
or the Hungate databases. The figure shows a correlation=1 for the number of reads
assigned from each reference data base. It also shows that the regression is exactly
linear with x=y. This is a proof of concept that demonstrates that we obtain the same
results with either database, and proves the reviewer wrong.

Given the responses and analyses above, we believe that we have fully addressed the
comments from the three reviewers or otherwise provided convincing reasons when
appropriate.
Therefore, I would like to kindly ask to reconsider the decision made on our
manuscript.

Sincerely,

Oscar González-Recio, on the behalf of my coauthors and myself
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Experimental design and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

Yes

Resources

A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely
identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Have you included the information
requested as detailed in our Minimum
Standards Reporting Checklist?

Yes

Availability of data and materials

All datasets and code on which the
conclusions of the paper rely must be
either included in your submission or
deposited in publicly available repositories
(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Have you have met the above
requirement as detailed in our Minimum
Standards Reporting Checklist?
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1 Abstract 27 

Background: Mitigating the effects of global warming has become the main challenge for 28 

humanity in the last decades. Livestock farming contributes to greenhouse gas emissions, 29 

with an important output of methane from enteric fermentation processes, mostly in 30 

ruminants. As ruminal microbiota is directly involved in digestive fermentation processes 31 

and methane biosynthesis, understanding the ecological relationships between rumen 32 

microorganisms and their active metabolic pathways is essential for reducing emissions. 33 

This study analyzed whole rumen metagenome using long reads and considering its 34 

compositional nature in order to disentangle the role of rumen microbes in methane 35 

emissions.  36 

Results: The beta-diversity analyses suggested an association between methane 37 

production and overall microbiota composition (0.01 < R2 < 0.02). Differential abundance 38 

analysis identified 36 genera and 279 KEGGs as significantly associated to methane 39 

production (Padj<0.05). Those genera associated to high methane production were 40 

Eukaryota from Alveolata and Fungi clades, while Bacteria were associated to low 41 

methane emissions. The genus-level association network showed two clusters grouping 42 

Eukaryota and Bacteria, respectively. Regarding microbial gene functions, 41 KEGGs 43 

resulted to be differentially abundant between low and high emission animals, and were 44 

mainly involved in metabolic pathways. No KEGGs included in the methane metabolism 45 

pathway (ko00680) were detected as associated to high methane emissions. The KEGG 46 

network showed three clusters grouping KEGGs associated to high emissions, low 47 

emissions and not differentially abundant in either of them. A deeper analysis of the 48 

differentially abundant KEGGs revealed that genes related with anaerobic respiration 49 

through nitrate degradation were more abundant in low emissions animals. 50 
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Conclusions: Methane emissions are largely associated to the relative abundance of ciliate 51 

and fungi. The role of nitrate electron acceptors can be particularly important as this 52 

respiration mechanism directly competes with methanogenesis. Therefore, whole 53 

metagenome sequencing is necessary to jointly consider relative abundance of Bacteria, 54 

Archaea and Eukaryota in the statistical analyses. Nutritional and genetic strategies to 55 

reduce CH4 emissions should focus on reducing the relative abundance of Alveolata and 56 

Fungi in the rumen. This experiment has generated the largest ONT ruminal metagenomic 57 

dataset currently available. 58 

2 Introduction 59 

Next generation sequencing technologies have provided special relevance to microbial 60 

communities from different niches, as they allow identifying their taxonomic and 61 

functional profile. It has made possible to unravel the relationships between host and 62 

microbiota, as well as the complex interactions between microbes, with a special 63 

contribution to the role of digestive microbiome on complex traits both in humans [1] 64 

(e.g. type II diabetes, cancer, mental diseases) and in domestic animals [2,3] (e.g. feed 65 

efficiency, methane emissions, animal health). 66 

Microbial communities are of special relevance in livestock. In ruminants, one of the 67 

main microbial communities lays in the rumen, due to its high diversity and large 68 

microbial mass [4] and its main role in feed fermentation to provide substrate to the 69 

animal, which is then transformed into product. Additionally, enteric methane is produced 70 

in the rumen by methanogenic microorganisms during feed fermentation [5] and is the 71 

main contributor of greenhouse gases (GHG) from livestock, with 2.8 to 3.5 gigatonnes 72 

of CO2-equivalent (CO2e) per year [6,7]. The ongoing climate emergency urgently calls 73 

for efficient strategies to mitigate the carbon footprint from all sectors, including 74 
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agriculture and livestock farming. Former studies have proven that complex traits in 75 

ruminants are usually influenced by global changes in ruminal microbial communities, 76 

more than by fluctuations in the abundance of specific microorganisms [8,9]. These 77 

global changes are usually due to the intricate interactions between different species in 78 

these communities (i.e., predation, competition of ecological niche or co-dependency). 79 

Consequently, a better understanding of the interactions between microbial genes during 80 

methanogenesis is needed to propose strategies for reducing methane emissions. 81 

Promising strategies have been proposed to modulate the metagenome, nutrition and 82 

genetics [10].  83 

Classical statistical approaches do not allow to accurately assess the results of 84 

microbiome studies. The high sparsity of these data and their compositional nature 85 

generate multiple problems in statistical analysis, including subcompositional 86 

incoherence, increase of false positive rates in differential abundance analyses and 87 

detection of spurious correlations [11]. 88 

As a consequence, new approaches considering both compositionality and multiple 89 

correlations are needed. It is also important to point out the advantages of whole 90 

metagenome sequencing over metataxonomic studies, because the latter cannot be used 91 

to determine functionality and because they pose some difficulties at simultaneously 92 

analyzing different superkingdoms [12], which is necessary to account for the total 93 

variability of microbiomes and the interactions among their components. Different 94 

amplicons must be used to correctly classify Bacteria, Archaea, Protozoa and Fungi, 95 

increasing the cost of the studies and involving additional bias due to PCR [13]. They 96 

pose the additional difficulty of a proper comparison between communities sequenced in 97 

different reactions with different primers. Nanopore sequencing offers a cost-efficient 98 

sequencing strategy for metagenomics studies providing both taxonomical and functional 99 



5 

information simultaneously and for microbes from all superkingdoms. This technology 100 

has been improved in recent years, allowing to perform taxonomic and functional 101 

assignments with an accuracy comparable to Illumina [14]. 102 

The objective of this study was to characterize the taxonomical and functional 103 

composition of rumen microbiota using long sequence reads obtained with Nanopore 104 

technology, and their relationship with enteric methane emission.  105 

3 Results 106 

3.1 Taxonomy of microbial composition 107 

After initial selection of core taxonomy, 6,394,671 reads with N50 = 4,022 bp were 108 

classified in 3,921 taxonomical features up to genus level. A filtering strategy was 109 

implemented to exclude low abundance microbes while keeping the core microbiome 110 

relevant for methane emissions. This process removed 48,517 reads (<1%) which reduced 111 

the sparsity of the metagenome from 87% to 68%, although a large number of singleton 112 

and doubleton features remained (Supplementary Figure 1). The final core 113 

subcomposition included a total of 6,318,344 reads, in 437 samples, classified in 1,240 114 

taxonomical features: 967 known genera (722 bacteria, 13 archaea and 232 eukaryotes), 115 

and 273 that only reached family rank (i.e., Unclassified denomination). Overall, 503 116 

families, 277 orders, 158 classes and 86 different phyla (37 bacterial phyla, 3 archaeal 117 

phyla and 46 eukaryotic clades) were classified. Relative abundance (RA) distribution by 118 

superkingdoms and phyla is summarized below. 119 

Predominant microorganisms in this core rumen subcomposition were bacteria (91.6% ± 120 

6.93 of total average RA) from Bacteroidetes, Firmicutes and Fibrobacteres (Figure 1), 121 

representing an average RA of 63%, 16% and 5%, respectively. The Bacteroidetes 122 
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fraction was majorly composed by Prevotella, and was the main representative genus in 123 

the total community (19.4% average RA), along with other Prevotellaceae members. The 124 

Firmicutes group included a large number of genera. The order of Clostridiales 125 

dominated in terms of RA, with Lachnospiraceae and Ruminococcaceae families being 126 

the most representative ones. The remaining phyla (34) from the Bacteria superkingdom 127 

represented 7.6% averaged RA of the core metagenome. Eukaryotes represented a total 128 

average RA of 8.2% (±6.95) of the core subcomposition. Predominant eukaryotic clades 129 

were those included in the SAR supergroup (Stramenopiles-Alveolata-Rhizaria) [15], 130 

accounting for 6% of total average RA, followed by Fungi (1.3% of total average RA). 131 

Alveolata clade was the most abundant among the eukaryotes, with a high representation 132 

of unclassified Ophryoscolecidae, Stentor and Paramecium. Archaea representation in 133 

the core subcomposition (0.24% ± 0.25 of total average RA) consisted mostly of 134 

Methanomicrobia, Methanobacteria and Thermoplasmata members. Yet, a large number 135 

of reads could not be assigned to a known genus. The relative abundance per animal of 136 

the most relevant taxonomic groups is depicted in Supplementary Figure 2. 137 

3.2 Functionality of microbial composition 138 

A total of 30,326,550 reads with N50 = 5,720 bp were assigned to KEGGs. After 139 

prevalence filtering, a total of 84,219 reads (0.28%) were removed and the sparsity was 140 

reduced from 72% to 39% (Supplementary Figure 1). The final KEGG table was 141 

composed by 30,145,459 reads from 437 samples, classified in 6,644 KEGGs. These 142 

KEGG pathways and BRITE hierarchies [16–18] were represented in a Treemap 143 

according to their average RA (Figure 2). A 26% of the rumen metagenome functions 144 

were in pathways that represent the metabolism of carbohydrate, amino acid and other 145 

biological compounds, as well as of energy metabolism. In addition, 11% of functions 146 

were involved in cellular generic processes (cell growth (3%), transport and catabolism 147 



7 

(4%), or genetic and environmental information processing (23%)). KEGG BRITE 148 

classification showed a high presence of proteins involved in cellular processes (36%) 149 

and metabolism (26%). 150 

3.3 Beta-diversity and PERMANOVA analysis 151 

Beta-diversity was represented in Principal Component Analysis (PCA) between samples 152 

at five different taxonomic levels (phylum, class, order, family and genus), as well as with 153 

KEGG, using centered log-ratio (CLR) transformed datasets. Then a permutational 154 

analysis of variance (PERMANOVA) was implemented [11], sequentially adding the 155 

effect of farm-batch (B), stage of lactation (SL), number of lactation (NL) and level of 156 

methane emissions (CH4) discretized in four groups (LOW, L-MID, H-MID and HIGH). 157 

The visualization did not show a clear visual clustering of samples by methane emission 158 

levels (Figure 3). However, a generalized additive model (GAM) smooth fitting allowed 159 

visualizing non-linear distribution patterns of the microbial samples according to CH4 160 

emissions inside the ordination at all taxonomic levels. The non-linear pattern was more 161 

evident at the phylum, class and genus levels, although the proportion of methane 162 

variability explained was low (≃4.8% according to GAM model fitting). No relevant 163 

differences were visually appreciated using the KEGG information. Nonetheless, some 164 

differences in the overall rumen microbiome composition between animals with different 165 

methane emissions were evidenced by the PERMANOVA analysis, both for taxonomy 166 

and functionality (Table 1). The results showed significant differences for the centroid 167 

distance between methane emission groups at every taxonomic level and also for KEGGs 168 

(P < 0.01), but they explained a low percentage of total variance (0.01 < R2 < 0.02).  169 

3.4 Rumen microbes associated to CH4 emissions 170 
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The effect of taxonomical features on methane emission levels was evaluated through 171 

differential abundance analysis. Thirty-three genera were found as differentially abundant 172 

(DA) (Padj <0.05) between LOW and HIGH emitters (Figure 4A), while 15 genera 173 

showed DA between LOW and H-MID emitters and one genus between LOW and L-174 

MID emitters (Supplementary Data 1). Note that 13 out of the 15 genera showing DA 175 

(Padj <0.05) between LOW and H-MID groups were also significant in the LOW vs HIGH 176 

contrast, but not in LOW vs L-MID contrast, indicating gradual abundance change from 177 

low to high emitters. Accounting for all contrasts and duplicated genera, 36 DA genera 178 

resulted significant. We classified these genera according to their respective 179 

overabundance (OA) in the LOW or HIGH emissions groups. Thus, 10 of them were 180 

more abundant in the LOW group (LOW-OA) and 1 in the L-MID group. The remaining 181 

25 genera were OA in the HIGH groups (HIGH-OA): HIGH (12), HIGH and H-MID (11) 182 

or H-MID (2). HIGH-OA genera represented an overall RA of 4.15%, whereas LOW-OA 183 

genera accounted for 0.25% of total RA. The two genera over-abundant in H-MID were 184 

Dictyostelium and Unclassified Eimeriidae, and the one associated to L-MID was 185 

classified as Candidatus Izimaplasma (Tenericutes). The log2FC values ranged between 186 

0.7 and -0.7 in genera showing DA for methane emission levels, highlighting that the 187 

differences between groups were moderate. 188 

Overall, DA results indicate that taxa associated to higher methane levels belong to the 189 

Eukaryota superkingdom, while those associated to lower emissions were bacteria. We 190 

found multiple Ciliophora genera associated to the HIGH group (mostly Parameciidae, 191 

Stentoridae and Pseudocohnilembidae members) but also Amoebozoa and some Fungi or 192 

pseudo-fungi. Other bacterial genera associated to lower methane production were 193 

Hespellia, from Clostridiales, and Sutterella, an asaccharolytic genus from 194 

Betaproteobacteria. 195 
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3.5 Microbial gene function associated to CH4 emissions 196 

Differential abundance analysis was also performed for KEGG features on methane 197 

emission levels. A total of 192 KEGGs were DA between the LOW and HIGH emissions 198 

groups (Figure 4B). Differences were also found between the LOW and H-MID groups 199 

(Supplementary Data 1). As in the taxonomy dataset, some of the KEGGs presented 200 

significant DA in both LOW vs HIGH and LOW vs H-MID contrasts. Accounting for 201 

these duplicates and all the contrasts, 182 were over-abundant in the high emissions 202 

groups (HIGH-OA), whereas 97 KEGGs were over-abundant in low emissions groups 203 

(LOW-OA). The overall RA for HIGH-OA KEGGs was 2.31% and 0.64% for LOW-OA 204 

KEGGs. Of these, 13 HIGH-OA KEGGs and 28 LOW-OA KEGGs were assigned to 205 

metabolic pathways. No KEGGs from the ko00680 pathway were found as HIGH-OA. 206 

KEGGs related to inositol-phosphate metabolism (K00889, K01110, K18082 and 207 

K20279), starch and sucrose metabolism (K01203) or several lipid metabolism pathways 208 

were present in the HIGH-OA group. According to LOW-OA KEGGs, some of them 209 

were involved in volatile fatty acid metabolism (e.g., K00209 enoyl-[acyl-carrier protein] 210 

reductase [EC:1.3.1.9], K01902 succinyl-CoA synthetase alpha subunit [EC:6.2.1.5] and 211 

K01682 aconitate hydratase 2 [EC:4.2.1.3]) and the K09251 putrescine aminotransferase 212 

[EC:2.6.1.82] related to putrescine and cadaverine degradation to 4-amino-butanoate 213 

(GABA) or 2-oxoglutarate. Also, several KEGGs in the LOW-OA group were related to 214 

N metabolism (K00370 and K00371 nitrate reductase subunits [EC:1.7.5.1]), oxidative 215 

phosphorylation (K03885 NADH dehydrogenase [EC:1.6.99.3]) and to carbohydrate, 216 

lipid or vitamin metabolism pathways. The ko00680 KEGG K13788 was also over-217 

abundant in the LOW emissions group. 218 

3.6 Co-abundance of genera and KEGGs 219 
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Interaction networks were built using the previous results in order to visualize the 220 

association between taxa and genes using pairwise correlations between features. 221 

Pairwise proportionality correlation coefficients (ρp) were calculated on the CLR-222 

transformed datasets for phylum, genus and KEGG features to mitigate the effect of 223 

spurious correlations that can potentially surge in compositional data [19].  224 

The most relevant pairwise proportionalities between genera and between KEGGs were 225 

visualized as interaction networks, classifying features as associated to high methane 226 

emissions (HIGH), low methane emissions (LOW) or not associated to methane 227 

emissions (N/A), according to the results from the differential abundance analyses. The 228 

interaction networks for genera and KEGGs are shown in Figure 5 and Figure 6, 229 

respectively. 230 

Eukaryotes clustered together in the network with large representation of the SAR 231 

supergroup, and showed negative proportionality to bacteria. The genera that were 232 

associated to higher methane emissions belonged to the Eukaryota superkingdom 233 

(Ciliophora and Fungi), whereas Bacteria were associated to lower CH4 production. The 234 

strongest inverse proportionalities between both subpopulations connected several 235 

eukaryotes with Unclassified Veillonellaceae and Oribacterium (−0.64 < 𝜌𝑝 <  −0.53), 236 

i.e., microbiomes with lower abundance of Oribacterium or Veillonellaceae tend to 237 

present larger abundances of protozoa and fungi, and were therefore associated to larger 238 

emissions. Unclassified microbes from Neocallimastigaceae, Oxytrichidae and 239 

Vibrionaceae families showed the highest centrality and a large connectivity degree.  240 

The functional network showed three main clusters that grouped KEGGs associated to 241 

HIGH methane level (cluster H), KEGGs not related to methane emissions (cluster N), 242 

and a small one including KEGGs associated to lower emissions (cluster L). Connections 243 
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between clusters were not symmetric: H cluster was connected to N cluster by inverse 244 

proportionalities between some of their components, but the L cluster appeared connected 245 

only to N cluster by direct proportionalities through non-clustered KEGGs. Also, most of 246 

the ko00680 KEGGs (i.e., directly involved in methanogenesis or participating in 247 

pathways leading to methanogenesis precursors) did not appear as differentially abundant 248 

between high-emission and low-emission cows. 249 

3.7 Distribution of genes among clades 250 

A traceback of genes’ taxonomy was carried out, separately for ko00680 KEGGs and for 251 

DA KEGGs. Thirty out of the 85 ko00680 KEGGs were predominant in Archaea groups, 252 

one predominated in Eukaryota (K05979) and the rest were predominant in Bacteria 253 

(Figure 7). Although the RA distribution of these KEGGs was normally between 60% 254 

and 100% in the predominant superkingdom, 4 KEGGs were more evenly distributed 255 

between clades: K01007 and K00863 had a RA < 60% in Bacteria and showed RA > 256 

30% in Eukaryota; K05979 was the KEGG predominating in Eukaryota, but with a RA 257 

near to 60% (38% in Bacteria and 12% in Archaea); and K14080 had a RA of 57% in 258 

Archaea and 43% in Bacteria.  Regarding the DA KEGGs, those from the LOW-OA 259 

group showed larger abundance in Bacteria, mostly in genera from Proteobacteria, 260 

Bacteroidetes and Firmicutes phyla. Different groups of bacteria also carried KEGGs 261 

from the HIGH-OA group although these KEGGs were more abundant in eukaryotes. 262 

The HIGH-OA KEGGs were mainly mapped to unclassified eukaryotes, but those which 263 

could be classified belonged majorly to Fungi and SAR supergroup (Figure 8). 264 

4 Discussion 265 

In this study we assessed the composition of the ruminal microbiota using long reads from 266 

Nanopore sequencing technology. We observed predominance of Bacteroidetes, 267 
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Firmicutes and Fibrobacteres, as reported in previous studies [8,20]. Bacteroidetes and 268 

Firmicutes are common bacteria in all kind of ecosystems, including gut microbiota of 269 

multiple animals. The fraction of Bacteroidetes was mainly composed by Prevotella, a 270 

group of anaerobic gram-negative bacteria involved in saccharolytic processes [21]. Their 271 

large abundance in the digestive microbiota has been previously reported in ruminant 272 

[22–26] and monogastric species [27,28]. Firmicutes were less abundant, with a more 273 

diverse distribution of genera. Fibrobacteres, a small group of cellulose-degrading 274 

bacteria usually present in ruminant digestive system [29], was mainly represented by the 275 

Fibrobacter genus. Eukaryotes also represented a relevant amount of the rumen core 276 

metagenome. This group has been reported to contribute up to 50% of total ruminal 277 

biomass [30]. The SAR supergroup and Fungi were the most relevant ones, which are 278 

found in a wide variety of ruminants and pseudoruminants [15,31]. Other eukaryotes 279 

included Stentor and Paramecium, the former are aquatic free-living heterotricheans 280 

which can be particle filtrators or predators of other protozoa and live symbiotically with 281 

some algae species [32,33], whereas the latter are well-known ciliates which predate 282 

bacteria and other microorganisms, including protozoa [34]. Archaeal fraction was mostly 283 

composed by strict methanogenic organisms from Methanomicrobia and 284 

Methanobacteria clades [35], but also included Thermoplasmata, which are 285 

methylotrophic-methanogenic acidophilic organisms [36]. 286 

The DA analysis showed that ciliates, fungi and pseudo-fungi were more abundant in 287 

cows with higher levels of methane emissions. Microbes associated to lower methane 288 

emissions were saccharolytic members of class Gammaproteobacteria 289 

(Anaerobiospirillum [37], Vibrio [38] or Pseudoalteromonas [39]), as well as 290 

Negativicutes genera from Veillonellaceae (Dialister, Megasphaera) and 291 

Selenomonadaceae (Mitsuokella). Dialister produce succinate decarboxylation, and 292 
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Megasphaera ferment carbohydrate and lactate [40], while Mitsuokella are saccharolytic 293 

bacteria [41]. The low-emissions ruminotype had larger abundance of Proteobacteria and 294 

Firmicutes genera. Other authors also reported higher abundances of these bacterial phyla 295 

in low methane emissions animals [8]. Lactate and succinate-producers have been 296 

reported to be more abundant in low-emitters as well [42], supporting the higher 297 

abundance of Anaerobiospirillum or Megasphaera in LOW animals.  298 

Despite this association between methane and large taxonomic groups, it is of interest to 299 

find out which specific clades and microbial genes are participating directly or indirectly 300 

in methanogenesis. The genera co-abundance network showed a clear cluster of 301 

eukaryotes, with many of them being significantly more abundant in the high emissions 302 

group. Other authors have already established a positive correlation between fungi 303 

abundance and methane emissions [8], as well as a close interdependence of protists and 304 

fungi. Although correlation between methane emissions and protozoa abundances is still 305 

under discussion [43,44], current meta-analyses point to a linear relationship between 306 

protozoa abundance and methane emissions (r=0.96) [45].  307 

Interestingly, no taxonomic group of methanogenic archaea showed association with 308 

methane emissions. The relationship between Archaea and methane production in rumen 309 

is not consistent in the literature. Some authors reported either individual relationships 310 

between methane emissions and some archaeal species [46,47] or correlations between 311 

overall archaeal gene abundance and methane emissions level [43,48]. However, other 312 

studies showed no relationship between methanogenic Archaea and methane [47,49]. All 313 

studies to date showed a low relative abundance of archaea in the rumen, compared to 314 

eukaryotes and bacteria [50]. However, the association between the abundance of rumen 315 

eukaryotes and methane emissions has been demonstrated through defaunation 316 

experiments, both in vitro [51,52] and in vivo [44,53], with lower emissions in defaunated 317 
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animals [54]. This has been attributed to the tight link existing between methanogenic 318 

archaea abundance and some fungi and protozoa [50]. Specifically, ciliates and some 319 

Chytridiomycota (e.g. Neocallimastix sp.) are known to symbiotically engulf a variety of 320 

methanogenic archaea. They provide the archaea with substrate for methane production 321 

from H2 produced in their hydrogenosomes, as well as protection against oxygen toxicity 322 

[30,55,56]. Thus, free-living methanogens might represent a low fraction of microbial 323 

population [45], and CH4 biosynthesis might be more influenced by endosymbiotic 324 

methanogens [55]. Hence, a larger methanogenesis activity is expected to be correlated 325 

with a larger abundance of eukaryotes, especially ciliates, which are more abundant and 326 

better represented. Another partial explanation for the low abundance of free archaea, and 327 

thereby for the lack of association between Archaea and methane emissions in previous 328 

studies [10], is that lysis of archaea cell walls often requires specific protocols during 329 

DNA extraction, and they might be under-represented in metagenomics studies [57].  330 

In terms of Gene Ontology, the KEGGs were associated to several metabolic functions 331 

and cellular processes (nutrient metabolism and biosynthesis, cellular transport, cell 332 

growth or genetic information processing). Pathways related to pathogenic activity were 333 

also found, in agreement with the RA of several genera that include known pathogenic 334 

species (e.g. Vibrio, Haemophilus, Trypanosoma or Staphylococcus) although not every 335 

species from these genera are pathogenic, but opportunistic or commensal organisms. 336 

Besides, pathogenic activity presence in our dataset might be biased due to a larger 337 

representation of human related diseases in the databases. The KEGGs were classified 338 

according to their presence or absence in ko00680 pathway (methane metabolism), as a 339 

way to evaluate their direct involvement in methanogenesis or an indirect involvement in 340 

pathways leading to biosynthesis of precursor compounds. Although we found several 341 

ko00680 KEGGs which are presumably involved in the biosynthesis of methanogenesis 342 
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precursors, most of them were not associated to methane emissions (i.e., not differentially 343 

abundant between methane groups). Most of these KEGGs were mainly present in 344 

bacteria or eukaryotes and might be functioning in metabolic pathways not related to 345 

methanogenesis. For instance, some of the KEGGs inside the methane metabolism 346 

pathway can also be involved in glycine, serine and threonine metabolism (e.g. K00058, 347 

K00831, K01079 and K00600), pyruvate and propanoate metabolism (e.g. K00625 and 348 

K13788), glycolysis (e.g. K01689, K15633, K01624 and K02446) or anaerobic carbon 349 

fixation (e.g. K00198) [16–18]. Another group of ko00680 KEGGs is exclusive from 350 

Archaea, but the under-representation of this clade in our dataset might obscure statistical 351 

significance.   352 

Other detected KEGGs could be indirectly related with methanogenesis through 353 

biosynthesis of precursor compounds. For instances, K00209 and K13788 are involved 354 

in butyrate and propanoate biosynthesis, being essentially carried by primary 355 

fermentative bacteria [58]. Then the volatile fatty acids can be used by secondary 356 

fermenters to produce methanogenesis precursors such as H2, CO2, acetate and formate 357 

[59,60]. In fact, K13788 is a phosphate acetyltransferase [EC:2.3.1.8] that can be involved 358 

in the biosynthesis of acetate from acetyl-CoA [61]. Also, K09251 is involved in 359 

biosynthesis of GABA and 2-oxoglutarate. GABA has been related with a volatile fatty 360 

acid concentration increment [62], while 2-oxoacid compounds can be used by Archaea 361 

to synthesize coenzyme M and coenzyme B, which are essential in methane production 362 

[63]. However, all these KEGGs were observed as over-abundant in LOW methane 363 

group, suggesting a strong presence of fermentative bacteria in these animals, not directly 364 

correlated with methane production.  365 

Other KEGGs that were over-abundant in LOW emitters might offer an explanation to 366 

the lower presence of active methanogenesis processes through competence mechanisms 367 
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(e.g. LOW-OA KEGGs K01682, K01902 and K13788, are involved in citrate cycle and 368 

pyruvate metabolism, related to respiration). The K00370 and K00371 are nitrate 369 

oxidoreductase subunits playing a role in anaerobic respiration using nitrate as electron 370 

acceptor. This enzyme uses nitrate as electron acceptor, a process that has been reported 371 

as competitive inhibitor of methanogenesis [64,65]. Nitrate supplementation has proven 372 

to be an useful strategy to mitigate methane emissions [66]. Nitrite produced by the 373 

nitrate-reductases has a known antimicrobial effect and toxicity to animal cells [67–69], 374 

which might also reduce the proportion of free archaea in LOW animals, although toxicity 375 

to archaea must be further studied [70]. However, the role of ciliates and fungi must be 376 

clarified, as their abundance is also lower in LOW emitters. We hypothesize that the 377 

predatory nature of these eukaryotes might be a control mechanism for bacterial 378 

populations, and their lower relative abundance in LOW animals might allow overgrowth 379 

of related bacteria. Nevertheless, there is the possibility that a higher proportion of 380 

facultative anaerobes using nitrate as acceptor might affect ciliate populations by toxicity, 381 

thus reducing the presence of endosymbiotic methanogenic archaea.  382 

The SqueezeMeta software [71] uses a last common ancestor (LCA) algorithm, which 383 

assigns to one read the lowest-level taxon common to all hits, using a stringent cutoff 384 

identity value for each taxonomic rank. On its part, functional assignments are done with 385 

fun3 algorithm, which by default assigns the hit with the highest average bitscore 386 

compared to the n first hits passing the e-value, identity and coverage filters. This LCA 387 

approach ensures that reads have a large probability of being correctly classified, at 388 

expense of a large number of reads remaining unclassified, which explains the larger 389 

number of reads assigned to a known KEGG than to taxa. Despite this strict requirement, 390 

this composition is consistent with other populations reported before [2,3,20]. Most 391 

studies to date report large abundance of Bacteroidetes and Firmicutes, with Prevotella 392 



17 

spp. as the most prevalent genus. Some minor discrepancies with other studies were 393 

observed in the RA of the core subcomposition. For example, Wallace et al. [20] showed 394 

a higher presence of Proteobacteria and Euryarchaeota, although using amplicons 395 

instead of whole metagenome sequencing. 396 

Our statistical approach evidenced the difficulty of inferring a phenotypic association 397 

between microbiome composition and methane production, with an important role of 398 

environmental factors that mask the statistical signal. However, a meaningful relationship 399 

between the microbiome composition and methane emissions could be uncovered yet, 400 

emphasizing the role of the different phyla, with the Eukaryota superkingdom being of 401 

particular relevance. Former studies also revealed a link between ruminal microbiota and 402 

methane production. Difford et al. [3] showed different clusters of high and low methane 403 

emitters according to their bacterial and archaeal subcomposition. Danielsson et al. [46] 404 

also found clustering for low and high methane emitters within prokaryotic rumen 405 

subcompositions. Wallace et al. [20] found that a core set of rumen microbiome was 406 

capable of explaining up to 30% of methane emissions variability, mostly formed by 407 

prokaryotes. The aforementioned studies used different methodologies, like amplicon 408 

analysis and OTU clustering, contrasting with our full-metagenome genus-clustering 409 

protocol, which increases the information entropy. Stewart et al. [72] used Nanopore 410 

sequencing and found significant differences between low and high-methane emitter 411 

sheep, with clear clustering between groups, but using a lower number of microbial 412 

groups and animals in the same farm with similar management practices.  413 

5 Conclusions 414 

The full metagenome compositional analysis used in this study provided novel insights 415 

in the association between the microbiota and CH4 emissions through differential 416 
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abundance analysis, pairwise correlation and interaction networks. Our approach 417 

evidenced a phenotypic association between microbiome composition and methane 418 

production, regardless of the challenges posed by the microbiome complexity and the 419 

compositional nature of the data. This association is mainly driven by the relative 420 

abundance of ciliates and fungi, which carry host specific genetic functions providing 421 

substrate to the methanogenic archaea. On the other side, we detected some bacterial 422 

groups that performed a more efficient feed digestion, leaving less hydrogen available to 423 

archaea and hence associated to lower methane emissions.  424 

This study generated the largest ruminal metagenomic dataset sequenced using ONT and 425 

grants free access to a publicly-available data set. The complexity of the rumen 426 

microbiome and the compositional nature of their sequencing data require proper 427 

statistical methods to allow disentangling the role of microbes and their genes in host 428 

complex traits such as methane emissions. Future nutritional and genetic strategies to 429 

reduce CH4 emissions should focus on reducing the relative abundance of Alveolata and 430 

Fungi in the rumen, without impairing other important metabolic processes for an 431 

efficient feed digestion in ruminants.  432 

6 Methods 433 

6.1 Animal housing and feeding 434 

Our cohort included 437 Holstein lactating cows sampled at 14 different herds from 435 

northern Spain (Cantabria, Euskadi, Navarra and Girona regions). The animals received 436 

total mixed ration (TMR) diet differently formulated on each individual herd, although 437 

most of them were based on maize and grass silage plus concentrate. Cows were fed ad-438 

libitum, with concentrate supplementation in the automatic milking station (AMS) during 439 

milking. 440 
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6.2 Methane measuring 441 

 Methane concentration was individually recorded through breath sampling during each 442 

cow visit to the AMS (3-7 times daily) in a period of 2-3 weeks. Eructation peaks were 443 

recorded using a non-dispersive infrared methane detector (Guardian NG infrared gas 444 

monitor, Edinburgh Sensors, Scotland, UK) as described by Rey et al. (2019) [73]. Each 445 

cow’s peaks were then averaged in order to get a unique methane record per cow, as 446 

described in López-Paredes et al. (2020) [74]. Animals were distributed in groups 447 

according to number of lactation (NL) and stage of lactation (SL) criteria. Furthermore, 448 

quartile-based qualitative categories were created for CH4 recordings (ppm), resulting in 449 

a methane factor (CH4) with 4 levels (LOW, L-MID, H-MID and HIGH methane 450 

emissions). 451 

6.3 Ruminal content sampling 452 

Ruminal fluid was sampled using an oral tube (18 mm diameter and 160 mm long) 453 

connected to a 1000 mL Erlenmeyer flask and continued to a mechanical pump 454 

(Vacubrand ME 2SI, Wertheim, Germany), with all the material contacting the cow being 455 

carefully cleaned between cows. Each animal was moved to an individual stall for this 456 

process. The solid fraction of the ruminal content was discarded by filtering through 4 457 

layers of sterile cheesecloth, while the outcoming liquid fraction was instantly frozen 458 

using liquid nitrogen (LN2) and then stored at -80 °C until DNA extraction. 459 

6.4 DNA extraction and sequencing 460 

 Genomic DNA was extracted from 250 µl of each thawed and homogenized ruminal 461 

content sample, using the “DNeasy Power Soil” commercial kit (QIAGEN, Valencia, CA, 462 

USA). Qubit fluorometer (ThermoFisher Scientific, 150 Waltham, MA, USA) and 463 
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Nanodrop ND-1000 UV/Vis spectrophotometer (Nanodrop Technologies Inc., DE, USA) 464 

were used to measure DNA concentration and purity. 260/280 and 260/230 ratios were 465 

around 1.8 and 2.0, respectively. Oxford Nanopore Technologies (ONT) SQK-LSK109 466 

Ligation Sequencing kit was used for multiplexed sequencing in MinION automatic 467 

sequencer. The 1D Native barcoding ONT kit (EXP-NBD104 or EXP-NBD114) was used 468 

for multiplexing the samples, pooling barcoded DNA from 12 samples for each run. 469 

Pooling was done using a 1.5 ml DNA LoBind tube to perform adapter ligation and 470 

sequenced using a R9.4.1 flow cell. 471 

6.5 Read processing, mapping and filtering 472 

Guppy toolkit (ONT) was used for basecalling. A quality control was then applied 473 

removing sequences with QS<7 and length<150 bp. Sequence analysis was performed 474 

using SqueezeMeta (SQM) pipeline for long reads [71], which performs Diamond Blastx 475 

against GenBank nr taxonomic database and against COG and KEGG functional 476 

databases, then identifying and annotating ORFs using the LCA method for taxonomy 477 

and the fun3 algorithm for functional annotation (based on e-value and identity scores). 478 

This tool is specifically designed to process long reads from ONT. 479 

49,718,901 reads were processed in Blastx by SQM longreads pipeline. Blastx mapped 480 

25,750,755 reads (51.79%) to taxonomy (NCBI-nr database) or function (KEGG 481 

database). All sequences mapped as non-microbial (i.e., virus, animals and plants) were 482 

discarded. Microbial sequences were then filtered by prevalence to reduce data sparsity 483 

and sequencing errors (Supplementary Data 2). A first estimation of sample sparsity and 484 

reads distribution was assessed using R. Two animals were then withdrawn from the 485 

filtered dataset, one due to low read coverage and other due to lack of host information, 486 

leaving 437 animals in the final dataset. 487 
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Genera were divided into superkingdom groups (Archaea, Bacteria or Eukaryota) and 488 

KEGGs were sorted by their involvement in methane metabolism (MP): KEGGs included 489 

in the KEGG orthology pathway ko00680 (Methane metabolism) were labeled as 490 

“ko00680”, while the rest were identified as “Other”.  491 

6.6 Compositional data 492 

 Considering the compositional nature of metagenomic data, a CLR method [75] was 493 

applied using the unweighted option of the CLR function from the easyCODA R package 494 

[76] as follows:   495 

𝐱𝐜𝐥𝐫 =  [𝑙𝑜𝑔 (𝑥1/𝐺(𝑥)), 𝑙𝑜𝑔 (𝑥2/𝐺(𝑥)) … 𝑙𝑜𝑔 (𝑥𝐷/𝐺(𝑥))], 496 

with 𝐺(𝑥) =  √𝑥1 ∗ 𝑥2 ∗ … ∗ 𝑥𝐷
𝐷 .  497 

Being x = [𝑥1, 𝑥2,…, 𝑥𝐷]  a vector of counted features (taxa or KEGGs) in one sample and 498 

G(x) the geometric mean of x. Count zero values in the initial data frame were imputed 499 

through the Geometric Bayesian Multiplicative (GBM) procedure, using the 500 

zCompositions R package [77] cmultRepl function, so that logarithms could be computed. 501 

6.7 Beta-diversity and PERMANOVA analysis 502 

The CLR-transformed data (at phylum, class, order, family, genus and KEGG levels) 503 

were used to explore beta-diversity in the samples through PCA using the prcomp 504 

function in R. Fitted smooth surface of methane emissions corrected by SL and NL was 505 

included for principal components 1 and 2 using ordisurf function from the vegan R 506 

package [78]. A generalized additive model smooth fitting (GAM) was used in order to 507 

elucidate non-linear distribution of samples in PCA according to methane emissions. 508 

Differences between centroid distances using methane as grouping variable (CH4) were 509 
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determined through Permutational Multivariate Analysis of Variance (PERMANOVA) 510 

[79,80] following this model and using the matrix of Aitchison distances between samples 511 

(i.e., the Euclidean distance on CLR-transformed data) as input variable: 512 

𝐷𝑗𝑘𝑙𝑛𝑖 = 𝜇 + 𝐵𝑗 + 𝑆𝐿𝑘 + 𝑁𝐿𝑙 + 𝐶𝐻4𝑛 + 𝑒𝑗𝑘𝑙𝑛𝑖  513 

with 𝐵𝑗 being the farm-batch effect (j = 24 levels), 𝑆𝐿𝑘 being the stage of lactation at the 514 

day of sampling (k = 3 levels), 𝑁𝐿𝑙 the number of lactation (l = 2 levels) and 𝐶𝐻4𝑛 the 515 

methane emission level (n = 4 levels: LOW, L-MID, H-MID, HIGH), and 𝑒𝑗𝑘𝑙𝑛𝑖 was the 516 

corresponding residual term. 517 

6.8 Association between microbiota and methane production 518 

Differential abundance of genera and KEGGs between samples regarding the different 519 

methane emissions levels was addressed through linear regression using Limma [81]. 520 

Count normalization and log-transformation were addressed using CLR-transformed data 521 

as inputs. P-values were adjusted by Benjamini-Hochberg method, to control false 522 

discovery rate. Differential abundance threshold was set to | log2FC | ≥ 0.5 and the 523 

adjusted significance threshold was set to α = 0.05. 524 

6.9 Pairwise proportionality analysis 525 

Pairwise correlations between phyla, genera and KEGGs were calculated as described in 526 

the propr R package [82]. Proportionality coefficient ρp [83] under CLR data 527 

transformation was chosen. Thresholds were selected according to two conditions: 1) 528 

representing the maximum number of proportionalities avoiding computational issues; 2) 529 

FDR lower than 1%. Used threshold were |ρp| ≥ 0.4 for genera proportionalities and |ρp| ≥ 530 

0.7 for KEGG proportionalities. 531 
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6.10 Microbial networks 532 

Microbial networks for taxonomy (at the genus level) and functionality were built from 533 

the proportionality matrices described above. Input edges were defined from the 534 

cytoscape function in propr package in R, which converts a propr object into a data frame 535 

of node connections compatible with Cytoscape software (v. 3.8.0). Results from the DA 536 

analyses were used to associate each feature (node) to high or low methane emissions 537 

levels. Significantly over-abundant genera and KEGGs in the low methane emitters group 538 

(i.e., more abundant in LOW than in HIGH or H-MID groups) were designated as LOW-539 

associated, while those contrary over-abundant in high methane emitters were appointed 540 

as HIGH-associated. Non-DA features were classified as N/A (not associated). In 541 

addition, SK and MP factors were included as node attributes for genera and KEGGs, 542 

respectively. For graph visualization, Kamada-Kawai algorithm (Edge-weighted spring 543 

embedded layout) was set [84], using ρp coefficient as force parameter.  544 
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 841 

15 Tables 842 

Table 1: F statistic and P-values for stage of lactation (SL), number of lactation (NL) and 843 

methane emission (CH4) variables (added sequentially) and P-values from 844 

PERMANOVA of the entire dataset (i.e., including all superkingdoms). 845 

  F statistic R2 P-value* 

Phylum 

SL 6.1 0.014 <0.01 

NL 1.4 0.003 0.11 

CH4 2.8 0.019 <0.01 

Class 
SL 5.6 0.013 <0.01 

NL 1.5 0.003 0.07 
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CH4 2.4 0.016 <0.01 

Order 

SL 5.4 0.012 <0.01 

NL 1.7 0.004 0.03 

CH4 2.3 0.016 <0.01 

Family 

SL 4.9 0.011 <0.01 

NL 1.6 0.004 0.03 

CH4 2.1 0.014 <0.01 

Genus 

SL 4.0 0.009 <0.01 

NL 1.4 0.003 0.03 

CH4 1.7 0.012 <0.01 

KEGG 

SL 5.3 0.012 <0.01 

NL 2.0 0.004 0.02 

CH4 2.4 0.016 <0.01 

*Significance level was considered 0.05. P-values lower than this  846 

significance levels are in italics. 847 

 848 

16 Figure captions 849 

Figure 1: Average relative abundance of genera. Average relative abundance of core 850 

microbial taxa, including those classified only to family level (i.e., unclassified genera), 851 

which represent a 60.2% of total abundance. 852 

Figure 2: Metagenome functionality. TreeMap distribution of functionality abundances 853 

classified as KEGG pathways (left) and BRITE hierarchies (right) associated with core 854 

KEGG subcomposition. 855 

Figure 3. Fitted surface representation of Principal Component Analysis. Dots 856 

represent the samples using euclidean distances of CLR-transformed taxa abundances, 857 

coloured by CH4 levels. CH4 emissions (ppm) corrected by number and stage of lactation 858 

are represented as smooth fitting following a generalized additive model (GAM) (‒). Dev. 859 

Explained: variability explained by GAM; P-val: approximate significance of the smooth 860 

terms being zero (α=0.05). 861 

Figure 4. Volcano plots. Volcano plot representing the differential abundance (DA) of 862 

genera (A) and KEGGs (B) between LOW and HIGH groups from limma. Significance 863 
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thresholds were established at adj.P-val = 0.05 and log2FC = ±0.5. • Significant features 864 

with DA above the fold change (FC) threshold. • Significant features with DA below the 865 

FC threshold. • Non-significant features with DA above the FC threshold. • Non-866 

significant features with DA below the FC threshold. 867 

Figure 5. Taxonomy interaction network. Pairwise proportionalities between genera 868 

with |ρp| ≥ 0.4. Superkingdom: △ Archaea; ▢ Bacteria; ◯ Eukaryota. / CH4 association: 869 

▬ HIGH CH4; ▬ LOW CH4; ▬ No CH4 associated. / Proportionality sense: ↔ direct (> 870 

0); ↔ inverse (< 0). 871 

Figure 6. Functionality interaction network. Presented pairwise proportionalities 872 

between KEGGs with |ρp| ≥ 0.7/ Participation in methane metabolism: ◻ ko00680 (direct 873 

or indirect part.); ◯ Other (no part.) / CH4 association: ▬ HIGH CH4; ▬ LOW CH4; ▬ 874 

No CH4 associated. / Proportionality sense: ↔ direct (> 0); ↔ inverse (< 0). Clusters are 875 

indicated as L (KEGGs associated to LOW methane), H (KEGGs associated to HIGH 876 

methane) and N (KEGGs not related to methane emissions). 877 

Figure 7: Taxonomy of ko00680 KEGGs. Relative abundance of KEGGs present in 878 

ko00680 pathway for each phylum in Archaea (▬), Bacteria (▬) and Eukaryota (▬) 879 

superkingdoms. Relative abundance of each ko00680-KEGG respect to the sum of reads 880 

mapped to all ko00680-KEGGs. 881 

Figure 8. Taxonomic distribution of DA KEGGs. Red density scale represents KEGGs 882 

over-abundant (OA) in HIGH emitters; Blue density scale represents KEGGs OA in LOW 883 

emitters. More intense colors mean a higher number of reads assigned to one phylum. 884 

Superkingdom: • Archaea; • Bacteria; • Eukaryota. 885 
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Supplementary Figure 1: Feature counts distribution. Features with zero counts, 886 

singletons, doubletons and 3 or more counts per sample. A) Count distribution in raw 887 

taxonomy table (87% sparsity); B) Count distribution in filtered taxonomy table (68% 888 

sparsity); C) Count distribution in raw KEGG table (72% sparsity); D) Count distribution 889 

in filtered KEGG table (39% sparsity). Filtering processes removed less than 1% of total 890 

reads in both datasets. 891 

Supplementary Figure 2: Phyla relative abundance per sample. Samples are sorted 892 

from lowest to highest RA of Bacteroidetes. 893 

 894 
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Madrid, 28th October, 2021 
 
Dear Editor Nicole Nogoy, 

 
herewith, we re-submit our manuscript entitled “FUNGAL AND CILIATE PROTOZOA ARE 
THE MAIN RUMEN MICROBES ASSOCIATED WITH METHANE EMISSIONS IN DAIRY 
CATTLE”, to be considered for publication in GigaScience.  
 
The manuscript was previously submitted to GigaScience with manuscript ID: GIGA-D-21-00239. 
The manuscript was reviewed by three reviewers. Two of them recommended acceptance, 
whereas only one rejection. Unfortunately, the final decision was rejection. However, you kindly 
opened the door for a resubmission of the manuscript if we could address this reviewer’s 
concerns in a full cover letter. 
 
Hence, we took this opportunity and resubmit the manuscript explaining that we strongly 
disagree with the reasons given by the reviewer that led to rejection of the manuscript:  
 

1) the reviewer stated that the way we annotated genes is not correct. He said "I do not 
think it is at all clear that a DIAMOND search against the NR database (which is full of 
errors) will accurately reconstruct rumen taxonomy, nor do I believe that a DIAMOND 
search against KEGG or COG will reconstruct rumen function". And he provided some 
reference as example on how to properly do the search. Our method is actually the 
same procedure as the one used in the references he provided as an example on how 
to do this (which he actually coauthored): (https://www.nature.com/articles/s41467-
018-03317-6). In this manuscript they stated: "Proteins were predicted using Prodigal 
(v.2.6.3) with option ‘-p meta’. Using DIAMOND, each protein was searched against 
KEGG (downloaded on 15 September 2018), UniRef100, UniRef90 and UniRef50 
(downloaded 3 October 2018), and CAZy (dbCAN2 version, 31 July 2018). The protein 
predictions were clustered by CD-HIT68(v.4.7) at 100%, 90% and 50% identity, 
mirroring similar methods at UniRef.". 
The reviewer assumed that the pipeline is not correct, but it actually follows the same 
procedure as the one cited by the reviewer as reference. The reviewer did not take the 
time to read how our pipeline works, which is fully described elsewhere: e.g. 
https://www.frontiersin.org/articles/10.3389/fmicb.2018.03349/full, 
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-020-03703-2. 
Detailed descriptions can be also found in the manual 
(https://github.com/jtamames/SqueezeMeta/blob/master/SqueezeMeta_manual_v1.4.
0.pdf). 
 

2) The second concern of the reviewer was: "The data presented directly contradict 
previous results 
(e.g. https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-015-2032-0) 
and so the authors need to ensure they are sound." The manuscript he provided used 
results based on 16S and 18S RNA amplicons using abundances from qPCR. I'm not 
going to give details on how troublesome using PCR products from different amplicons 
can be at comparing bacteria, archaea and protozoa. His manuscript also used 
the GREENGENES database which has not been properly updated in the last decade. 
On the other hand, our study is free from possible bias caused by PCR, because we 
are using a metagenomic approach which is PCR free, and can properly compare 
relative abundances of bacteria and eukaryotes. Our results are in agreement with 
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other studies that do not find a clear relationship between methane emissions and 
archaea relative abundance in the rumen (e.g.  Shi W et al. 2014 Methane yield 
phenotypes linked to differential gene expression in the sheep rumen microbiome. 
Genome Res. 2014; doi: 10.1101/gr.168245.113. and Aguinaga Casañas MA, et al 
2015. Methyl-coenzyme M reductase A as an indicator to estimate methane production 
from dairy cows. J Dairy Sci. 2015; doi: 10.3168/jds.2015-9310).  
However, it must be pointed out that not-significant association does not imply absence 
of association, and therefore our results are not in contradiction with the reference 
provided by the reviewer. Besides, our results are in agreement with many other 
studies that reported an important role of fungi and protozoa with methane emissions, 
which we cited in our manuscript. For instances: 
-Newbold CJ, et al. 2015 The role of ciliate protozoa in the rumen. Front Microbiol. 
2015; doi:678 10.3389/fmicb.2015.01313. 
-Williams AG and Coleman GS. The Rumen Protozoa. New York, NY: Springer New 
York; 
and also Williams CL, et al. 2020. Rumen Protozoa Play a Significant Role in Fungal 
Predation and Plant Carbohydrate Breakdown. Front. Microbiol. 11:720. doi: 
10.3389/fmicb.2020.00720 (actually not cited in the manuscript). 
Thus, our study does not contradict previous results, not even those from the reviewer, 
and are actually in agreement with many other studies.  

 
3) Finally, Dr. Watson suggested in his review that we should use some specific rumen 

microbiome gene catalogues. Interestingly, these reference databases were built by 
the reviewer and his collaborators. We believe this may incur in some conflict of interest 
at evaluating the manuscript. His group is currently working on a similar topic, even 
building a large database of rumen microbiomes using ONT. The other two reviewers 
are also experienced bioinformaticians working with microbial communities and 
they did not report any concerns with the methods in our article. Nonetheless, in order 
to double check the reviewer’s concern, we used the Hungate database as reference 
in our pipeline. Below is a figure that compares the number of reads mapped to the 
KEGGs that resulted significant in our statistical analysis using eaither the NCBI or the 
Hungate databases. The figure shows a correlation=1 for the number of reads assigned 
from each reference data base. It also shows that the regression is exactly linear with 
x=y. This is a proof of concept that demonstrates that we obtain the same results with 
either database, and proves the reviewer wrong. 
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Given the responses and analyses above, we believe that we have fully addressed the 
comments from the three reviewers or otherwise provided convincing reasons when 
appropriate.   
Therefore, I would like to kindly ask to reconsider the decision made on our manuscript. 
 
Sincerely, 
 
 
Oscar González-Recio, on the behalf of my coauthors and myself 

 


