

Additional Table 1 Summary of the effect of epidermal growth factor receptor (EGFR) modulation in different in vivo and in vitro models of Alzheimer's disease

EGFR modulation	Subjects	Main outcomes	References
Overexpression of EGFR	5-month-old female fruit flies	Mild impact on memory performance.	Chiang et al., 2010
Co-overexpression of EGFR and Aβ42	5-month-old female fruit flies	Synergetic effect on Memory loss as proved by behavioral tests accompanied by hyperactivation of PI3K/Akt pahway.	Chiang et al., 2010
Oral administration of 0.01mg/kg/day Gefitinib (EGFR inhibitor) for 7 days	8-month old Tg(APPswe.PSEN1dE9) double transgenic mice	Memory loss was rescued as indicated by better performance in the Morris water maze test.	Wang et al., 2012
Oral administration of 10 mg/kg/day Gefitinib (EGFR inhibitor) for 18 days	8-month old Tg(APPswe.PSEN1dE9) double transgenic mice	Decreased hippocampal expression of p- EGFR ^{Tyr1068} , the domain for binding with Grb2 that results in activation of MAPK.	Wang et al., 2012
10 ⁻⁵ mg of gefitinib or erlotinib	COS-7 cells transfected with human wild-type EGFR.	Decreased levels of Aβ42 oligomers-activated EGFR as indicated by the western blotting technique.	Wang et al., 2012
Treatment with anti-EGFR for 48 hours using co-immunoprecipitation.	COS-7 cultured cells were co-transfected with genes encoding a human EGFRwt and Aβ42.	Aβ42 were drawn down with EGFR, proving the binding of EGFR with amyloid proteins	Wang et al., 2012
0.01, 0.1, 1, and 10 μg/mL of erlotinib or gefitinib for one week	10-day-old male fruit flies	All dose regimens significantly improved memory. This neuroprotective effect was dose-dependent for gefitinib while it was not dose-dependent for erlotinib.	Wang et al., 2012
100 μg/mL of *JKF-006 *JKF-011 *JKF-027	Human EGFR expressing COS-7 cell	Reversed a 10 μg/mL Aβ42-mediated activation of human EGFR expressing COS-7 cell.	Wang et al., 2012
*58 mg/kg JKF-006 *14.4 mg/kg JKF-011 *55 mg/kg JKF-027 * 40 mg/kg JKF-01	6–8-month-old double transgenic rats	Amelioration of memory loss conformed by Morris water maze test.	Wang et al., 2012
	10-day-old Pan-neuronal expressing human Aβ42 fruit fly (exemplifying early stage of AD)	EGFR expression is elevated, and Aβ42 stimulates EGFR/PI3K, distorts the synaptic	Wang et al., 2013

	0
Z	VPB
Wid.	100
Reg	The state of
9	Peration Research

		plasticity, and eventually results in memory	
		impairment.	
	35-day-old Pan-neuronal expressing human	Aβ42 leads to a pronounced decrease in EGFR	Wang et al., 2013
	Aβ42 fruit fly (exemplifying late stage of AD)	which ultimately causes neuronal degeneration.	
	APP/PS1 8-month-old double transgenic mice	The ratio of (p-EGFR/EGFR) is increased	Wang et al., 2013
		relative to wild-type mice	wang et al., 2013
*CL-387,785 (HER1/2 dual inhibitor)	*HEV 203 dariyad call lina (CG)		
*AG825 (HER-2-selective inhibitor)	*HEK293-derived cell line (CG)	Only CL-387,785 but not AG825, gefitinib, or	
*Gefitinib (EGFR-selective inhibitor)	*HEK293-derived cell line (NG)	lapatinib blocked the processing of APP in CG	Wang et al., 2017
* Lapatinib (HER1/2 dual)		cells but not in NG cells.	
	*HEK293	Reduction in p62 accompanied by an increase in	
CL-387,785 (HER1/2 dual inhibitor)	cells that overexpressed C99-YFP	the LC3-II/LC3-I ratio suggestive of autophagy	Wang et al., 2017
	*double transgenic mice	induction.	
		A Section 11, 1-1-1, A 1-4 and EDIV medianness	
Afatinib (selective EGFR inhibitor)	*D ' 1, 1	Afatinib blocked Akt and ERK pathways.	
	*Primary cultured astrocytes	Furthermore, afatinib amended the OGD-	Ch 1 2010
	*CTX-TNA2 cells subjected to oxygen and	induced increase in GFAP, NO, cyclooxygenase	Chen et al., 2019
	glucose deprivation (OGD).	II, inducible nitric oxide synthase authenticating	
	Neuronal cells treated with H ₂ O ₂ or 6-hydroxydopamine	anti-inflammatory effects of EGFR inhibition.	
GCC (1 d. EGED: 171)		Selective EGFR inhibitor C56 inhibited 6	C 1E 2015
C56 (selective EGFR inhibitor)		OHDA-mediated neuronal apoptosis and axonal	Cao and Fang, 2015
		degeneration.	
Lapatinib ditosylate (dual EGFR/HER2 inhibitor)	D-galactose/ovarctomized rats	Lapatinib ameliorated behavioral performance as	
		indicated by Morris water maze, novel object	
		recognition test. It suppressed EGFR, HER-2,	
		Aβ1-42, p-tau, GFAP, TNF-α, P38 MAPK,	Mansour et al., 2021
		GluR-II, and mTOR. While activating the	
		prosuvival pathway; PI3K/AKT/GSK-3β and	
		neuroprotective nitrite content.	
Ibrutinib (an EGFR inhibitor)	*5xFAD mice * PS19 mice	Ibrutinib inhibited Aβ, p-tau, p-CDK-5,	
		neuroinflammation, along with induction of	Lee et al., 2021
		dendritic spinogenesis via activation of PI3K.	

REFERENCES

- Cao X, Fang Y (2015) Transducing oxidative stress to death signals in neurons. J Cell Biol 211:741-743.
- Chen YJ, Hsu CC, Shiao YJ, Wang HT, Lo YL, Lin AMY (2019) Anti-inflammatory effect of afatinib (an EGFR-TKI) on OGD-induced neuroinflammation. Sci Rep 9:2516.
- Chiang HC, Wang L, Xie Z, Yau A, Zhong Y (2010) PI3 kinase signaling is involved in Aβ-induced memory loss in Drosophila. Proc Natl Acad Sci U S A 107:7060-7065.
- Lee H, Jeon SG, Kim J, Kang RJ, Kim S, Han K, Park H, Kim K, Sung YM, Nam HY, Koh YH, Song M, Suk K, Hoe H (2021) Ibrutinib modulates Aβ/tau pathology, neuroinflammation, and cognitive function in mouse models of Alzheimer's disease. Aging Cell 20:e13332.
- Mansour HM, Fawzy HM, El-Khatib AS, Khattab MM (2021) Lapatinib ditosylate rescues memory impairment in D-galactose/ovariectomized rats: Potential repositioning of an anti-cancer drug for the treatment of Alzheimer's disease. Exp Neurol doi:10.1016/j.expneurol.2021.113697.
- Wang BJ, Her GM, Hu MK, Chen YW, Tung YT, Wu PY, Hsu WM, Lee H, Jin LW, Hwang SPL, Chen RPY, Huang CJ, Liao YF (2017) ErbB2 regulates autophagic flux to modulate the proteostasis of APP-CTFs in Alzheimer's disease. Proc Natl Acad Sci U S A 114:E3129-3138.
- Wang L, Chiang HC, Wu W, Liang B, Xie Z, Yao X, Ma W, Du S, Zhong Y (2012) Epidermal growth factor receptor is a preferred target for treating Amyloid-β-induced memory loss. Proc Natl Acad Sci U S A 109:16743-16748.
- Wang L, Liang B, Zhong Y (2013) Reduced EGFR level potentially mediates the Aβ42-induced neuronal loss in transgenic fruit fly and mouse. Protein Cell 4:647-649.