Supporting Information

Rh₂(II)-Catalyzed Enantioselective Intramolecular Büchner Reaction and Aromatic Substitution of Donor-Donor Carbenes

Dong Zhu,^a Tongxiang Cao, ^a Kai Chen,^{*,b} and Shifa Zhu^{*,a,c}

^a Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China.

> ^b. College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China. ^c. State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P.R. China.

1.	General information	2
2.	Table S1. Optimization of Büchner reaction conditions	3
3.	Table S2. Optimization of aromatic substitution conditions.	4
4.	General procedure for preparation of enynones	5
5.	General procedure for Büchner reaction	18
6.	Table S3. racemization control experiments of 2c.	24
7.	Table S4. the racemization of 7-substutited products	25
8.	Scheme S3. the racemization of product 20 with room temperature and dark condition	25
9.	Scheme S4. The decomposition of product 20 was monitored by ¹ H NMR spectrum	26
10.	Trap of free carbene intermediate with 2c and alkenes	27
11.	Trap of radical intermediate with 20 and TEMPO	27
12.	General procedure for Büchner reaction with donor-donor diazo compounds as carbene precursors	28
13.	The racemization of product 4h at room temperature	31
14.	General procedure for aromatic substitution reaction	31
15.	[4+2] cycloaddition of cycloheptatriene 4 with PTAD	36
16.	Hydrogenation of cycloheptatriene 4c	37
17.	Computational details	38
18.	References	71
19.	Spectrum of NMR	72
20.	Data of HPLC	169

1. General information.

All reactions were conducted under dry N_2 atmosphere in schlenk tube. Catalysts were commercial available. Commercially obtained reagents were used without purification. Reaction starting materials were prepared as depicted in the literature.

¹H, ¹³C NMR spectra were recorded on a Bruker AVANCE 400 (400 MHz for ¹H; 100 MHz for ¹³C) and Bruker AVANCE 500 (500 MHz for ¹H; 126 MHz for ¹³C), ¹H NMR and ¹³C NMR chemical shifts were determined relative to internal standard TMS at δ 0.0. Chemical shifts (δ) are reported in ppm, and coupling constants (*J*) are in Hertz(Hz). The following abbreviations were used to explain the multiplicities: s = singlet, d =doublet, t = triplet, q = quartet, m = multiplet, br = broad. Infrared (IR) spectra are recorded on a Nicolet 210 spectrophotometer and were recorded in potassium bromide (KBr) pellet. Mass spectra (MS) were obtained using ESI mass spectrometer. Enantiomeric ratios were determined by HPLC, using a chiralcel OD-H column with hexane and *i*-PrOH as solvents.

2. Table S1. Optimization of Büchner reaction conditions.^[a]

	Ac C	Rh(II) (1 mol%) Sol., RT, Time	F C C	, kan an a	
	1	a	2a		
Entry	Rh(II)	Sol.	Time	Yield (%) ^[b]	ee (%) ^[c]
1	Rh₂(Opiv)₄	DCM	3 h	94	-
2	Rh ₂ (5S-MEPY) ₄	DCM	4 h	trace	-
3	Rh ₂ (R-DOSP) ₄	DCM	4 h	99	racemic
4	Rh2(S-PTTL) ₄	DCM	12 h	97	6
5	Rh ₂ (S-PTAD) ₄	DCM	12 h	91	29
6	$Rh_2(S-TFPTTL)_4$	DCM	4 h	99	-20
7	Rh ₂ (S-TCPTTL) ₄	DCM	4 h	99	73
8	Rh ₂ (S-BTPCP) ₄	DCM	2 h	99	83
9	Rh ₂ (S-BTPCP) ₄	Toluene	4 h	99	60
10	Rh ₂ (S-BTPCP) ₄	CHCl₃	8 h	99	70
11	Rh ₂ (S-BTPCP) ₄	DCE	2 h	99	92
12 ^[d]	Rh₂(S-BTPCP)₄	DCE	30 h	99	96
13 ^[e]	Rh ₂ (S-BTPCP) ₄	DCE	53 h	99	96

[a] The reaction was performed in DCE under N₂, 1a = 0.2 mmol, [1a] = 0.1 M, 1 mol% Rh(II). [b] isolated yield. [c] The ee value of 2a was determined by HPLC using a chiral stationary phase. [d] -20 °C. [e] -20 °C, 0.5 mol% Rh₂(S-BTPCP)₄.

Rh₂(S-BPTTL)₄

Rh₂(S-NTTL)₄

Rh₂(S-BTPCP)₄ Rh₂(5S-MEPY)₄

3. Table S2. Optimization of aromatic substitution conditions.^a

Rh(II) (1 mol%) DCE, RT, 24 h											
	Me 5a		6a								
Entry	Rh(II)	Sol.	Time	Yield ^b (%)	ee ^c (%)						
1	Rh2(OPiv)4	DCE	12 h	95%	-						
2 ^d	Znl ₂	DCE	3 h	99%	-						
3	Rh ₂ (S-DOSP) ₄	DCE	12 h	99	-35						
4	Rh ₂ (S-PTAD) ₄	DCE	24 h	99	52						
5	Rh ₂ (S-PTTL) ₄	DCE	12 h	99	91						
6	Rh ₂ (S-TCPTTL) ₄	DCE	12 h	57	53						
7	Rh ₂ (S-TFPTTL) ₄	DCE	12 h	20	35						
8	Rh2(S-BPTTL)4	DCE	48 h	67	70						
9	Rh ₂ (S-NTTL) ₄	DCE	48 h	94	86						
10	Rh ₂ (5S-MEPY) ₄	DCE	24 h	N.R.	-						
11	Rh ₂ (S-BTPCP) ₄	DCE	24 h	93	96						
12	Rh ₂ (S-BTPCP) ₄	DCM	24 h	95	97						
13	Rh ₂ (S-BTPCP) ₄	Toluene	24 h	33	60						
14	Rh ₂ (S-BTPCP) ₄	CHCl₃	24 h	80	92						

[a] The reaction was performed in DCE under N₂, **1a** = 0.2 mmol, [**1a**] = 0.1 M, [b] isolated yield. [c] The *ee* value of **2a** was determined by HPLC using a chiral stationary phase. [d] Znl₂: 10 mol%.

4. General procedure for preparation of enynones.

Scheme S1. general procedure for preparation of *N*-allyl enynones 1a – 1p.

Typical procedure for preparation of S3^[1]

A mixture of 2-iodophenol or N-methyl-2-iodoaniline **S1** (5 mmol), arylboronic acid **S2** (7.5 mmol, 1.5 equiv), anhydrous $Cu(OAc)_2$ (6 mmol, 1.2 equiv, 1.09 g), triethylamine (25 mmol, 5.0 equiv, 3.5 mL) and powdered 4Å molecular sieves (1.0 g) in anhydrous DCM (40 mL) was stirred at room temperature for 48 h. The reaction was monitored by TLC and then the reaction mixture was filtered through a plug of silica gel and the filtrate was concentrated in vacuo. Purification by silica gel chromatography (petroleum ether) afforded chromatographically and spectroscopically pure product **S3**.

Typical procedure for preparation of S5^[2]

Under nitrogen atmosphere, a mixture of **S3** (3 mmol, 1.0 eq.), CuI (10 mol%), Pd(PPh3)₂Cl₂ (5 mol%) were added to a schlenk tube, ${}^{i}Pr_{2}NH$ (2.0 equiv) and THF (12 mL) as co-solvent was added to the reaction mixture, then propargyl alcohol (6 mmol, 2.0 eq) was added slowly. The reaction was stirred for 12 h at 80 °C. The mixture was diluted with H₂O, and extracted with CH₂Cl₂. The extract was dried over MgSO₄ and evaporated under reduced pressure. The residue was purified by chromatography on silica gel with petroleum ether/ethyl acetate (5:1) as the eluent to afford **S4**.

To a solution of S4 (2.0 mmol, 1.0 eq.) in DCM (0.5 M) at room temperature was added MnO_2 (20 eq.). The resulting mixture was stirred overnight and monitored by TLC. After S4 was completely consumed, filtered and concentrated under reduced pressure. Purification of the crude product by flash column chromatography (silica gel, petroleum ether/AcOEt = 10:1) gave S5.

Typical procedure for preparation of enynones 1a – 1p^[2]

S5 (1.0 eq), AcOH (0.4 eq.), piperidine (0.2 eq.) and MgSO₄ (0.5 eq.) were added to a solution of S6 (1.2 eq) in toluene at room temperature. The reaction was stirred at room temperature and monitored by TLC for 1 h. The reaction mixture was extracted with ethyl acetate and water. Combined organic layers were washed with brine and dried over MgSO₄. Filtered and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography (silica gel, petroleum ether/AcOEt = 10:1) to yield 1a - 1p.

General procedure for preparation of Donor-Donor hydrazones S15a-S15i.

Typical procedure for preparation of S14^[4]

To a solution of 2-Fluorobenzophenone **S13** (5.00 mmol, 1.0 equiv) in DMA (10 mL), phenol **S12** (6 mmol, 1.2 equiv) and anhydrous K_2CO_3 (6 mmol, 828 mg, 1.2 equiv) were added. The resulting mixture was stirred and slowly heated to 170 °C. After reacted for 6 h and cooling to room temperature the reaction mixture was poured into H_2O (20 mL) and the aqueous layer was extracted with DCM (3×20 mL). After drying over Na₂SO4, filtration and concentration in vacuo, the desired 2-phenoxybenzophenone **S14** was obtained through flash column chromatography (silica gel, petroleum ether/AcOEt = 30:1). Typical procedure for preparation of hydrazones S15a-S15h^[5]

To a 25 mL Schlenk tube containing a magnetic stirring bar and compound 2-phenoxybenzophenone **S14** (4.0 mmol) in ethanol (10 ml), was added N₂H₄·H₂O (2.0 g, 40 mmol). The solution was stirred under refluxing for 24 hours, the solvent was evaporated under reduced pressure and the resulting crude product extracted with ethyl acetate (3×15 mL). The combined organic layers were dried over Na₂SO₄, filtration and concentration in vacuo, the desired hydrazones **S15a-S15h** was obtained through flash column chromatography (silica gel, petroleum ether/AcOEt = 10:1).

Typical procedure for preparation of S17^[6]

To a 50 mL Schlenk tube containing a magnetic stirring bar, a solution of benzyl bromide (10.0 mmol, 1.7 g, 1.0 equiv) in toluene (20 mL) were added $Pd(OAc)_2$ (112 mg, 5 mol%), PPh₃ (393 mg, 15 mol%), K₃PO₄ (4.2 g, 2.0 equiv) and 2-formylbenzeneboronic acid **S16** (1.8 g, 1.2 equiv). After stirring at 80 °C for 12 h, the reaction mixture was filtered through a pad of silica gel. Concentrated in vacuo, the desired 2-benzylbenzaldehyde **S17** was obtained through flash column chromatography (silica gel, petroleum ether/AcOEt = 50:1).

Typical procedure for preparation of S18

To a 50 mL Schlenk tube containing a magnetic stirring bar, a solution of 2-benzylbenzaldehyde **S17** (8.0 mmol) in THF (10 mL) was added under 0 °C. Phenylmagnesium bromide (1.5 equiv) in 10 mL THF was added dropwise. The reaction was stirred under 0 °C for 12 h. Upon completion, the saturated NH₄Cl (20 mL) was added to quench the reaction, the resulting solution was extracted with EtOAc (20 mL×3). The combined organic layers were dried over Na₂SO₄, filtration and concentration in vacuo, the desired product **S18** was obtained through flash column chromatography (silica gel, petroleum ether/AcOEt = 5:1).

Typical procedure for preparation of S19

To a solution of **S18** (5.0 mmol, 1.0 eq.) in DCM (0.1 M) at room temperature was added PCC (2.0 equiv). The resulting mixture was stirred and monitored by TLC. After **S18** was completely consumed, filtered and concentrated under reduced pressure. the desired product **S19** was obtained through flash column chromatography (silica gel, petroleum ether/AcOEt = 20:1).

Typical procedure for preparation of hydrazones S15i

The desired hydrazones **S15i** was obtained through the corresponding procedure for the synthesis of hydrazones **S15a-S15h**.

Scheme S2. general procedure for preparation of N-allyl enynones 5a - 5l.

Typical procedure for preparation of S9^[3].

To a solution of substituted 2-iodoaniline **S7** (5.0 mmol) in acetone (8 mL) and water (10 mL) was added substituted phenylboronic acid **S2** (6.0 mmol, 1.2 equiv), and K_2CO_3 (1.73 g, 12.5 mmol, 2.5 equiv). A solution of Pd(OAc)₂ (5.6 mg, 0.025 mmol, 0.5 mol %) in acetone (2.0 mL) was then introduced to the reaction mixture via a syringe. After the reaction mixture was stirred at 70 °C overnight, it was allowed to cool to room temperature. The reaction mixture was extracted with EtOAc (3×20 mL), and the combined organic phases were washed with 50 mL of water. The organic phases were dried over anhydrous Na₂SO₄, and concentrated in vacuo. The crude product was purified by silica gel column chromatography (petroleum ether) to give the corresponding substituted 2-aminobiphenyls **S8**.

A solution of concn. HCl (36-38%; 2.3 mL, 6.5 mmol) in water (8.5 mL) was added slowly to the prepared 2aminobiphenyl **S8** (5.0 mmol) with stirring. An aqueous solution of NaNO₂ (20%; 2.59 g, 7.5 mmol) was added to the reaction mixture at 0 °C within 10 min and stirred for 1 h at the same temperature. An aqueous solution of KI (1.66 g, 10.0 mmol) in water (10.0 mL) was added and the reaction mixture was stirred at room temperature overnight. EtOAc (30 mL) was added to the reaction mixture and the organic phase was treated with saturated NaHSO₃ to decolorize. The aqueous phase was extracted with EtOAc (3×20 mL). The combined organic phases were dried over anhydrous Na₂SO₄ and concentrated in vacuo. The crude product was purified by silica gel column chromatography (petroleum ether unless otherwise noted) to give the desired 2-iodobiphenyls **S9**.

Typical procedure for preparation of enynones 5a – 5l

The procedure for the synthesis of enynones 5a-51 from S9 was similar with the synthesis of 1a-1p from S3 described above.

3-(3-(2-(4-Fluorophenoxy)phenyl)prop-2-yn-1-ylidene)pentane-2,4-dione (1a) Yield: 65%, yellow oil, $R_f = 0.3$ (petroleum ether/AcOEt = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, J = 7.7 Hz, 1H), 7.36 – 7.30 (m, 1H), 7.12 – 7.02 (m, 3H), 7.01 – 6.96 (m, 2H), 6.95 (d, J = 1.9 Hz, 1H), 6.81 (d, J = 8.4 Hz, 1H), 2.51 (s, 3H), 2.33 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -118.9. ¹³C NMR (101 MHz, CDCl₃)

δ 200.9, 195.6, 159.2 (d, J = 242.8 Hz), 158.8, 152.0 (d, J = 2.6 Hz), 149.1, 134.1, 131.7, 123.2, 122.2, 120.7 (d, J = 8.4

Hz), 117.3, 116.5 (d, J = 23.5 Hz), 113.3, 103.0, 89.7, 31.0, 27.6. IR (KBr, cm⁻¹) 3065, 2954, 1711, 1686, 1570, 1500, 1447, 1365, 1214, 1092, 952, 847, 758. HRMS (ESI) ([M+H]⁺) Calcd. for [C₂₀H₁₆FO₃]⁺: 323.1078, Found. 323.1081.

3-(3-(2-(4-Chlorophenoxy)phenyl)prop-2-yn-1-ylidene)pentane-2,4-dione (1b) Yield: 63%, yellow oil, R_f = 0.3 (petroleum ether/AcOEt = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, J = 7.7 Hz, 1H), 7.39 – 7.28 (m, 3H), 7.13 (t, J = 7.7 Hz, 1H), 6.97 – 6.85 (m, 4H), 2.48 (s, 3H), 2.33 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 200.8, 195.5, 158.0, 155.1, 149.2, 134.2, 131.8, 129.9, 129.0, 123.7, 122.1, 120.1,

118.3, 113.9, 102.7, 89.7, 30.9, 27.6. IR (KBr, cm⁻¹) 3031, 1711, 1570, 1482, 1445, 1363, 1236, 1168, 956, 872, 760. HRMS (ESI) ([M+H]⁺) Calcd. for [C₂₀H₁₆ClO₃]⁺: 339.0782, Found. 339.0784.

3-(3-(2-(4-Bromophenoxy)phenyl)prop-2-yn-1-ylidene)pentane-2,4-dione (1c) Yield: 62%, yellow oil, R_f = 0.3 (petroleum ether/AcOEt = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.52 (dd, J = 7.8, 1.9 Hz, 1H), 7.48 - 7.42 (m, 2H), 7.39 - 7.32 (m, 1H), 7.13 (t, J = 7.6 Hz, 1H), 6.93 - 6.85 (m, 4H), 2.47 (s, 3H), 2.33 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 200.8, 195.5, 157.8, 155.7, 149.2, 134.2, 132.9, 131.8,

123.8, 122.0, 120.5, 118.4, 116.5, 114.0, 102.6, 89.7, 30.9, 27.6. IR (KBr, cm⁻¹) 3031, 1711, 1693, 1571, 1480, 1444, 1367, 1233, 1170, 1066, 957, 871, 760. HRMS (ESI) ([M+H]⁺) Calcd. for [C₂₀H₁₆BrO₃]⁺: 383.0277, Found. 383.0279.

3-(3-(2-(3-Fluorophenoxy)phenyl)prop-2-yn-1-ylidene)pentane-2,4-dione (1d) Yield: 55%, yellow oil, $R_f = 0.3$ (petroleum ether/AcOEt = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.56 – 7.50 (m, 1H), 7.42 – 7.35 (m, 1H), 7.32 – 7.26 (m, 1H), 7.19 – 7.13 (m, 1H), 6.95 (dd, J = 8.4, 2.4 Hz, 1H), 6.90 (s, 1H), 6.84

(t, J = 8.6 Hz, 1H), 6.78 (d, J = 8.5 Hz, 1H), 6.72 – 6.67 (m, 1H), 2.47 (s, 3H), 2.32 (s, 3H). ¹⁹F NMR

(376 MHz, CDCl₃) δ -110.5. ¹³C NMR (101 MHz, CDCl₃) δ 200.8, 195.6, 163.5 (d, J = 247.2 Hz), 158.0 (d, J = 10.5 Hz), 157.4, 149.1, 134.2, 131.8, 130.7 (d, J = 9.6 Hz), 124.1, 122.0, 119.1, 114.3, 114.1 (d, J = 3.0 Hz), 110.6 (d, J = 21.1 Hz), 106.2 (d, J = 24.6 Hz), 102.5, 89.7, 30.9, 27.6. IR (KBr, cm⁻¹) 3031, 1711, 1572, 1482, 1444, 1367, 1244, 1124, 959, 865, 771. HRMS (ESI) ([M+Na]⁺) Calcd. for [C₂₀H₁₅FNaO₃]⁺: 345.0897, Found. 345.0901.

3-(3-(2-(3-Chlorophenoxy)phenyl)prop-2-yn-1-ylidene)pentane-2,4-dione (1e) Yield: 57%, yellow oil, R_f = 0.3 (petroleum ether/AcOEt = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, J = 7.3 Hz, 1H), 7.38 (t, J = 8.1 Hz, 1H), 7.31 – 7.24 (m, 1H), 7.19 – 7.08 (m, 2H), 6.97 (s, 1H), 6.95 – 6.85 (m, 3H),

2.47 (s, 3H), 2.33 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 200.8, 195.6, 157.4, 157.4, 149.2, 135.2, 134.3, 131.8, 130.7, 124.1, 123.9, 122.0, 119.0, 118.9, 116.8, 114.3, 102.5, 89.7, 30.9, 27.6. IR (KBr, cm⁻¹) 3029, 1712, 1577, 1473, 1443, 1361, 1231, 1108, 952, 908, 768. HRMS (ESI) ([M+Na]⁺) Calcd. for [C₂₀H₁₅ClNaO₃]⁺: 361.0602, Found. 361.0602.

3-(3-(2-(3-Bromophenoxy)phenyl)prop-2-yn-1-ylidene)pentane-2,4-dione (1f) Yield: 57%, yellow oil, R_f = 0.3 (petroleum ether/AcOEt = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, J = 7.3 Hz, 1H), 7.38 (t, J = 7.9 Hz, 1H), 7.30 – 7.19 (m, 2H), 7.18 – 7.09 (m, 2H), 6.91 (dd, J = 11.8, 5.3 Hz, 3H), 2.47 (s, 3H), 2.33 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 200.8, 195.6, 157.5, 157.4, 149.2, 134.3, 131.8,

131.0, 126.9, 124.1, 123.0, 122.0, 121.8, 119.0, 117.3, 114.2, 102.5, 89.8, 31.0, 27.6. IR (KBr, cm⁻¹) 3029, 1712, 1576, 1469, 1445, 1363, 1229, 1109, 953, 896, 765. HRMS (ESI) ([M+Na]⁺) Calcd. for [C₂₀H₁₅BrNaO₃]⁺: 405.0097, Found. 405.0091.

3-(3-(5-Fluoro-2-(4-fluorophenoxy)phenyl)prop-2-yn-1-ylidene)pentane-2,4-dione (1g) Yield: 53%, yellow oil, $R_f = 0.3$ (petroleum ether/AcOEt = 10:1). ¹H NMR (500 MHz, CDCl₃) δ 7.20 (dd, J = 8.2, 3.1 Hz, 1H), 7.05 (dd, J = 9.3, 7.7 Hz, 3H), 6.95 (dd, J = 9.1, 4.4 Hz, 2H), 6.89 (s, 1H), 6.81 (dd, J = 9.1, 4.6 Hz, 1H), 2.47 (s, 3H), 2.34 (s, 3H). ¹⁹F NMR (471 MHz, CDCl₃) δ -119.0, -119.1. ¹³C

NMR (126 MHz, CDCl₃) δ 200.7, 195.4, 159.1 (d, J = 242.7 Hz), 157.9 (d, J = 244.1 Hz), 154.8 (d, J = 2.6 Hz), 152.5 (d, J = 2.6 Hz), 149.7, 121.4, 120.1 (d, J = 8.3 Hz), 120.0 (d, J = 24.7 Hz), 119.3 (d, J = 8.6 Hz), 118.7 (d, J = 23.3 Hz), 116.6 (d, J = 23.5 Hz), 114.8 (d, J = 9.7 Hz), 101.0 (d, J = 3.0 Hz), 90.0, 30.9, 27.6. IR (KBr, cm⁻¹) 3051, 1767, 1712, 1575, 1484, 1422, 1364, 1205, 1091, 947, 845. HRMS (ESI) ([M+Na]⁺) Calcd. for [C₂₀H₁₄F₂NaO₃]⁺: 363.0803, Found. 363.0799.

3-(3-(5-Chloro-2-(4-fluorophenoxy)phenyl)prop-2-yn-1-ylidene)pentane-2,4-dione (1h) Yield: 52%, yellow oil, R_f = 0.3 (petroleum ether/AcOEt = 10:1). ¹H NMR (500 MHz, CDCl₃) δ 7.47 (d, J = 2.5 Hz, 1H), 7.30 – 7.25 (m, 1H), 7.07 (t, J = 8.5 Hz, 2H), 7.01 – 6.96 (m, 2H), 6.91 (s, 1H), 6.74 (d, J = 8.8 Hz, 1H), 2.49 (s, 3H), 2.34 (s, 3H). ¹⁹F NMR (471 MHz, CDCl₃) δ -118.3. ¹³C NMR (126

MHz, CDCl₃) δ 200.8, 195.5, 159.4 (d, J = 243.5 Hz), 157.5, 151.7 (d, J = 2.8 Hz), 149.7, 133.3, 131.6, 128.1, 121.4, 120.8 (d, J = 8.3 Hz), 118.4, 116.7 (d, J = 23.5 Hz), 114.7, 100.9, 90.2, 30.9, 27.6. IR (KBr, cm⁻¹) 3031, 1712, 1688, 1569, 1501, 1477, 1423, 1364, 1250, 1214, 1092, 958, 827, 782. HRMS (ESI) ([M+Na]⁺) Calcd. for [C₂₀H₁₄ClFNaO₃]⁺: 379.0508, Found. 379.0510.

3-(3-(2-(4-Fluorophenoxy)-5-methylphenyl)prop-2-yn-1-ylidene)pentane-2,4-dione (1i) Yield: 63%, yellow oil, $R_f = 0.3$ (petroleum ether/AcOEt = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.31 (s, 1H), 7.14 (d, J = 8.5 Hz, 1H), 7.03 (t, J = 8.7 Hz, 2H), 6.98 – 6.90 (m, 3H), 6.74 (d, J = 8.4 Hz, 1H), 2.49 (s, 3H), 2.32 (d, J = 4.1 Hz, 6H). ¹⁹F NMR (376 MHz, CDCl₃) δ -119.6. ¹³C NMR (101 MHz,

CDCl₃) δ 201.0, 195.6, 158.9 (d, J = 242.0 Hz), 156.5, 152.6 (d, J = 2.3 Hz), 148.9, 134.3, 133.1, 132.6, 122.4, 120.1 (d, J = 8.3 Hz), 117.9, 116.4 (d, J = 23.4 Hz), 113.3, 103.3, 89.4, 31.0, 27.6, 20.4. IR (KBr, cm⁻¹) 3029, 2924, 1710, 1690, 1568,

1495, 1424, 1364, 1246, 1215, 1133, 961, 832. HRMS (ESI) ([M+Na]⁺) Calcd. for [C₂₁H₁₇FNaO₃]⁺: 359.1054, Found. 359.1049.

4-(3-(2-(4-Fluorophenoxy)phenyl)prop-2-yn-1-ylidene)heptane-3,5-dione (1j) Yield: 62%, yellow oil, R_f = 0.3 (petroleum ether/AcOEt = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, J = 7.7 Hz, 1H), 7.31 (t, J = 8.0 Hz, 1H), 7.10 – 7.03 (m, 3H), 6.99 (dd, J = 9.2, 4.0 Hz, 2H), 6.89 (s, 1H), 6.78 (d, J =

8.3 Hz, 1H), 2.87 (q, J = 7.2 Hz, 2H), 2.64 (q, J = 7.2 Hz, 2H), 1.10 (t, J = 7.2 Hz, 3H), 1.04 (t, J = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -118.9. ¹³C NMR (101 MHz, CDCl₃) δ 204.7, 198.3, 159.2 (d, J = 242.8 Hz), 158.0, 152.1 (d, J = 2.9 Hz), 149.4, 134.1, 131.5, 123.1, 120.9 (d, J = 8.2 Hz), 120.3, 117.2, 116.5 (d, J = 23.5 Hz), 113.3, 101.3, 89.4, 36.7, 32.9, 7.9, 7.5. IR (KBr, cm⁻¹) 2981, 2938, 1711, 1570, 1501, 1447, 1371, 1260, 1211, 1039, 966, 848, 756. HRMS (ESI) ([M+Na]⁺) Calcd. for [C₂₂H₁₉FNaO₃]⁺: 373.1210, Found. 373.1205.

2-(3-(2-(4-Fluorophenoxy)phenyl)prop-2-yn-1-ylidene)-1,3-diphenylpropane-1,3-dione (1k) Yield: 51%, yellow oil, R_f = 0.3 (petroleum ether/AcOEt = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 8.2 Hz, 2H), 7.80 (d, J = 8.1 Hz, 2H), 7.52 (dt, J = 12.7, 7.4 Hz, 2H), 7.41 (dt, J = 14.5, 7.6 Hz, 4H), 7.21 (t, J = 7.9 Hz, 1H), 7.04 – 6.90 (m, 5H), 6.87 – 6.82 (m, 2H), 6.68 (d, J = 8.4 Hz, 1H). ¹⁹F NMR

(376 MHz, CDCl₃) δ -119.2. ¹³C NMR (101 MHz, CDCl₃) δ 194.0, 192.9, 159.1 (d, J = 242.1 Hz), 157.9, 152.1 (d, J = 2.5 Hz), 147.9, 136.8, 136.3, 134.2, 133.7, 132.9, 131.3, 129.6, 129.3, 128.7, 128.6, 124.3, 122.9, 120.9 (d, J = 8.3 Hz), 117.2, 116.3 (d, J = 23.4 Hz), 113.3, 102.1, 89.5. IR (KBr, cm⁻¹) 3061, 2957, 2925, 1710, 1679, 1574, 1500, 1446, 1357, 1261, 1213, 1116, 971, 850, 733. HRMS (ESI) ([M+Na]⁺) Calcd. for [C₃₀H₁₉FNaO₃]⁺: 469.1210, Found. 469.1206.

3-(3-(2-Phenoxyphenyl)prop-2-yn-1-ylidene)pentane-2,4-dione (11) Yield: 57%, yellow oil, R_f = 0.3 (petroleum ether/AcOEt = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, J = 7.7 Hz, 1H), 7.39 – 7.29 (m, 3H), 7.12 (dt, J = 21.0, 7.5 Hz, 2H), 7.01 (d, J = 8.0 Hz, 2H), 6.94 (s, 1H), 6.87 (d, J = 8.4 Hz, 1H), 2.49 (s, 3H), 2.32 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 201.0, 195.7, 158.6, 156.3, 148.9, 134.1, 131.7,

129.9, 124.0, 123.2, 122.4, 119.1, 118.1, 113.7, 103.3, 89.6, 31.0, 27.7. IR (KBr, cm⁻¹) 3032, 1712, 1682, 1576, 1483, 1445, 1363, 1233, 1162, 1022, 953, 871, 755. HRMS (ESI) ([M+Na]⁺) Calcd. for [C₂₀H₁₆NaO₃]⁺: 327.0992, Found. 327.0988.

201.1, 195.7, 159.2, 153.8, 148.8, 134.0, 133.8, 131.7, 130.4, 122.8, 122.6, 119.3, 117.3, 113.2, 103.6, 89.6, 31.0, 27.7,

20.8. IR (KBr, cm⁻¹) 3031, 1710, 1684, 1573, 1501, 1481, 1444, 1361, 1233, 1024, 958, 854, 752. HRMS (ESI) ([M+Na]⁺) Calcd. for [C₂₁H₁₈NaO₃]⁺: 341.1148, Found. 341.1143.

3-(3-(2-(4-Methoxyphenoxy)phenyl)prop-2-yn-1-ylidene)pentane-2,4-dione (1n) Yield: 55%, yellow oil, R_f = 0.3 (petroleum ether/AcOEt = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, J = 7.4
Hz, 1H), 7.28 (t, J = 7.6 Hz, 1H), 7.06 – 6.95 (m, 4H), 6.90 (d, J = 6.9 Hz, 2H), 6.75 (d, J = 8.4 Hz, 1H), 3.81 (s, 3H), 2.55 (s, 3H), 2.34 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 201.1, 195.7, 159.9, 156.4,

149.2, 148.8, 134.0, 131.7, 122.6, 122.4, 121.0, 116.4, 115.0, 112.6, 103.7, 89.6, 55.7, 31.0, 27.7. IR (KBr, cm⁻¹) 3012, 2955, 1712, 1683, 1576, 1480, 1446, 1357, 1235, 1031, 958, 856, 751. HRMS (ESI) ([M+Na]⁺) Calcd. for [C₂₁H₁₈NaO₄]⁺: 357.1097, Found. 357.1095.

3-(3-(2-(2-Bromophenoxy)phenyl)prop-2-yn-1-ylidene)pentane-2,4-dione (10) Yield: 87%, yellow oil, R_f = 0.3 (petroleum ether/AcOEt = 10:1). ¹H NMR (500 MHz, Chloroform-d) δ 7.65 (dd, J = 7.9, 1.5 Hz, 1H), 7.53 (dd, J = 7.7, 1.6 Hz, 1H), 7.37 – 7.25 (m, 2H), 7.09 (ddd, J = 13.7, 8.2, 6.9 Hz, 2H), 6.98 (d, J = 8.9 Hz, 2H), 6.71 (d, J = 8.3 Hz, 1H), 2.54 (s, 3H), 2.34 (s, 3H). ¹³C NMR (126 MHz, Chloroform-d) δ 201.01, 195.73, 158.12, 152.74, 148.91, 134.18, 134.04, 131.71, 128.93, 125.89, 123.35, 122.37, 121.16,

 $116.89, 115.07, 113.10, 102.96, 89.88, 31.13, 27.75. \label{eq:key} IR (KBr, cm^{-1}) \ 3027, 1708, 1681, 1576, 1480, 1363, 1235, 1021, 960, 851, 746. \ HRMS (ESI) ([M+Na]^+) \ Calcd. \ for \ [C_{20}H_{16}BrNaO_3]^+: 383.0277, \ Found. \ 383.0270.$

120.7, 118.6, 116.3, 114.6, 108.6, 94.8, 53.1, 52.2, 31.5, 30.0, 28.6. HRMS (ESI) ($[M+Na]^+$) Calcd. for $[C_{23}H_{19}BrNaO_3]^+$: 445.0410, Found. 445.0411.

3-(3-(2-(Methyl(phenyl)amino)phenyl)prop-2-yn-1-ylidene)pentane-2,4-dione (1q) Yield: 33%, yellow oil, $R_f = 0.3$ (petroleum ether/AcOEt = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, J = 7.7 Hz, 1H), 7.39 (d, J = 8.1 Hz, 1H), 7.24 – 7.15 (m, 4H), 6.82 – 6.76 (m, 2H), 6.72 (d, J = 8.1 Hz, 2H), 3.28 (s, 3H), 2.31 (s, 3H), 2.28 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 201.0, 195.5, 151.4, 149.0, 148.8, 134.5,

131.6, 129.0, 127.3, 125.1, 122.2, 120.0, 118.9, 115.6, 105.2, 89.7, 40.2, 30.8, 27.4. IR (KBr, cm⁻¹) 3029, 2954, 1711, 1575, 1500, 1483, 1446, 1366, 1231, 1129, 973, 858, 749. HRMS (ESI) ([M+Na]⁺) Calcd. for [C₂₁H₁₉NNaO₃]⁺: 340.1308, Found. 340.1309.

3-(3-(2-(4-Fluorobenzyl)phenyl)prop-2-yn-1-ylidene)pentane-2,4-dione (1r) Yield: 88%, yellow oil, $R_f = 0.3$ (petroleum ether/AcOEt = 10:1). ¹H NMR (500 MHz, Chloroform-d) δ 7.50 (d, J = 7.7 Hz, 1H), 7.35 (t, J = 7.6 Hz, 1H), 7.24 (t, J = 7.8 Hz, 1H), 7.19 - 7.12 (m, 3H), 6.98 (t, J = 8.7 Hz, 2H), 6.93 (s, 1H), 4.13 (s, J = 7.6 Hz, 1H), 7.24 (t, J = 7.8 Hz, 1H), 7.19 - 7.12 (m, 3H), 6.98 (t, J = 8.7 Hz, 2H), 6.93 (s, 1H), 4.13 (s, J = 7.6 Hz, 1H), 7.24 (t, J = 7.8 Hz, 1H), 7.19 - 7.12 (m, 3H), 6.98 (t, J = 8.7 Hz, 2H), 6.93 (s, 1H), 4.13 (s, J = 7.6 Hz, 1H), 7.24 (t, J = 7.8 Hz, 1H), 7.19 - 7.12 (m, 3H), 6.98 (t, J = 8.7 Hz, 2H), 6.93 (s, 1H), 4.13 (s, J = 7.6 Hz, 1H), 7.19 - 7.12 (m, 3H), 6.98 (t, J = 8.7 Hz, 2H), 6.93 (s, 1H), 4.13 (s, J = 7.6 Hz, 1H), 7.19 - 7.12 (m, 3H), 6.98 (t, J = 8.7 Hz, 2H), 6.93 (s, 1H), 4.13 (s, J = 7.6 Hz, 1H), 7.19 - 7.12 (m, 3H), 6.98 (t, J = 8.7 Hz, 2H), 6.93 (s, 1H), 4.13 (s, J = 7.6 Hz, 1H), 7.19 - 7.12 (m, 3H), 6.98 (s, J = 8.7 Hz, 2H), 6.93 (s, 1H), 4.13 (s, J = 7.6 Hz, 1H), 7.19 - 7.12 (m, 3H), 6.98 (s, J = 8.7 Hz, 2H), 6.93 (s, 1H), 4.13 (s, J = 7.6 Hz, 1H), 7.19 - 7.12 (s, J = 7.8 Hz, 1H), 7

2H), 2.46 (s, 3H), 2.37 (s, 3H). ¹⁹F NMR (471 MHz, Chloroform-d) δ -116.87. ¹³C NMR (126 MHz, Chloroform-d) δ 200.8, 195.6, 161.5 (d, J_{C-F} = 244.3 Hz), 149.4, 143.7, 135.7 (d, J_{C-F} = 3.2 Hz), 133.2, 130.5, 130.2 (d, J_{C-F} = 7.8 Hz), 129.7, 126.6, 122.0, 121.4, 115.3 (d, J_{C-F} = 21.3 Hz), 105.8, 88.8, 39.2, 30.9, 27.2. HRMS (ESI) ([M+H]⁺) Calcd. for [C₂₁H₁₈FO₂]⁺: 321.1285, Found. 321.1286.

((2-(4-Bromophenoxy)phenyl)(phenyl)methylene)hydrazine (S15a) Yield: 87%, yellow oil, R_f = 0.25 (petroleum ether/AcOEt = 5:1). *E/Z* = 81:19. ¹H NMR (500 MHz, Chloroform-d) δ 7.54 – 7.41 (m,
^{3r} 2H), 7.43 – 7.22 (m, 8H), 7.06 (d, J = 8.2 Hz, 1H), 6.81 (d, J = 8.8 Hz, 2H), 5.53 (br, 2H). ¹³C NMR (126 MHz, Chloroform-d) δ 155.7, 154.6, 145.8, 138.0, 132.6, 131.0, 130.7, 128.1, 128.1, 126.0, 124.5,

120.9, 119.2, 118.8, 116.2. IR (KBr, cm⁻¹) 3416, 3059, 1576, 1480, 1442, 1328 1233, 1091, 1066, 832, 754. HRMS (ESI) ([M+H]⁺) Calcd. for [C₁₉H₁₆BrN₂O]⁺: 367.0441, Found. 367.0438.

((2-(3-Bromophenoxy)phenyl)(phenyl)methylene)hydrazine (S15b) Yield: 82%, yellow oil, R_f = 0.25 (petroleum ether/AcOEt = 5:1). *E/Z* = 80:20. ¹H NMR (500 MHz, Chloroform-d) δ 7.50 – 7.45 (m, 2H), 7.34 – 7.26 (m, 6H), 7.18 (dt, J = 7.9, 1.1 Hz, 1H), 7.11 (dd, J = 8.2, 2.1 Hz, 2H), 7.06 (t, J = 2.1 Hz, 1H), 6.86 (dd, J = 8.2, 2.3 Hz, 1H), 5.54 (br, 2H). ¹³C NMR (126 MHz, Chloroform-d) δ 157.4, 154.2, 145.7,

137.9, 131.1, 130.8, 130.7, 128.1, 128.1, 126.6, 126.0, 124.7, 124.4, 122.6, 122.2, 119.7, 117.7. IR (KBr, cm⁻¹) 3417, 3061, 1577, 1472, 1438, 1227, 1060, 946, 890, 761. HRMS (ESI) ([M+H]⁺) Calcd. for [C₁₉H₁₆BrN₂O]⁺: 367.0441, Found. 367.0442.

 $((2-Phenoxyphenyl)(phenyl)methylene)hydrazine (S15c) Yield: 93\%, yellow oil, R_f = 0.25 (petroleum ether/AcOEt = 5:1). E/Z = 76:24. ¹H NMR (500 MHz, Chloroform-d) & 7.58 - 7.52 (m, 2H), 7.43 (ddd, J = 8.9, 7.2, 1.9 Hz, 1H), 7.35 - 7.26 (m, 8H), 7.12 - 7.05 (m, 2H), 6.99 - 6.94 (m, 2H), 5.57 (br, 2H). ¹³C NMR (126 MHz, Chloroform-d) & 156.4, 155.1, 146.2, 138.2, 130.9, 130.6, 129.7, 128.1, 128.0, 126.1, 123.9, 123.8, 119.5, 118.8, 117.4. IR (KBr, cm⁻¹) 3416, 3056, 1587, 1484, 1443, 1329, 1235, 1067, 948, 869, 746. HRMS (ESI) ([M+H]⁺) Calcd. for [C₁₉H₁₇N₂O]⁺: 289.1335, Found. 289.1336.$

(Phenyl(2-(p-tolyloxy)phenyl)methylene)hydrazine (S15d) Yield: 91%, yellow oil, $R_f = 0.25$ (petroleum ether/AcOEt = 5:1). E/Z = 86:14. ¹H NMR (500 MHz, Chloroform-d) δ 7.61 – 7.52 (m, 2H), 7.41 (ddd, J = 8.6, 7.3, 1.9 Hz, 1H), 7.36 – 7.27 (m, 4H), 7.24 (td, J = 7.4, 1.1 Hz, 1H), 7.10 (d, J = 8.3 Hz, 2H), 7.03 (dd, J = 8.4, 1.1 Hz, 1H), 6.87 (d, J = 8.5 Hz, 2H), 5.58 (br, 2H), 2.33 (s, 3H).

¹³C NMR (126 MHz, Chloroform-d) δ 155.6, 154.0, 146.4, 138.3, 133.4, 130.8, 130.5, 130.2, 128.1, 128.0, 126.1, 123.55, 123.50, 119.6, 118.2, 20.8. IR (KBr, cm⁻¹) 3418, 3029, 2949, 1589, 1492, 1444, 1237, 946, 832, 763. HRMS (ESI) ([M+H]⁺)

Calcd. for $[C_{20}H_{19}N_2O]^+$: 303.1492, Found. 303.1493.

(126 MHz, Chloroform-d) δ 156.2, 149.5, 146.5, 138.2, 130.7, 130.5, 128.7, 128.2, 128.1, 126.1, 123.2, 121.2, 119.3, 117.4, 114.8, 55.6. IR (KBr, cm⁻¹) 3406, 3058, 2947, 1593, 1495, 1447, 1226, 1033, 948, 840, 764. HRMS (ESI) ([M+H]⁺) Calcd. for [C₂₀H₁₉N₂O₂]⁺: 319.1441, Found. 319.1442.

((2-(4-Bromophenoxy)phenyl)(4-methoxyphenyl)methylene)hydrazine (S15f) Yield: 83%, yellow oil, $R_f = 0.25$ (petroleum ether/AcOEt = 5:1). E/Z = 85:15. ¹H NMR (500 MHz, Chloroform-d) δ 7.46 – 7.40 (m, 3H), 7.38 – 7.34 (m, 2H), 7.32 – 7.28 (m, 2H), 7.06 (d, J = 8.2 Hz, 1H), 6.82 (dd, J = 11.1, 8.9 Hz, 4H), 5.33 (br, 2H), 3.81 (s, 3H). ¹³C NMR (126 MHz, Chloroform-d) δ 159.7, 155.8, 154.5, 146.1, 132.5, 131.0, 130.8, 130.6, 127.3, 124.5, 124.4, 120.9, 119.3, 116.2, 113.6, 55.3.

IR (KBr, cm⁻¹) 3414, 3055, 2941, 1603, 1478, 1445, 1240, 1166, 1025, 832, 749. HRMS (ESI) ([M+H]⁺) Calcd. for [C₂₀H₁₈BrN₂O₂]⁺: 397.0546, Found. 397.0547.

(*E*)-((4-Fluorophenyl)(2-(p-tolyloxy)phenyl)methylene)hydrazine (S15g) Yield: 62%, yellow oil, $R_f = 0.25$ (petroleum ether/AcOEt = 5:1). ¹H NMR (500 MHz, Chloroform-d) δ 7.52 (ddd, J = 8.7, 5.3, 1.5 Hz, 2H), 7.41 (ddd, J = 8.7, 7.2, 2.0 Hz, 1H), 7.30 – 7.22 (m, 2H), 7.09 (d, J = 8.2 Hz, 2H), 7.04 – 6.96 (m, 3H), 6.87 – 6.81 (m, 2H), 5.53 (br, 2H), 2.32 (s, 3H). ¹⁹F NMR (471 MHz, Chloroform-d) δ -114.27.

¹³C NMR (126 MHz, Chloroform-d) δ 162.8 (d, J = 247.2 Hz), 155.5, 153.9, 145.5, 134.5 (d, J = 3.1 Hz), 133.5, 130.7 (d, J = 3.8 Hz), 130.2, 127.8 (d, J = 8.1 Hz), 123.6, 123.2, 119.5, 118.3, 115.1, 114.9, 20.7. IR (KBr, cm⁻¹) 3411, 3051, 2944, 1600, 1498, 1444, 1233, 1158, 834, 752. HRMS (ESI) ([M+H]⁺) Calcd. for [C₂₀H₁₈FN₂O]⁺: 321.1398, Found. 321.1399.

(Z)-((2-(4-Bromophenoxy)phenyl)(furan-2-yl)methylene)hydrazine (S15h) Yield: 53%, yellow oil, $R_f = 0.25$ (petroleum ether/AcOEt = 5:1). ¹H NMR (500 MHz, Chloroform-d) δ 7.45 (ddd, J = 8.2, 7.3, 1.8 Hz, 1H), 7.43 – 7.34 (m, 4H), 7.31 – 7.25 (m, 1H), 7.05 (dd, J = 8.2, 1.1 Hz, 1H), 6.87 – 6.79 (m,

2H), 6.35 (dd, J = 3.4, 1.8 Hz, 1H), 6.13 (dd, J = 3.3, 0.9 Hz, 1H), 5.53 (s, 2H). ¹³C NMR (126 MHz, Chloroform-d) δ 155.8, 154.4, 152.2, 142.9, 138.0, 132.6, 131.2, 131.0, 124.5, 122.6, 120.6, 119.3, 116.2, 111.1, 109.2. IR (KBr, cm⁻¹) 3414, 3055, 2946, 1574, 1480, 1442, 1234, 1155, 1066, 969, 745. HRMS (ESI) ([M+H]⁺) Calcd. for [C₁₇H₁₄BrN₂O₂]⁺: 357.0233, Found. 357.0234.

((2-Benzylphenyl)(phenyl)methylene)hydrazine (S15i) Yield: 78%, yellow oil, $R_f = 0.25$ (petroleum ether/AcOEt = 5:1). E/Z = 96:4. ¹H NMR (500 MHz, Chloroform-d) δ 7.50 (dt, J = 7.3, 1.8 Hz, 2H), 7.42 (pd, J = 7.4, 1.7 Hz, 2H), 7.37 – 7.29 (m, 4H), 7.27 – 7.16 (m, 4H), 7.15 – 7.10 (m, 2H), 5.23 (br, 2H), 3.83 (s, 2H). ¹³C NMR (126 MHz, Chloroform-d) δ 148.9, 140.4, 140.0, 138.0, 132.5, 130.6, 129.4, 129.3, 129.2,

128.4, 128.3, 128.1, 127.3, 126.1, 126.0, 39.1. IR (KBr, cm⁻¹) 3416, 3024, 2942, 1573, 1488, 1443, 1169, 739, 696. HRMS (ESI) ([M+H]⁺) Calcd. for [C₂₀H₁₉N₂]⁺: 287.1543, Found. 287.1544.

3-(3-(4'-Methyl-[1,1'-biphenyl]-2-yl)prop-2-yn-1-ylidene)pentane-2,4-dione (5a) Yield: 71%, yellow oil, R_f = 0.3 (petroleum ether/AcOEt = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, J = 7.7 Hz, 1H), 7.35 (d, J = 7.4 Hz, 1H), 7.30 (d, J = 8.0 Hz, 3H), 7.24 (t, J = 7.5 Hz, 1H), 7.15 (d, J = 7.7 Hz, 2H), 6.77 (s, 1H), 2.33 (s, 3H), 2.21 (s, 3H), 2.12 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 201.0, 195.6, 148.7, 144.8,

137.8, 137.1, 133.8, 130.3, 129.8, 129.1, 129.0, 127.1, 122.4, 120.1, 107.5, 87.7, 30.6, 27.5, 21.2. IR (KBr, cm⁻¹) 3023, 2921, 1711, 1669, 1570, 1476, 1419, 1361, 1243, 1176, 953, 822, 762. HRMS (ESI) ([M+H]⁺) Calcd. for [C₂₁H₁₉O₂]⁺: 303.1380, Found. 303.1384.

3-(3-(4'-Methoxy-[1,1'-biphenyl]-2-yl)prop-2-yn-1-ylidene)pentane-2,4-dione (5b) Yield: 69%, yellow oil, R_f = 0.3 (petroleum ether/AcOEt = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, J = 7.6 Hz, 1H), 7.46 - 7.41 (m, 3H), 7.38 (d, J = 6.7 Hz, 1H), 7.31 (t, J = 7.5 Hz, 1H), 6.99 - 6.95 (m, 3H), 6.86 (s, 1H), 3.87 (s, 3H), 2.30 (s, 3H), 2.23 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 201.0, 195.6, 159.5, 148.7,

144.5, 133.8, 132.3, 130.3, 130.3, 129.67, 126.9, 122.3, 120.0, 113.8, 107.6, 87.7, 55.4, 30.6, 27.5. IR (KBr, cm⁻¹) 3004, 2959, 2837, 1710, 1664, 1576, 1516, 1474, 1419, 1371, 1248, 1178, 1035, 958, 835, 763. HRMS (ESI) ([M+H]⁺) Calcd. for [C₂₁H₁₉O₃]⁺: 319.1329, Found. 319.1327.

3-(3-(4'-(tert-Butyl)-[1,1'-biphenyl]-2-yl)prop-2-yn-1-ylidene)pentane-2,4-dione (5c) Yield: 68%, yellow oil, R_f = 0.3 (petroleum ether/AcOEt = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, J = 7.6 Hz, 1H), 7.48 – 7.38 (m, 6H), 7.32 (td, J = 7.5, 1.6 Hz, 1H), 6.88 (s, 1H), 2.29 (s, 3H), 2.12 (s, 3H), 1.38 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 200.9, 195.6, 150.9, 148.6, 144.6, 137.0, 133.9, 130.3, 129.9, 128.8,

127.0, 125.3, 122.4, 120.1, 107.6, 87.8, 34.7, 31.4, 30.5, 27.6. IR (KBr, cm⁻¹) 3027, 2961, 2869, 1710, 1690, 1570, 1516, 1476, 1363, 1243, 1174, 1054, 955, 837, 763. HRMS (ESI) ([M+Na]⁺) Calcd. for [C₂₄H₂₄NaO₂]⁺: 367.1669, Found. 367.1673.

3-(3-(4'-Vinyl-[1,1'-biphenyl]-2-yl)prop-2-yn-1-ylidene)pentane-2,4-dione (5d) Yield: 67%, yellow oil, $R_f = 0.3$ (petroleum ether/AcOEt = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, J = 7.7 Hz, 1H), 7.49 – 7.43 (m, 5H), 7.40 (d, J = 7.5 Hz, 1H), 7.33 (t, J = 7.5 Hz, 1H), 6.84 (s, 1H), 6.77 (dd, J = 17.6, 10.9 Hz, 1H), 5.83 (d, J = 17.6 Hz, 1H), 5.31 (d, J = 10.9 Hz, 1H), 2.29 (s, 3H), 2.19 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) & 201.0, 195.6, 148.9, 144.3, 139.3, 137.2, 136.3, 133.9, 130.4, 129.7, 129.3, 127.3, 126.2, 122.1, 120.1, 114.5, 107.0, 87.8, 30.6, 27.4. IR (KBr, cm⁻¹) 3026, 2943, 2837, 1710, 1691, 1576, 1476, 1370, 1244, 1176, 957, 845, 763. HRMS (ESI) $([M+H]^+)$ Calcd. for $[C_{22}H_{19}O_2]^+$: 315.1380, Found. 315.1382.

3-(3-(4'-Fluoro-[1,1'-biphenyl]-2-yl)prop-2-yn-1-ylidene)pentane-2,4-dione (5e) Yield: 55%, yellow oil, R_f = 0.3 (petroleum ether/AcOEt = 10:1). ¹H NMR (500 MHz, CDCl₃) δ 7.58 (dd, J = 7.7, 1.4 Hz, 1H), 7.48 – 7.44 (m, 3H), 7.36 (ddd, J = 14.8, 7.5, 1.3 Hz, 2H), 7.16 – 7.10 (m, 2H), 6.82 (s, 1H), 2.31 (s, 3H), 2.25 (s, 3H). ¹⁹F NMR (471 MHz, CDCl₃) δ -114.2. ¹³C NMR (126 MHz, CDCl₃) δ 200.8, 195.5, 162.6 (d, J = 247.5 Hz), 149.1, 143.6, 135.93 (d, J = 3.5 Hz), 133.82, 130.80 (d, J = 8.2 Hz), 130.36, 129.72, 127.40, 121.91, 120.14, 115.29 (d, J = 21.6 Hz), 106.61, 87.79, 30.61, 27.37. IR (KBr, cm⁻¹) 3029, 2927, 1711, 1692, 1576, 1477, 1370, 1242, 1176, 1054, 958,

3-(3-(4'-Fluoro-5-methyl-[1,1'-biphenyl]-2-yl)prop-2-yn-1-ylidene)pentane-2,4-dione (5f) Yield: 68%, yellow oil, $R_f = 0.3$ (petroleum ether/AcOEt = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.50 – 7.41 (m, 3H), 7.21 – 7.08 (m, 4H), 6.83 (s, 1H), 2.41 (s, 3H), 2.30 (s, 3H), 2.24 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -114.4. ¹³C NMR (101 MHz, CDCl₃) δ 200.9, 195.5, 162.6 (d, J = 247.2 Hz), 148.6,

143.5, 141.0, 136.0 (d, J = 3.2 Hz), 133.8, 130.8 (d, J = 8.1 Hz), 130.5, 128.3, 122.3, 117.2, 115.2 (d, J = 21.4 Hz), 107.4, 87.5, 30.6, 27.4, 21.6. IR (KBr, cm⁻¹) 3026, 2925, 1711, 1692, 1575, 1511, 1488, 1370, 1224, 1176, 1024, 959, 837. HRMS (ESI) ($[M+Na]^+$) Calcd. for $[C_{21}H_{17}FNaO_2]^+$: 343.1105, Found. 343.1100.

840, 763. HRMS (ESI) ([M+Na]⁺) Calcd. for [C₂₀H₁₅FNaO₂]⁺: 329.0948, Found. 329.0943.

4-(3-(4'-Methyl-[1,1'-biphenyl]-2-yl)prop-2-yn-1-ylidene)heptane-3,5-dione (5g) Yield: 77%, yellow oil, $R_f = 0.3$ (petroleum ether/AcOEt = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, J = 7.7 Hz, 1H), 7.34 – 7.27 (m, 4H), 7.20 (t, J = 7.4 Hz, 1H), 7.13 (d, J = 7.9 Hz, 2H), 6.71 (s, 1H), 2.48 (dq, J = 17.3, 7.2 Hz, 4H), 2.31 (s, 3H), 0.97 (t, J = 7.2 Hz, 3H), 0.86 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz,

CDCl₃) & 204.6, 198.4, 149.0, 144.5, 137.7, 137.0, 133.8, 130.2, 129.8, 129.0, 129.0, 127.0, 120.5, 120.1, 105.9, 87.5, 36.6, 32.8, 21.3, 8.0, 7.5. IR (KBr, cm⁻¹) 3025, 2979, 2937, 1709, 1691, 1577, 1476, 1375, 1206, 1115, 1043, 967, 821, 762. HRMS (ESI) ([M+Na]⁺) Calcd. for [C₂₃H₂₂NaO₂]⁺: 353.1512, Found. 353.1511.

2-(3-(4'-Methyl-[1,1'-biphenyl]-2-yl)prop-2-yn-1-ylidene)-1,3-diphenylpropane-1,3-dione (5h) Yield: 63%, yellow oil, $R_f = 0.3$ (petroleum ether/AcOEt = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, J = 7.4 Hz, 2H), 7.82 (d, J = 7.8 Hz, 2H), 7.60 – 7.41 (m, 6H), 7.37 – 7.33 (m, 4H), 7.18 (d, J = 7.6 Hz, 3H), 7.10 (d, J = 7.7 Hz, 1H), 6.92 (s, 1H), 2.40 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 194.1, 193.0, 147.6, 144.3, 137.5, 136.9, 136.9, 136.4, 134.0, 133.8, 133.0, 130.1, 129.7, 129.6, 129.3, 129.0, 128.9, 128.8, 128.7, 126.8, 124.8, 120.0, 106.8, 87.8, 21.3. IR (KBr, cm⁻¹) 3068, 3026, 2933, 1712, 1676, 1576, 1446, 1357, 1260, 1118, 970, 761. HRMS (ESI) ([M+Na]⁺) Calcd. for [C₃₁H₂₂NaO₂]⁺: 449.1512, Found. 449.1510.

Ethyl 2-acetyl-5-(4'-methyl-[1,1'-biphenyl]-2-yl)pent-2-en-4-ynoate (5i) Yield: 74%, E/Z = 1.25:1, yellow oil, $R_f = 0.3$ (petroleum ether/AcOEt = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.47 (dd, J = 7.6, 3.6 Hz, 1H), 7.35 – 7.28 (m, 4H), 7.19 (dd, J = 9.8, 4.6 Hz, 1H), 7.13 (d, J = 7.9 Hz, 2H), 6.82 (d, J = 2.6 Hz, 1H), 4.10 (dq, J = 28.1, 7.1 Hz, 2H), 2.30 (s, 3H), 2.25 (s, 1H), 2.13 (s, 2H), 1.16 (dt, J = 14.2, 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 198.7, 194.0, 165.3, 163.9, 144.7, 144.5, 141.9, 140.8, 137.6, 137.1, 137.0,

133.9, 130.2, 130.2, 129.8, 129.7, 129.0, 127.0, 127.0, 124.7, 123.0, 120.2, 106.9, 105.4, 88.0, 87.4, 61.6, 61.5, 30.2, 27.6, 21.2, 14.2, 14.1. IR (KBr, cm⁻¹) 3022, 2983, 1716, 1581, 1475, 1368, 1248, 1061, 952, 822, 761. HRMS (ESI) ([M+Na]⁺) Calcd. for [C₂₂H₂₀NaO₃]⁺: 355.1305, Found. 355.1309.

3-(3-(3'-Fluoro-[1,1'-biphenyl]-2-yl)prop-2-yn-1-ylidene)pentane-2,4-dione (5j) Yield: 59%, yellow oil, $R_f = 0.3$ (petroleum ether/AcOEt = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, J = 7.5 Hz, 1H), 7.46 (q, J = 6.9, 5.9 Hz, 1H), 7.38 (q, J = 8.5, 7.9 Hz, 3H), 7.27 (d, J = 7.6 Hz, 1H), 7.20 (d, J = 9.7 Hz, 1H), 7.13 – 7.06 (m, 1H), 6.83 (s, 1H), 2.30 (s, 3H), 2.24 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -113.0. ¹³C NMR (101 MHz, CDCl₃) δ 200.8, 195.5, 162.6 (d, J = 246.2 Hz), 149.2, 143.2 (d, J = 2.0 Hz), 142.1

(d, J = 7.8 Hz), 133.9, 130.4, 129.9 (d, J = 8.3 Hz), 129.7, 127.8, 125.0 (d, J = 2.9 Hz), 121.9, 120.1, 116.1 (d, J = 22.0 Hz), 114.8 (d, J = 21.0 Hz), 106.3, 88.0, 30.6, 27.4. IR (KBr, cm⁻¹) 3063, 2924, 1711, 1691, 1581, 1473, 1371, 1246, 1180, 1023, 959, 879, 763. HRMS (ESI) ([M+Na]⁺) Calcd. for [C₂₀H₁₅FNaO₂]⁺: 329.0948, Found. 329.0944.

3-(3-(2-(Thiophen-2-yl)phenyl)prop-2-yn-1-ylidene)pentane-2,4-dione (5k) Yield: 66%, yellow oil, $R_f = 0.3$ (petroleum ether/AcOEt = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, J = 7.9 Hz, 2H), 7.45 – 7.35 (m, 3H), 7.28 (t, J = 8.0 Hz, 1H), 7.12 (t, J = 4.3 Hz, 1H), 6.93 (s, 1H), 2.38 (s, 3H), 2.33 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 201.0, 195.6, 149.2, 141.2, 136.9, 134.3, 130.4, 129.5, 127.7, 127.4, 127.3, 126.5, 122.1, 119.4, 106.9, 89.0, 30.8, 27.4. IR (KBr, cm⁻¹) 3026, 2954, 1710, 1667, 1574, 1476, 1369, 1243, 1175, 1022,

953, 851, 761. HRMS (ESI) ([M+Na]⁺) Calcd. for [C₁₈H₁₄NaO₂S]⁺: 317.0607, Found. 317.0603.

3-(3-(2-(Furan-2-yl)phenyl)prop-2-yn-1-ylidene)pentane-2,4-dione (5l) Yield: 68%, yellow oil, R_f = 0.3 (petroleum ether/AcOEt = 10:1). ¹H NMR (400 MHz, Chloroform-d) δ 7.81 (d, J = 8.0 Hz, 1H), 7.53
 - 7.50 (m, 2H), 7.43 (t, J = 7.7 Hz, 1H), 7.24 (t, J = 7.5 Hz, 1H), 7.11 (d, J = 3.4 Hz, 1H), 6.99 (s, 1H), 6.53 (s, 1H), 2.50 (s, 3H), 2.37 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 201.0, 195.5, 151.4, 149.4, 142.6,

134.4, 132.5, 130.4, 126.9, 126.0, 121.9, 116.7, 111.9, 110.0, 106.9, 89.0, 31.0, 27.3. IR (KBr, cm⁻¹) 3028, 2924, 1709, 1666, 1579, 1496, 1372, 1244, 1176, 1008, 956, 762. HRMS (ESI) ([M+H]⁺) Calcd. for [C₁₈H₁₅O₃]⁺: 279.1016, Found. 279.1018.

General procedure for Büchner reaction. 5.

Under N₂ atmosphere, to a solution of envnones 1 (0.2 mmol) in dry DCE (0.1 M) at -20 °C, Rh₂(S-BTPCP)₄ (0.01 eq. the catalyst was dissolved in DCE) were added. The reaction mixture was then stirred for 30 hours at -20 °C. After the reaction was completed, the reaction mixture was filtered through short silica gel, and then the solvent was removed under reduced pressure. The crude aromatic substitution product was purified by flash column chromatography (silica gel, petroleum ether/AcOEt = 10:1) to yield 2a - 2p (the products were stored in fridge and keep in dark place with aluminum foil).

1-(5-(8-Fluoro-10aH-cyclohepta[b]benzofuran-10a-yl)-2-methylfuran-3-yl)ethanone (2a) Yield: 99%, yellow oil, $R_f = 0.3$ (petroleum ether/AcOEt = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.36 (d, J = 7.6 Hz, 1H), 7.24 (t, J = 7.9 Hz, 1H), 7.03 (t, J = 7.7 Hz, 1H), 6.97 (d, J = 8.1 Hz, 1H), 6.32 (t, J = 9.6 Hz, 1H), 6.17 – 6.06 (m, 3H), 5.65 – 5.57 (m, 1H), 2.35 (s, 3H), 2.21 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -105.3. ¹³C NMR (101 MHz, CDCl3) δ 194.0, 158.6, 157.8 (d, J = 238.2 Hz), 156.1, 149.3 (d, J = 3.2 Hz), 148.5, 130.9, 129.4, 124.0, 123.2, 121.9 (d, J = 12.7 Hz), 121.7, 121.4 (d, J = 19.4 Hz), 110.3, 107.6 (d, J = 29.9 Hz), 107.3, 97.4 (d, J = 11.4 Hz), 51.6, 29.0, 14.5. IR (KBr, cm⁻¹) 3035, 2922, 1711, 1661, 1570, 1483, 1363 1244, 1017, 951, 847, 758. HRMS (ESI) ([M+H]⁺) Calcd. for $[C_{20}H_{16}FO_3]^+$: 323.1078, Found. 323.1080. HPLC: OD-H column, 95:5 hexane: isopropanol, 1.00 mL/min, $t_R = 10^{-10}$ major: 7.2 min, minor: 6.8 min. 96% ee. [α]_D²⁴ -132.3° (c 0.83, CH₂Cl₂).

1-(5-(8-Chloro-10aH-cyclohepta[b]benzofuran-10a-yl)-2-methylfuran-3-yl)ethanone (2b) Yield: 97%, yellow oil, $R_f = 0.3$ (petroleum ether/AcOEt = 10:1). ¹H NMR (500 MHz, CDCl₃) δ 7.38 – 7.30 (m, 2H), 7.12 (t, J = 7.5 Hz, 1H), 7.08 (d, J = 8.1 Hz, 1H), 6.77 (d, J = 7.4 Hz, 1H), 6.53 (d, J = 10.0 Hz,

1H), 6.20 (s, 1H), 6.15 (d, J = 7.5 Hz, 1H), 5.45 (d, J = 10.0 Hz, 1H), 2.40 (s, 3H), 2.32 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 194.1, 158.7, 156.2, 153.4, 147.8, 130.7, 130.6, 129.5, 128.5, 124.0, 123.5, 121.4, 120.7, 118.5, 110.4, 107.7, 100.4, 51.8, 29.1, 14.5. IR (KBr, cm⁻¹) 3058, 2926, 1762, 1715, 1672, 1584, 1486, 1450, 1334, 1241, 1093, 935, 839, 759. HRMS (ESI) ([M+H]⁺) Calcd. for [C₂₀H₁₆ClO₃]⁺: 339.0782, Found. 339.0787. HPLC: OD-H column, 99:1 hexane:isopropanol, 1.00 mL/min, $t_R =$ major: 11.8 min, minor: 10.8 min. 98% ee. $[\alpha]_D^{24}$ -128.2° (c 1.17, CH₂Cl₂).

1-(5-(8-Bromo-10aH-cyclohepta[b]benzofuran-10a-yl)-2-methylfuran-3-yl)ethanone (2c) Yield: 99%, yellow oil, $R_f = 0.3$ (petroleum ether/AcOEt = 10:1). ¹H NMR (500 MHz, CDCl₃) δ 7.38 (d, J = 7.5 Hz, 1H), 7.33 (t, J = 7.9 Hz, 1H), 7.12 (t, J = 7.3 Hz, 1H), 7.07 (d, J = 8.1 Hz, 1H), 6.62 - 6.55 (m,

1H), 6.41 (d, J = 10.0 Hz, 1H), 6.27 – 6.17 (m, 2H), 5.55 (d, J = 10.0 Hz, 1H), 2.41 (s, 3H), 2.31 (s, 3H). 13 C NMR (126) MHz, CDCl₃) δ 194.0, 158.6, 156.1, 152.7, 148.1, 130.8, 129.5, 129.4, 128.7, 125.0, 124.0, 123.4, 121.5, 120.8, 110.4, 107.5, 99.6, 51.7, 29.1, 14.5. IR (KBr, cm⁻¹) 3035, 2931, 1772, 1714, 1581, 1484, 1449, 1334, 1241, 1148, 1009, 933, 837, 758. HRMS (ESI) ([M+H]⁺) Calcd. for [C₂₀H₁₆BrO₃]⁺: 383.0277, Found. 383.0278. HPLC: OD-H column, 99:1 hexane:isopropanol, 1.00 mL/min, $t_R =$ major: 11.8 min, minor: 11.2 min. 98% ee. $[\alpha]_D^{24}$ -114.3° (c 1.33, CH₂Cl₂).

1-(5-(7-Fluoro-10aH-cyclohepta[b]benzofuran-10a-yl)-2-methylfuran-3-yl)ethanone (2d) Yield: 95%, yellow oil, $R_f = 0.3$ (petroleum ether/AcOEt = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, J = 7.6 Hz, 1H), 7.33 (t, J = 7.7 Hz, 1H), 7.16 – 7.07 (m, 2H), 6.38 – 6.26 (m, 2H), 6.19 (s, 1H), 6.10 (dd, J =

17.2, 7.0 Hz, 1H), 5.42 (d, J = 9.8 Hz, 1H), 2.42 (s, 3H), 2.30 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -97.8. ¹³C NMR (101 MHz, CDCl₃) δ 194.0, 157.7, 157.2 (d, J = 265.8 Hz), 154.0 (d, J = 19.0 Hz), 148.2, 131.2, 129.3, 124.6 (d, J = 11.9 Hz), 124.0, 123.7, 121.6, 119.4, 116.8 (d, J = 2.6 Hz), 110.4, 107.4, 106.6 (d, J = 28.5 Hz), 96.2 (d, J = 41.2 Hz), 52.3, 29.1, 14.5. IR (KBr, cm⁻¹) 3030, 2921, 1710, 1663, 1578, 1482, 1359 1241, 956, 855, 761. HRMS (ESI) ([M+H]⁺) Calcd. for [C₂₀H₁₆FO₃]⁺: 323.1078, Found. 323.1077. HPLC: OD-H column, 99:1 hexane:isopropanol, 1.00 mL/min, t_R = major: 13.5 min, minor: 9.1 min. 90% ee. $[\alpha]_D^{24}$ -95.6° (c 1.5, CH₂Cl₂).

1-(5-(7-Chloro-10aH-cyclohepta|b]benzofuran-10a-yl)-2-methylfuran-3-yl)ethanone (2e) Yield: 92%, yellow oil, $R_f = 0.3$ (petroleum ether/AcOEt = 10:1). ¹H NMR (500 MHz, CDCl₃) δ 7.47 (dd, J = 7.6, 1.3 Hz, 1H), 7.32 (td, J = 7.8, 1.4 Hz, 1H), 7.13 (t, J = 7.6 Hz, 1H), 7.08 (d, J = 8.2 Hz, 1H), 6.50 (dd, J = 7.0, 1.4 Hz, 1H), 6.37 (s, 1H), 6.29 (dd, J = 9.6, 7.0 Hz, 1H), 6.15 (s, 1H), 5.56 (d, J = 9.7 Hz, 1H), 2.44 (s, 3H), 2.30 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 194.0, 158.5, 155.9, 152.8, 148.1, 132.1, 131.0, 129.4, 125.8, 124.1, 124.0, 123.6, 121.5, 120.2, 110.5, 107.2, 103.8, 52.0, 29.1, 14.5. IR (KBr, cm⁻¹) 2924, 2887, 1712, 1668, 1582, 1483, 1449, 1336, 1241, 1022, 955, 847, 758. HRMS (ESI) ([M+Na]⁺) Calcd. for [C₂₀H₁₅ClNaO₃]⁺: 361.0602, Found. 361.0597. HPLC: OD-H column, 99:1 hexane: isopropanol, 1.00 mL/min, $t_R = major$: 12.85 min, minor: 9.0 min. 89% ee. $[\alpha]_D^{24}$ -100.7° (c 1.5, CH₂Cl₂).

1-(5-(7-Bromo-10aH-cyclohepta[b]benzofuran-10a-yl)-2-methylfuran-3-yl)ethanone (2f) Yield: 97%, yellow oil, $R_f = 0.3$ (petroleum ether/AcOEt = 10:1). ¹H NMR (500 MHz, CDCl₃) δ 7.49 (d, J = 7.6 Hz, 1H), 7.32 (td, J = 7.8, 1.3 Hz, 1H), 7.14 (td, J = 7.5, 1.0 Hz, 1H), 7.07 (d, J = 8.1 Hz, 1H), 6.71 (d, J = 6.9 Hz, 1H), 6.50 (s, 1H), 6.21 (dd, J = 9.6, 6.9 Hz, 1H), 6.15 (s, 1H), 5.61 (d, J = 9.6 Hz, 1H), 2.45 (s, 3H), 2.31 (s, 2H), 5.61 (d, J = 9.6 Hz, 1H), 5.61 (d, J3H). ¹³C NMR (126 MHz, CDCl₃) δ 194.1, 158.5, 155.8, 152.5, 147.9, 130.9, 129.4, 127.7, 126.4, 124.1, 123.6, 121.4, 121.2, 121.0, 110.5, 107.3, 106.0, 52.1, 29.1, 14.5. IR (KBr, cm⁻¹) 3031, 2928, 1710, 1579, 1480, 1446, 1332, 1237, 1145, 1022, 956, 848, 754. HRMS (ESI) ([M+Na]⁺) Calcd. for [C₂₀H₁₅BrNaO₃]⁺: 405.0097, Found. 405.0093. HPLC: OD-H column, 99:1 hexane:isopropanol, 1.00 mL/min, t_R = major: 12.7 min, minor: 9.3 min. 90% ee. [α]_D²⁴-91.5° (c 1.2, CH₂Cl₂).

1-(5-(2,8-Difluoro-10aH-cyclohepta[b]benzofuran-10a-yl)-2-methylfuran-3-yl)ethanone (2g) Yield: 99%, yellow oil, $R_f = 0.3$ (petroleum ether/AcOEt = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.13 (d, J = 7.5 Hz, 1H), 7.05 - 6.93 (m, 2H), 6.44 - 6.37 (m, 1H), 6.24 - 6.11 (m, 3H), 5.64 (dd, J = 10.3), 5.64 (dd, J = 10.3) 4.6 Hz, 1H), 2.44 (s, 3H), 2.29 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -105.1, -119.6. ¹³C NMR (101 MHz, CDCl₃) δ 193.6, 158.9 (d, J = 241.6 Hz), 158.6, 157.7 (d, J = 238.9 Hz), 152.1 (d, J = 1.5 Hz), 149.5 (d, J = 3.4 Hz), 147.9, 132.1 (d, J = 8.4 Hz), 121.9, 121.6 (d, J = 9.8 Hz), 121.1 (d, J = 13.1 Hz), 116.1 (d, J = 24.7 Hz), 111.2 (d, J = 25.4 Hz), 110.9 (d, J = 8.5 Hz), 107.62 (d, J = 30.0 Hz), 107.6, 97.7 (d, J = 11.5 Hz), 52.0, 28.9, 14.4. IR (KBr, cm⁻¹) 2975, 2930, 1710, 1481, 1372, 1303, 1235, 1159, 952, 818. HRMS (ESI) ([M+Na]⁺) Calcd. for [C₂₀H₁₄F₂NaO₃]⁺: 363.0803, Found. 363.0803. HPLC: OD-H column, 99:1 hexane:isopropanol, 1.00 mL/min, t_R = major: 12.3 min, minor: 10.5 min. 97% ee. [α]_D²⁴ -114.9° (c 0.8, CH₂Cl₂).

1-(5-(2-Chloro-8-fluoro-10aH-cyclohepta[b]benzofuran-10a-yl)-2-methylfuran-3-yl)ethanone (2h) Yield: 92%, yellow oil, $R_f = 0.3$ (petroleum ether/AcOEt = 10:1). ¹H NMR (400 MHz, CDCl₃) δ

7.38 (s, 1H), 7.27 (d, J = 8.3 Hz, 1H), 6.97 (d, J = 8.6 Hz, 1H), 6.44 – 6.37 (m, 1H), 6.24 – 6.11 (m, 3H), 5.65 (dd, J = 10.4, 5.1 Hz, 1H), 2.44 (s, 3H), 2.29 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -104.7. ¹³C NMR (126 MHz, CDCl₃) δ 193.8, 158.8, 157.8 (d, J = 239.0 Hz), 154.7, 149.1 (d, J = 3.3 Hz), 147.8, 132.5, 129.5, 128.1, 124.3, 122.0, 121.6 (d, J = 12.0 Hz), 121.2 (d, J = 12.8 Hz), 111.4, 107.64, 107.6 (d, J = 30.0 Hz), 97.9 (d, J = 11.5 Hz), 51.7, 29.1, 14.6. IR (KBr, cm⁻¹) 2973, 2933, 2887, 1466, 1376, 1306, 1160, 1130, 952, 817. HRMS (ESI) ([M+Na]⁺) Calcd. for [C₂₀H₁₄ClFNaO₃]⁺: 379.0508, Found. 379.0512. HPLC: OD-H column, 99:1 hexane:isopropanol, 1.00 mL/min, t_R = major: 10.7 min, minor: 9.8 min. 96% ee. [α]_D²⁴ -125.2° (c 0.5, CH₂Cl₂).

1-(5-(8-Fluoro-2-methyl-10a*H*-cyclohepta[*b*]benzofuran-10a-yl)-2-methylfuran-3-yl)ethanone **(2i)** Yield: 99%, yellow oil, $R_f = 0.3$ (petroleum ether/AcOEt = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.21 (s, 1H), 7.10 (d, J = 8.4 Hz, 1H), 6.93 (d, J = 8.1 Hz, 1H), 6.39 (t, J = 9.6 Hz, 1H), 6.23 - 6.11

(m, 3H), 5.66 (dd, J = 10.7, 4.5 Hz, 1H), 2.43 (s, 3H), 2.35 (s, 3H), 2.30 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -105.7. ¹³C NMR (101 MHz, CDCl₃) δ 194.0, 158.5, 157.7 (d, J = 238.0 Hz), 154.1, 149.7 (d, J = 3.8 Hz), 148.7, 132.8, 130.8, 129.9, 124.3, 121.8 (d, J = 12.6 Hz), 121.6 (d, J = 8.5 Hz), 121.3, 109.9, 107.6 (d, J = 29.7 Hz), 107.2, 97.2 (d, J = 11.6 Hz), 51.7, 29.1, 21.0, 14.6. IR (KBr, cm⁻¹) 2972, 2933, 2886, 1768, 1704, 1465, 1377, 1306, 1160, 1129, 951, 817. HRMS (ESI) ([M+Na]⁺) Calcd. for [C₂₁H₁₇FNaO₃]⁺: 359.1054, Found. 359.1060. HPLC: OD-H column, 99:1 hexane:isopropanol, 1.00 mL/min, t_R = major: 9.3 min, minor: 8.8 min. 97% ee. [α]_D²⁴ -127.2° (c 1.0, CH₂Cl₂).

1-(2-Ethyl-5-(8-fluoro-10*aH*-cyclohepta[*b*]benzofuran-10*a*-yl)furan-3-yl)propan-1-one (2j) Yield: 95%, yellow oil, $R_f = 0.3$ (petroleum ether/AcOEt = 10:1). ¹H NMR (500 MHz, CDCl₃) δ 7.46 (dd, J = 7.5, 1.2 Hz, 1H), 7.31 (td, J = 7.8, 1.3 Hz, 1H), 7.11 (t, J = 7.5 Hz, 1H), 7.05 (d, J = 8.1 Hz, 1H), 6.43 - 6.34 (m, 1H), 6.23 - 6.15 (m, 2H), 6.13 (s, 1H), 5.70 (dd, J = 10.3, 4.6 Hz, 1H), 2.86 (ddq, J = 30.1, 1.2 Hz, 1H), 7.11 (t, J = 7.5 Hz, 1H), 7.05 (dd, J = 30.1, 1.2 Hz, 1H), 7.31 (td, J = 7.8, 1.3 Hz, 1H), 5.70 (dd, J = 10.3, 4.6 Hz, 1H), 2.86 (ddq, J = 30.1, 1.2 Hz, 1H), 7.31 (td, J = 7.8, 1.3 Hz, 1H), 5.70 (dd, J = 10.3, 4.6 Hz, 1H), 2.86 (ddq, J = 30.1, 1.2 Hz, 1H), 5.70 (dd, J = 10.3, 4.6 Hz, 1H), 5.86 (ddq, J = 30.1, 1.2 Hz, 1H), 5.70 (dd, J = 10.3, 4.6 Hz, 1H), 5.86 (ddq, J = 30.1, 1.2 Hz, 1H), 5.70 (dd, J = 10.3, 4.6 Hz, 1H), 5.80 (ddq, J = 30.1, 1.2 Hz, 1 15.1, 7.5 Hz, 2H), 2.67 – 2.56 (m, 2H), 1.09 (dt, J = 11.8, 7.4 Hz, 6H). ¹⁹F NMR (376 MHz, CDCl₃) δ -105.3. ¹³C NMR (126 MHz, CDCl₃) δ 196.9, 163.3, 157.8 (d, J = 238.1 Hz), 156.1, 149.2 (d, J = 3.3 Hz), 148.4, 130.9, 129.4, 124.0, 123.2, 122.2 (d, J = 12.9 Hz), 121.4 (d, J = 36.1 Hz), 119.9, 110.3, 107.5 (d, J = 30.0 Hz), 106.8, 97.4 (d, J = 11.6 Hz), 51.6, 34.3, 21.7, 11.8, 7.7. IR (KBr, cm⁻¹) 2975, 2888, 1706, 1552, 1464, 1376, 1305, 1242, 1159, 1130, 951, 817, 756. HRMS (ESI) ([M+Na]⁺) Calcd. for [C₂₂H₁₉FNaO₃]⁺: 373.1210, Found. 373.1205. HPLC: OD-H column, 99:1 hexane:isopropanol, 1.00 mL/min, t_R = major: 7.2 min, minor: 6.6 min. 90% ee. [α]_D ²⁴ -88.7° (c 0.8, CH₂Cl₂).

(5-(8-Fluoro-10a*H*-cyclohepta[*b*]benzofuran-10a-yl)-2-phenylfuran-3-yl)(phenyl)methanone (2k) Yield: 98%, yellow oil, $R_f = 0.3$ (petroleum ether/AcOEt = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, J = 7.7 Hz, 2H), 7.60 – 7.52 (m, 3H), 7.48 (t, J = 7.4 Hz, 1H), 7.39 – 7.30 (m, 3H), 7.26 – 7.21 (m, 3H), 7.13 (t, J = 7.5 Hz, 1H), 7.06 (d, J = 8.1 Hz, 1H), 6.41 (t, J = 9.5 Hz, 1H), 6.29 – 6.19 (m, 3H), 5.75 (dd, J = 8.1 Hz, 1H), 6.41 (t, J = 9.5 Hz, 1H), 6.29 – 6.19 (m, 3H), 5.75 (dd, J = 8.1 Hz, 1H), 7.06 (d, J = 8.1 Hz, 1H), 7.06 (d, J = 8.1 Hz, 1H), 6.41 (t, J = 9.5 Hz, 1H), 6.29 – 6.19 (m, 3H), 5.75 (dd, J = 8.1 Hz, 1H), 7.06 (d, J = 8.1 Hz, 1H), 6.41 (t, J = 9.5 Hz, 1H), 6.29 – 6.19 (m, 3H), 5.75 (dd, J = 8.1 Hz, 1H), 7.06 (d, J = 8.1 Hz, 1H), 6.41 (t, J = 9.5 Hz, 1H), 6.29 – 6.19 (m, 3H), 5.75 (dd, J = 8.1 Hz, 1H), 6.41 (t, J = 9.5 Hz, 1H), 6.41 (t, J =

J = 10.4, 4.6 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -105.1. ¹³C NMR (126 MHz, CDCl₃) δ 191.4, 157.9 (d, J = 238.4 Hz), 156.2, 155.8, 149.5, 149.3 (d, J = 3.3 Hz), 137.9, 132.9, 130.6, 129.7, 129.6, 129.5, 129.0, 128.3, 128.2, 127.3, 124.2, 123.3, 122.1 (d, J = 12.9 Hz), 121.6 (d, J = 36.0 Hz), 120.8, 111.0, 110.4, 107.8 (d, J = 29.9 Hz), 97.6 (d, J = 11.6 Hz), 51.8. IR (KBr, cm⁻¹) 2923, 1712, 1543, 1486, 1452, 1268, 1158, 1136, 978, 838, 758. HRMS (ESI) ([M+Na]⁺) Calcd. for [C₃₀H₁₉FNaO₃]⁺: 469.1210, Found. 469.1204. HPLC: OD-H column, 99:1 hexane:isopropanol, 1.00 mL/min, t_R = major: 11.8 min, minor: 8.4 min. 62% ee. [α]_D²⁴ -57.1° (c 1.1, CH₂Cl₂).

 $\begin{array}{l} \mbox{I-(5-(10aH-cyclohepta[b]benzofuran-10a-yl)-2-methylfuran-3-yl)ethanone (2l) Yield: 91\%, yellow oil, \\ R_{\rm f} = 0.3 (petroleum ether/AcOEt = 10:1). ^{1}H NMR (400 MHz, CDCl_3) \delta 7.43 (d, J = 7.5 Hz, 1H), 7.30 (t, \\ J = 7.9 Hz, 1H), 7.14 - 7.03 (m, 2H), 6.47 - 6.30 (m, 4H), 6.10 (s, 1H), 5.54 (d, J = 9.6 Hz, 1H), 2.41 (s, \\ 3H), 2.28 (s, 3H). ^{13}C NMR (101 MHz, CDCl_3) \delta 194.1, 158.2, 156.1, 151.8, 148.8, 131.7, 129.1, 127.2, 126.3, 125.3, \\ 124.0, 123.1, 121.5, 119.3, 110.2, 107.1, 101.2, 51.9, 29.0, 14.6. IR (KBr, cm⁻¹) 2978, 2885, 1711, 1576, 1482, 1373, 1244, \\ 1160, 955, 818, 757. HRMS (ESI) ([M+Na]^+) Calcd. for [C_{20}H_{16}NaO_3]^+: 327.0992, Found. 327.0986. HPLC: OD-H column, \\ 99:1 hexane:isopropanol, 1.00 mL/min, t_R = major: 12.3 min, minor: 11.8 min. 94\% ee. [\alpha]_D ^{24} -64.5^{\circ} (c 0.67, CH_2Cl_2). \end{array}$

1-(2-Methyl-5-(8-methyl-10a*H*-cyclohepta[*b*]benzofuran-10a-yl)furan-3-yl)ethanone (2m) Yield: 89%, yellow oil, $R_f = 0.3$ (petroleum ether/AcOEt = 10:1). ¹H NMR (500 MHz, CDCl₃) δ 7.38 (d, J = 7.5 Hz, 1H), 7.29 (t, J = 7.8 Hz, 1H), 7.11 – 7.02 (m, 2H), 6.22 (d, J = 9.9 Hz, 1H), 6.20 – 6.14 (m, 2H),

6.10 (s, 1H), 5.51 (d, J = 9.8 Hz, 1H), 2.40 (s, 3H), 2.29 (s, 3H), 2.01 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 194.1, 158.2, 156.3, 150.9, 149.6, 134.0, 131.6, 130.3, 129.1, 124.0, 123.1, 122.9, 121.5, 119.2, 110.1, 106.8, 100.5, 51.3, 29.0, 24.2, 14.5. IR (KBr, cm⁻¹) 2975, 2934, 2888, 1710, 1467, 1376, 1247, 1160, 952, 817, 755. HRMS (ESI) ([M+Na]⁺) Calcd. for

 $[C_{21}H_{18}NaO_3]^+$: 341.1148, Found. 341.1144. HPLC: OD-H column, 99:1 hexane:isopropanol, 1.00 mL/min, t_R = major: 16.4 min, minor: 11.2 min. 75% ee. $[\alpha]_D^{24}$ -69.0° (c 1.2, CH₂Cl₂).

1-(2-Methyl-5-(8-methyl-10a*H*-cyclohepta[*b*]benzofuran-10a-yl)furan-3-yl)ethanone (20) Yield: 94%, yellow oil, $R_{f} = 0.3$ (petroleum ether/AcOEt = 10:1). ¹H NMR (500 MHz, Chloroform-d) δ 7.38 (dd, J = 7.6, 1.3 Hz, 1H), 7.34 (td, J = 7.9, 1.4 Hz, 1H), 7.18 (d, J = 8.1 Hz, 1H), 7.14 (td, J = 7.5, 1.0 Hz, 1H), 6.53 (dd, J = 11.6, 0.9 Hz, 1H), 6.42 (dd, J = 9.8, 6.3 Hz, 1H), 6.28 (dd, J = 11.6, 6.3 Hz, 1H), 6.13 (s, 1H), 5.61 (d, J = 9.7 Hz, 1H), 2.41 (s, 3H), 2.29 (s, 3H). ¹³C NMR (126 MHz, Chloroform-d) δ 193.9, 158.5, 155.5, 148.6, 147.7, 131.8, 129.7, 129.4, 126.9, 125.7, 124.0, 123.8, 121.9, 121.6, 110.8, 107.6, 94.4, 51.8, 29.1, 14.6. HRMS (ESI) ([M+H]⁺) Calcd. for [C₂₀H₁₆BrO₃]⁺: 383.0277, Found. 383.0269. HPLC: OD-H column, 99:1 hexane:isopropanol, 1.00 mL/min, t_R = major: 13.0 min, minor: 17.99 min. 70% ee. [α]_D²⁴ -61.0° (c 1.1, CH₂Cl₂).

column, 98:2 hexane:isopropanol, 0.80 mL/min, t_R = major: 18.2 min, minor: 17.4 min. 92% ee.

1-(2-Methyl-5-(5-methyl-5,10a-dihydrocyclohepta[*b*]**indol-10a-yl**)**furan-3-yl**)**ethanone (2q)** Yield: 25% (81% yield catalyzed by $Rh_2(TFA)_4$ and no C-H insertion product was detected), yellow oil, $R_f = 0.3$ (petroleum ether/AcOEt = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, J = 7.4 Hz, 1H), 7.30 – 7.23 (m, 1H), 6.94 (t, J = 7.5 Hz, 1H), 6.74 (d, J = 7.9 Hz, 1H), 6.54 (dd, J = 11.0, 7.3 Hz, 1H), 6.36 (dd, J = 9.8, 6.5)

Hz, 1H), 6.09 (dd, J = 11.0, 6.5 Hz, 1H), 6.03 (s, 1H), 5.75 (d, J = 7.4 Hz, 1H), 5.49 (d, J = 9.7 Hz, 1H), 3.26 (s, 3H), 2.41 (s, 3H), 2.26 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 194.2, 157.7, 149.7, 145.5, 143.6, 133.7, 128.6, 128.5, 126.7, 123.8, 121.4, 120.3, 120.2, 113.4, 107.0, 106.8, 95.2, 52.7, 30.3, 29.0, 14.6. IR (KBr, cm⁻¹) 3032, 2974, 2887, 1708, 1483, 1377, 1245, 1160, 1130, 951, 817, 756. HRMS (ESI) ([M+Na]⁺) Calcd. for [C₂₁H₁₉NNaO₂]⁺: 340.1308, Found. 340.1308. HPLC: OD-H column, 99:1 hexane:isopropanol, 1.00 mL/min, t_R = major: 19.5 min, minor: 30.0 min. 76% ee. [α]_D ²⁴ -44.8° (c 0.5, CH₂Cl₂).

1-(5-(7-Fluorobenzo[a]azulen-4b(10H)-yl)-2-methylfuran-3-yl)ethan-1-one (2r) Yield: 60%, yellow oil, R_f = 0.4 (petroleum ether/AcOEt = 5:1). ¹H NMR (500 MHz, Chloroform-d) δ 7.45 – 7.39 (m, 1H), 7.35 – 7.30 (m, 3H), 6.46 – 6.42 (m, 1H), 6.35 (ddd, J = 10.3, 8.2, 2.0 Hz, 1H), 6.24 (ddd, J = 17.2, 7.4, 1.9 Hz,

1H), 6.18 (s, 1H), 5.66 (dd, J = 10.4, 5.1 Hz, 1H), 4.24 (d, J = 21.9 Hz, 1H), 3.99 (d, J = 21.9 Hz, 1H), 2.44 (s, 3H), 2.34 (s, 3H). ¹⁹F NMR (471 MHz, Chloroform-d) δ -102.88. ¹³C NMR (126 MHz, Chloroform-d) δ 194.31, 160.50 (d, J_{C-F} = 242.8 Hz), 157.9, 151.8, 147.0, 140.0, 137.8 (d, J_{C-F} = 3.3 Hz), 129.5 (d, J_{C-F} = 13.4 Hz), 127.8 (d, J_{C-F} = 21.9 Hz), 124.6, 124.3, 121.5, 121.0, 120.7, 117.5 (d, J_{C-F} = 11.4 Hz), 110.1 (d, J_{C-F} = 26.9 Hz), 106.6, 55.5, 38.6, 29.0, 14.6. HRMS (ESI) ([M+H]⁺) Calcd. for [C₂₁H₁₈FO₂]⁺: 321.1285, Found. 321.1287. HPLC: MD(2) column, 99:1 hexane:isopropanol, 1.00 mL/min, t_R = major: 10.8 min, minor: 10.0 min. 82% ee.

6. Table S3. racemization control experiments of 2c

7. Table S4: the racemization of 7-substutited products with room temperature and dark condition.

8. Scheme S3. the racemization of product 20 with room temperature and dark condition.

9. Scheme S4. the decomposition of product 20 was monitored by ¹H NMR spectrum.

10. Trap of free carbene intermediate through cyclopropanation with 2c and alkenes.

In a solution of extra dry DCM (2 mL), Büchner product 2c (0.2 mmol) was dissolved and then the excess alkenes were added. The reaction mixture was stirred at room temperature for 10 days. The reaction was monitored by TLC and no cyclopropanation was detected.

11. Trap of radical intermediate with 20 and TEMPO.

In a solution of extra dry DCM (2 mL), Büchner product **20** (0.2 mmol) was dissolved and then the TEMPO (4.0 equiv, 0.8 mmol) were added. The reaction mixture was stirred at room temperature for 36 h. The reaction was monitored by TLC, after the substrate **20** was completely transformed, the reaction mixture was filtered through short silica gel, and then the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography (silica gel, petroleum ether/AcOEt = 10:1) to yield **9** (52%).

 $\begin{array}{l} \mbox{1-(5-(4-Bromo-9H-xanthen-9-ylidene)-2-methylene-2,5-dihydrofuran-3-yl)ethan-1-one} \quad (9) \quad \mbox{Yield:} \\ \mbox{52\%, yellow oil, } R_f = 0.25 \ (petroleum ether/AcOEt = 10:1). \ ^1H \ NMR \ (500 \ MHz, \ Chloroform-d) \ \delta \ 7.75 \ (d, \\ \mbox{J} = 8.0 \ Hz, \ 1H), \ 7.47 \ (t, \ J = 7.5 \ Hz, \ 1H), \ 7.35 \ (t, \ J = 7.8 \ Hz, \ 3H), \ 7.29 \ (t, \ J = 7.7 \ Hz, \ 1H), \ 7.13 \ (t, \ J = 7.5 \ Hz, \ 1H), \ 6.93 \ (d, \ J = 7.8 \ Hz, \ 1H), \ 5.24 \ (s, \ 1H), \ 4.70 \ (s, \ 1H), \ 2.65 \ (s, \ 3H). \ ^{13}C \ NMR \ (126 \ MHz, \ Chloroform-d) \ \delta \ 190.3, \ 157.0, \ 154.7, \ 149.6, \ 145.7, \ 133.4, \ 132.0, \ 131.8, \ 130.6, \ 127.9, \ 127.8, \ 125.4, \ 125.4, \ 124.4, \ 122.2, \ 116.6, \ 111.9, \ 106.5, \ 87.1, \ 30.9. \ IR \ (KBr, \ cm^{-1}) \ 2971, \ 1709, \ 1481, \ 1376, \ 1242, \ 1158, \ 1132, \ 950, \ 815, \ 754. \ HRMS \ (ESI) \ ([M+H]^+) \ Calcd. \ for \ [C_{20}H_{14}BrO_3]^+: \ 381.0121, \ Found. \ 381.0126. \ \end{tabular}$

12. General procedure for Büchner reaction with donor-donor diazo compounds as carbene precursors.

To a 25 mL oven-dried flask containing a magnetic stirring bar hydrazones **S15a-S15i** (0.2 mmol) in dry DCE (4.0 ml), was added MnO₂ (141 mg, 8.0 eq) slowly, after consumption of the material in 30 minutes, the reaction mixture was filtered through alumina. The crude diazo compounds **3a-3i** were used for next step without purification. To a solution in dry DCE (4 mL, 0.05 M) at -20 °C, Rh₂(S-BTPCP)₄ (0.01 eq. the catalyst was dissolved in DCE) were added. Then the diazo compounds **3a-3i** in dry DCE (4 ml, 0.05 M) was added slowly for 1 hour under -20 °C. The reaction mixture was then stirred for 6 hours at -20 °C. After the reaction was completed, the reaction mixture was filtered through short silica gel, and then the solvent was removed under reduced pressure. The crude aromatic substitution product was purified by flash column chromatography (silica gel, petroleum ether/AcOEt = 50:1) to yield **4a – 4i**.

8-Bromo-10a-phenyl-10a*H*-cyclohepta[*b*]benzofuran (4a) Yield: 89%, $R_f = 0.5$ (petroleum ether/AcOEt = 50:1). ¹H NMR (500 MHz, Chloroform-d) δ 7.30 – 7.26 (m, 1H), 7.24 (dd, J = 7.6, 1.3 Hz, 1H), 7.21 – 7.14 (m, 5H), 7.11 (d, J = 8.1 Hz, 1H), 7.07 (td, J = 7.5, 1.0 Hz, 1H), 6.70 (d, J = 7.4 Hz, 1H), 7.21 – 7.14 (m, 5H), 7.11 (d, J = 8.1 Hz, 1H), 7.07 (td, J = 7.5, 1.0 Hz, 1H), 6.70 (d, J = 7.4 Hz, 1H), 7.21 – 7.14 (m, 5H), 7.11 (d, J = 8.1 Hz, 1H), 7.07 (td, J = 7.5, 1.0 Hz, 1H), 6.70 (d, J = 7.4 Hz, 1H), 7.21 – 7.14 (m, 5H), 7.11 (d, J = 8.1 Hz, 1H), 7.07 (td, J = 7.5, 1.0 Hz, 1H), 6.70 (d, J = 7.4 Hz, 1H), 7.21 – 7.14 (m, 5H), 7.11 (d, J = 8.1 Hz, 1H), 7.07 (td, J = 7.5, 1.0 Hz, 1H), 6.70 (d, J = 7.4 Hz, 1H), 7.07 (td, J = 7.5, 1.0 Hz, 1H), 6.70 (d, J = 7.4 Hz, 1H), 7.07 (td, J = 7.5, 1.0 Hz, 1H), 6.70 (d, J = 7.4 Hz, 1H), 7.07 (td, J = 7.5, 1.0 Hz, 1H), 6.70 (d, J = 7.4 Hz, 1H), 7.07 (td, J = 7.5, 1.0 Hz, 1H), 6.70 (d, J = 7.4 Hz, 1H), 7.07 (td, J = 7.5, 1.0 Hz, 1H), 6.70 (d, J = 7.4 Hz, 1H), 7.07 (td, J = 7.5, 1.0 Hz, 1H), 6.70 (d, J = 7.4 Hz, 1H), 7.07 (td, J = 7.5, 1.0 Hz, 1H), 6.70 (d, J = 7.4 Hz, 1H), 7.07 (td, J = 7.5, 1.0 Hz, 1H), 6.70 (d, J = 7.4 Hz, 1H), 7.07 (td, J = 7.5, 1.0 Hz, 1H), 6.70 (d, J = 7.4 Hz, 1H), 7.07 (td, J = 7.5, 1.0 Hz, 1H), 7.07 (td, J = 7.4 Hz, 1H), 7.07 (td, J = 7.5, 1.0 Hz, 1H), 7.07 (td, J = 7.4 Hz, 1H), 7.07 (td, J = 7.5, 1.0 Hz, 1H), 7.07 (td, J = 7.4 Hz, 1H), 7.07 (td, J = 7.5, 1.0 Hz, 1H), 7.07 (td, J = 7.4 Hz, 1H), 7.07 (td, J = 7.5, 1.0 Hz, 1H), 7.07 (td, J = 7.5, 1.0 Hz, 1H), 7.07 (td, J = 7.4 Hz, 1H), 7.07 (td, J = 7.5, 1.0 Hz, 1H), 7.07 (td, J = 7.5, 1H), 7.07 (td, J = 7.5, 1H), 7.07 (td, J = 7.5, 1H), 7.07 (td, J

Hz, 1H), 6.62 (d, J = 9.9 Hz, 1H), 6.22 (d, J = 7.4 Hz, 1H), 5.66 (d, J = 10.0 Hz, 1H). ¹³C NMR (126 MHz, Chloroform-d) δ 157.2, 155.5, 141.0, 134.8, 129.9, 128.9, 128.7, 127.9, 127.1, 125.8, 124.0, 123.5, 123.3, 118.5, 110.2, 99.7, 56.4. IR (KBr, cm⁻¹) 2973, 2889, 1465, 1378, 1154, 952, 815, 704. HRMS (ESI) ([M+H]⁺) Calcd. for [C₁₉H₁₄BrO]⁺: 337.0223, Found. 337.0222. HPLC: OD-H column, 99:1 hexane:isopropanol, 1.00 mL/min, t_R = major: 5.6 min, minor: 6.3 min. 99.3% ee. [α]_D ²³ -77.3° (c 0.9, CH₂Cl₂).

7-Bromo-10a-phenyl-10a*H*-cyclohepta[*b*]benzofuran (4b) Yield: 96%, $R_f = 0.5$ (petroleum ether/AcOEt = 50:1). ¹H NMR (500 MHz, Chloroform-d) δ 7.33 – 7.25 (m, 4H), 7.24 – 7.15 (m, 3H), 7.13 – 7.06 (m, 2H), 6.63 (dd, J = 6.7, 1.2 Hz, 1H), 6.59 (s, 1H), 6.31 (dd, J = 9.6, 6.7 Hz, 1H), 5.83 (d,

J = 9.6 Hz, 1H). ¹³C NMR (126 MHz, Chloroform-d) δ 156.3, 155.3, 141.1, 134.7, 128.7, 128.0, 127.1, 126.0, 125.7, 123.9, 123.7, 123.6, 121.4, 110.3, 105.2, 56.8. IR (KBr, cm⁻¹) 2973, 2888, 1465, 1379, 1307, 1156, 952, 880, 817. HRMS (ESI) ([M+H]⁺) Calcd. for [C₁₉H₁₄BrO]⁺: 337.0223, Found. 337.0222. HPLC: OD-H column, 99:1 hexane:isopropanol, 1.00 mL/min, t_R = major: 5.6 min, minor: 6.1 min. 98% ee. [α]_D ²³ -70.1° (c 0.8, CH₂Cl₂).

10a-Phenyl-10a*H*-cyclohepta[*b*]benzofuran (4c) Yield: 95%, $R_f = 0.5$ (petroleum ether/AcOEt = 50:1). ¹H NMR (500 MHz, Chloroform-d) δ 7.31 – 7.25 (m, 4H), 7.20 – 7.09 (m, 4H), 7.06 (t, J = 7.5 Hz, 1H), 6.51 (dd, J = 9.7, 6.2 Hz, 1H), 6.43 (d, J = 6.8 Hz, 1H), 6.37 (dd, J = 10.9, 6.8 Hz, 1H), 6.29 (dd, J = 10.9,

6.2 Hz, 1H), 5.78 (d, J = 9.7 Hz, 1H). ¹³C NMR (126 MHz, Chloroform-d) δ 155.6, 155.5, 141.9, 135.5, 128.4, 127.6, 126.7, 126.6, 126.5, 126.0, 125.5, 124.0, 123.1, 122.1, 110.1, 100.4, 56.4. IR (KBr, cm⁻¹) 2975, 2890, 1465, 1379, 1249,

1153, 953, 818, 690. HRMS (ESI) ($[M+H]^+$) Calcd. for $[C_{19}H_{15}O]^+$: 259.1117, Found. 259.1118. HPLC: OD-H column, 99:1 hexane:isopropanol, 1.00 mL/min, t_R = major: 5.6 min, minor: 6.2 min. 99% ee. $[\alpha]_D^{23}$ -88.5° (c 1.0, CH₂Cl₂).

8-Methyl-10a-phenyl-10a*H*-cyclohepta[*b*]benzofuran (4d) Yield: 97%, $R_f = 0.5$ (petroleum ether/AcOEt = 50:1). ¹H NMR (500 MHz, Chloroform-d) δ 7.22 – 7.16 (m, 4H), 7.12 – 7.01 (m, 4H), 6.97 (t, J = 7.5 Hz, 1H), 6.27 (d, J = 9.9 Hz, 1H), 6.20 (d, J = 7.0 Hz, 1H), 6.04 (d, J = 7.0 Hz, 1H),

5.68 (d, J = 9.9 Hz, 1H), 1.87 (s, 3H). ¹³C NMR (126 MHz, Chloroform-d) δ 155.8, 154.9, 142.5, 135.6, 134.2, 129.7, 128.3, 127.6, 126.6, 125.9, 124.0, 123.4, 122.9, 121.9, 110.0, 99.8, 55.9, 24.0. IR (KBr, cm⁻¹) 2975, 2889, 1466, 1377, 1309, 1157, 953, 818, 690. HRMS (ESI) ([M+H]⁺) Calcd. for [C₂₀H₁₇O]⁺: 273.1274, Found. 273.1275. HPLC: OD-H column, 99:1 hexane:isopropanol, 1.00 mL/min, t_R = major: 4.7 min, minor: 7.1 min. 96% ee. [α]_D²³-67.1° (c 0.8, CH₂Cl₂).

8-Methoxy-10a-phenyl-10aH-cyclohepta[b]benzofuran (4e) Yield: 91%, R_f = 0.5 (petroleum ether/AcOEt = 50:1). ¹H NMR (500 MHz, Chloroform-d) δ 7.26 – 7.22 (m, 4H), 7.19 – 7.14 (m, 2H), 7.14 – 7.10 (m, 1H), 7.07 – 6.99 (m, 2H), 6.36 (dd, J = 10.3, 1.8 Hz, 1H), 6.24 (d, J = 7.6 Hz, 1H),

5.92 (d, J = 10.3 Hz, 1H), 5.57 (dd, J = 7.7, 1.7 Hz, 1H), 3.48 (s, 3H). ¹³C NMR (126 MHz, Chloroform-d) δ 155.8, 155.7, 152.5, 142.3, 135.2, 128.4, 127.7, 126.7, 125.9, 125.3, 124.1, 124.0, 122.8, 109.9, 100.9, 97.9, 55.5, 55.2. IR (KBr, cm⁻¹) 2976, 2888, 1465, 1379, 1154, 952, 819, 692. HRMS (ESI) ([M+H]⁺) Calcd. for [C₂₀H₁₇O₂]⁺: 289.1223, Found. 289.1224. HPLC: OD-H column, 99:1 hexane:isopropanol, 1.00 mL/min, t_R = major: 6.6 min, minor: 7.7 min. 96% ee. [α]_D ²³ -73.6° (c 1.0, CH₂Cl₂).

8-Bromo-10a-(4-methoxyphenyl)-10aH-cyclohepta[b]benzofuran (4f) Yield: 84%, $R_f = 0.5$ (petroleum ether/AcOEt = 50:1). ¹H NMR (500 MHz, Chloroform-d) δ 7.24 – 7.21 (m, 1H), 7.18 (dd, J = 7.5, 1.3 Hz, 1H), 7.08 – 7.00 (m, 4H), 6.70 – 6.63 (m, 3H), 6.56 (d, J = 10.0 Hz, 1H), 6.15 (d, J = 7.4 Hz, 1H), 5.59 (d, J = 10.0 Hz, 1H), 3.70 (s, 3H). ¹³C NMR (126 MHz, Chloroform-d) δ 158.5,

157.4, 155.4, 135.0, 132.9, 129.9, 128.8, 128.6, 126.9, 123.9, 123.5, 123.4, 118.4, 113.3, 110.2, 99.6, 55.8, 55.1. IR (KBr, cm⁻¹) 2974, 2889, 1465, 1380, 1308, 1155, 952, 817, 646. HRMS (ESI) ($[M+H]^+$) Calcd. for $[C_{20}H_{16}BrO_2]^+$: 367.0328, Found. 367.0329. HPLC: OD-H column, 99:1 hexane:isopropanol, 1.00 mL/min, t_R = major: 7.8 min, minor: 8.8 min. 99.2% ee. $[\alpha]_D$ ²³ -89.4° (c 0.8, CH₂Cl₂).

10a-(4-Fluorophenyl)-8-methyl-10a*H*-cyclohepta[*b*]benzofuran (4g) Yield: 99%, $R_f = 0.5$ (petroleum ether/AcOEt = 50:1). ¹H NMR (500 MHz, Chloroform-d) δ 7.26 – 7.18 (m, 1H), 7.22 – 7.09 (m, 3H), 7.06 – 6.96 (m, 2H), 6.79 (td, J = 8.7, 2.1 Hz, 2H), 6.27 (dd, J = 9.9, 1.8 Hz, 1H), 6.20 (dd, J = 7.0, 1.9 Hz, 1H), 6.06 (d, J = 7.1 Hz, 1H), 5.66 (dd, J = 9.9, 1.9 Hz, 1H), 1.89 (s, 3H). ¹⁹F

NMR (471 MHz, Chloroform-d) δ -116.4. ¹³C NMR (126 MHz, Chloroform-d) δ 161.4 (d, J = 244.6 Hz), 155.7, 154.8, 138.1 (d, J = 3.2 Hz), 135.3, 134.2, 129.8, 128.5, 127.4 (d, J = 8.1 Hz), 123.9, 123.4, 123.0, 121.7, 114.4 (d, J = 21.4 Hz), 110.0, 99.8, 55.2, 24.0. IR (KBr, cm⁻¹) 2976, 2888, 1465, 1377, 1310, 1154, 953, 817. HRMS (ESI) ([M+H]⁺) Calcd. for [C₂₀H₁₆FO]⁺: 291.1180, Found. 291.1181. HPLC: OD-H column, 99:1 hexane:isopropanol, 1.00 mL/min, t_R = major: 4.7 min, minor: 6.3 min. 99.5% ee. [α]_D ²³ -88.1° (c 0.7, CH₂Cl₂)

8-Bromo-10a-(furan-2-yl)-10aH-cyclohepta[b]benzofuran (4h) Yield: 24%, $R_f = 0.5$ (petroleum ether/AcOEt = 50:1). ¹H NMR (500 MHz, Chloroform-d) δ 7.36 (dd, J = 7.6, 1.3 Hz, 1H), 7.30 (td, J = 7.8, 1.4 Hz, 1H), 7.18 (d, J = 1.6 Hz, 1H), 7.13 – 7.04 (m, 2H), 6.75 (d, J = 7.6 Hz, 1H), 6.51 (d, J = 7.8, 1.4 Hz, 1H), 7.18 (d, J = 1.6 Hz, 1H), 7.13 – 7.04 (m, 2H), 6.75 (d, J = 7.6 Hz, 1H), 6.51 (d, J = 7.8, 1.4 Hz, 1H), 7.18 (d, J = 1.6 Hz, 1H), 7.13 – 7.04 (m, 2H), 6.75 (d, J = 7.6 Hz, 1H), 6.51 (d, J = 7.8, 1.4 Hz, 1H), 7.18 (d, J = 1.6 Hz, 1H), 7.13 – 7.04 (m, 2H), 6.75 (d, J = 7.6 Hz, 1H), 6.51 (d, J = 7.8, 1.4 Hz, 1H), 7.18 (d, J = 1.6 Hz, 1H), 7.13 – 7.04 (m, 2H), 6.75 (d, J = 7.6 Hz, 1H), 6.51 (d, J = 7.8, 1.4 Hz, 1H), 7.18 (d, J = 1.6 Hz, 1H), 7.13 – 7.04 (m, 2H), 6.75 (d, J = 7.6 Hz, 1H), 6.51 (d, J = 7.8, 1.4 Hz, 1H), 7.18 (d, J = 1.6 Hz, 1H), 7.13 – 7.04 (m, 2H), 6.75 (d, J = 7.6 Hz, 1H), 6.51 (d, J = 7.8, 1.4 Hz, 1H), 7.18 (d, J = 1.6 Hz, 1H), 7.13 – 7.04 (m, 2H), 6.75 (d, J = 7.6 Hz, 1H), 6.51 (d, J = 7.8, 1.4 Hz, 1H), 7.18 (d, J = 1.6 Hz, 1H), 7.13 – 7.04 (m, 2H), 6.75 (d, J = 7.6 Hz, 1H), 6.51 (d, J = 7.8, 1.4 Hz, 1H), 7.18 (d, J = 1.6 Hz, 1H), 7.13 – 7.04 (m, 2H), 6.75 (d, J = 7.6 Hz, 1H), 7.18 (d, J = 1.6 Hz, 1H), 7.18 (d, J = 1

10.1 Hz, 1H), 6.18 – 6.11 (m, 2H), 5.99 (dd, J = 3.4, 0.9 Hz, 1H), 5.48 (d, J = 10.0 Hz, 1H). ¹³C NMR (126 MHz, Chloroform-d) δ 156.1, 153.8, 150.1, 142.6, 131.3, 130.3, 129.3, 128.5, 124.0, 123.4, 121.1, 118.4, 110.3, 109.7, 107.1, 100.2, 52.1. IR (KBr, cm⁻¹) 2976, 2888, 1464, 1378, 1249, 1153, 954. HRMS (ESI) ([M+H]⁺) Calcd. for [C₁₇H₁₂BrO₂]⁺: 327.0015, Found. 327.0016. HPLC: OD-H column, 99:1 hexane:isopropanol, 1.00 mL/min, t_R = major: 5.6 min, minor: 6.0 min. 22% ee. [α]_D ²³ -27.4° (c 0.5, CH₂Cl₂).

 $5-(2-(4-Bromophenoxy)phenyl)pent-2-en-4-ynal (4h') Yield: 55\%, Z/E = 93:7. R_{\rm f} = 0.5 (petroleum ether/AcOEt = 10:1). ¹H NMR (500 MHz, Chloroform-d) <math>\delta$ 10.05 (d, J = 8.3 Hz, 1H), 7.55 (dd, J = 7.7, 1.7 Hz, 1H), 7.48 – 7.42 (m, 2H), 7.37 (ddd, J = 8.9, 7.5, 1.7 Hz, 1H), 7.16 (td, J = 7.6, 1.1 Hz, 1H), 6.94 (dd, J = 8.4, 1.1 Hz, 1H), 6.91 – 6.84 (m, 2H), 6.78 (d, J = 10.8 Hz, 1H), 6.26 (dd, J = 10.8, 8.3 Hz, 1H). ¹³C NMR (126 MHz, Chloroform-d) δ 192.1, 157.5, 156.1, 137.5, 134.0, 132.8, 131.4, 128.4, 124.0, 120.0, 119.1, 116.1, 114.4, 96.7, 88.8. IR (KBr, cm⁻¹) 3029, 1710, 1691, 1573, 1477, 1365, 1233, 1168, 1061, 953, 874, 761. HRMS (ESI) ([M+H]⁺) Calcd. for [C₁₇H₁₂BrO₂]⁺: 327.0015, Found. 327.0016.

1,2-bis(2-benzylphenyl)-1,2-diphenylethene (4i') Yield: 87%, E/Z = 90:10. R_f = 0.7 (petroleum ether). ¹H NMR (500 MHz, Chloroform-d) δ 7.46 (dd, J = 5.4, 3.0 Hz, 5H), 7.39 – 7.34 (m, 5H), 7.07 (dd, J = 8.0, 6.4 Hz, 7H), 7.05 – 7.00 (m, 4H), 6.99 – 6.93 (m, 7H), 5.25 (s, 4H). ¹³C NMR (126 MHz, Chloroform-d) δ 145.8, 138.9, 128.6, 128.1, 127.6, 126.1, 124.1 54.9.

HRMS (ESI) ($[M+H]^+$) Calcd. for $[C_{40}H_{33}]^+$: 437.2264, Found. 437.2274.

13. The racemization of product 4i at room temperature.

14. General procedure for aromatic substitution reaction.

Under nitrogen atmosphere, to a solution of enynones 5 (0.2 mmol) in dry DCM (0.1 M), Rh₂(S-BTPCP)₄ (0.01 eq. the catalyst was dissolved in DCM) were added. The reaction mixture was then stirred for 24 hours at room temperature. After the reaction was completed, the reaction mixture was filtered through short silica gel, and then the solvent was removed under reduced pressure. The crude aromatic substitution product was purified by flash column chromatography (silica gel, petroleum ether/AcOEt = 10:1) to yield 6a - 6l.

1-(2-Methyl-5-(2-methyl-9H-fluoren-9-yl)furan-3-yl)ethanone (6a) Yield: 95%, yellow oil, $R_f = 0.3$ (petroleum ether/AcOEt = 10:1). ¹H NMR (500 MHz, CDCl₃) δ 7.75 (d, J = 7.6 Hz, 1H), 7.68 (d, J = 7.8 Hz, 1H), 7.56 - 7.53 (m, 1H), 7.43 - 7.37 (m, 2H), 7.30 (td, J = 7.5, 1.1 Hz, 1H), 7.24 (d, J = 7.9 Hz, 1H), 6.23 (s, 1H), 5.10 (s, 1H), 2.58 (s, 3H), 2.43 (s, 3H), 2.32 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 193.2, 157.2, 151.1, 142.9, 142.5, 140.0, 137.2, 136.4, 127.7, 126.8, 125.9, 124.8, 124.1, 121.0, 118.9, 118.8, 105.3, 45.9, 28.1, 20.7, 13.5. IR (KBr, cm⁻¹) 2976, 2931, 1716, 1561, 1448, 1373, 1232, 1134, 952, 863, 758. HRMS (ESI) ([M+H]⁺)

Calcd. for $[C_{21}H_{19}O_2]^+$: 303.1380, Found. 303.1382. HPLC: OD-H column, 99:1 hexane: isopropanol, 1.00 mL/min, $t_R = 10^{-1}$ major: 11.9 min, minor: 15.3 min. 97% ee. [a]_D²⁴ -81.4° (c 1.17, CH₂Cl₂).

1-(5-(2-Methoxy-9H-fluoren-9-yl)-2-methylfuran-3-yl)ethanone (6b) Yield: 95%, yellow oil, $R_f =$ 0.3 (petroleum ether/AcOEt = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.60 (dd, J = 7.9, 3.0 Hz, 2H), 7.44 (d, J = 7.5 Hz, 1H), 7.30 (t, J = 7.5 Hz, 1H), 7.20 – 7.13 (m, 1H), 7.07 – 7.00 (m, 1H), 6.88 (dd, J = 8.4, 2.3 Hz, 1H), 6.15 (s, 1H), 5.00 (s, 1H), 3.77 (s, 3H), 2.49 (s, 3H), 2.22 (s, 3H). ¹³C NMR (101 MHz,

CDCl₃) & 194.2, 159.7, 158.3, 152.0, 145.5, 143.2, 140.9, 133.9, 128.0, 126.3, 125.1, 122.1, 120.9, 119.4, 113.8, 111.1,

106.4, 55.6, 47.1, 29.1, 14.5. IR (KBr, cm⁻¹) 2973, 2932, 2888, 1711, 1672, 1564, 1463, 1376, 1305, 1160, 1130, 951, 817, 765. HRMS (ESI) ($[M+H]^+$) Calcd. for $[C_{21}H_{19}O_3]^+$: 319.1329, Found. 319.1331. HPLC: OD-H column, 99:1 hexane:isopropanol, 1.00 mL/min, t_R = major: 20.9 min, minor: 22.9 min. 95% ee. $[\alpha]_D^{24}$ -73.1° (c 0.67, CH₂Cl₂).

1-(5-(2-(*tert***-Butyl)-9H-fluoren-9-yl)-2-methylfuran-3-yl)ethanone (6c)** Yield: 96%, yellow oil, R_f = 0.3 (petroleum ether/AcOEt = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, J = 7.6 Hz, 1H), 7.70 (d, J = 8.0 Hz, 1H), 7.61 (s, 1H), 7.55 (d, J = 7.5 Hz, 1H), 7.46 (d, J = 8.0 Hz, 1H), 7.39 (t, J = 7.4 Hz, 1H), 7.29 (t, J = 7.5 Hz, 1H), 6.20 (s, 1H), 5.10 (s, 1H), 2.58 (s, 3H), 2.30 (s, 3H), 1.37 (s, 9H). ¹³C NMR

 $(101 \text{ MHz}, \text{CDCl}_3) \delta 194.2, 158.2, 152.3, 150.9, 143.7, 143.6, 141.0, 138.3, 127.9, 126.9, 125.2, 125.1, 122.2, 122.1, 119.9, 119.7, 106.3, 47.1, 35.0, 31.6, 29.1, 14.5. IR (KBr, cm⁻¹) 2974, 2889, 1709, 1561, 1465, 1375, 1305, 1159, 1130, 951, 818, 743. HRMS (ESI) ([M+H]⁺) Calcd. for [C₂₄H₂₅O₂]⁺: 345.1849, Found. 345.1851. HPLC: OD-H column, 99:1 hexane:isopropanol, 1.00 mL/min, t_R = major: 7.46 min, minor: 6.95 min. 91% ee. [<math>\alpha$]_D²⁴ -52.7° (c 0.33, CH₂Cl₂).

1-(2-Methyl-5-(2-vinyl-9H-fluoren-9-yl)furan-3-yl)ethanone (6d) Yield: 99%, yellow oil, R_f = 0.3 (petroleum ether/AcOEt = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.73 (dd, J = 14.5, 7.7 Hz, 2H), 7.59 (s, 1H), 7.54 (d, J = 7.5 Hz, 1H), 7.45 (d, J = 7.9 Hz, 1H), 7.40 (t, J = 7.4 Hz, 1H), 7.31 (t, J = 7.4 Hz, 1H), 6.77 (dd, J = 17.6, 10.9 Hz, 1H), 6.23 (s, 1H), 5.77 (d, J = 17.6 Hz, 1H), 5.25 (d, J = 10.9 Hz, 1H), 5.11 (s, 5.11 (s,

1H), 2.56 (s, 3H), 2.29 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 194.1, 158.3, 151.8, 144.1, 144.0, 140.7, 140.7, 137.1, 136.9, 128.0, 127.4, 126.4, 125.3, 122.9, 122.1, 120.2, 120.2, 113.8, 106.5, 47.0, 29.1, 14.5. IR (KBr, cm⁻¹) 2973, 2933, 2887, 1708, 1571, 1465, 1417, 1377, 1306, 1160, 1130, 951, 817. HRMS (ESI) ([M+Na]⁺) Calcd. for [C₂₂H₁₈NaO₂]⁺: 337.1199, Found. 337.1192. HPLC: OD-H column, 99:1 hexane:isopropanol, 1.00 mL/min, t_R = major: 12.6 min, minor: 13.4 min. 98% ee. [α]_D²⁴ -125.7° (c 1.5, CH₂Cl₂).

1-(5-(2-Fluoro-9H-fluoren-9-yl)-2-methylfuran-3-yl)ethanone (6e) Yield: 93%, yellow oil, R_f = 0.3 (petroleum ether/AcOEt = 10:1). ¹H NMR (500 MHz, CDCl₃) δ 7.75 – 7.70 (m, 2H), 7.55 (d, J = 7.6 Hz, 1H), 7.42 (t, J = 7.5 Hz, 1H), 7.34 – 7.26 (m, 2H), 7.12 (td, J = 8.8, 2.5 Hz, 1H), 6.24 (s, 1H), 5.11 (s, 1H), 2.58 (s, 3H), 2.32 (s, 3H). ¹⁹F NMR (471 MHz, CDCl₃) δ -114.2. ¹³C NMR (126 MHz, CDCl₃) δ 194.2,

162.6 (d, J = 246.0 Hz), 158.5, 151.2, 145.7 (d, J = 8.4 Hz), 143.4, 140.1, 136.9 (d, J = 2.4 Hz), 128.1, 127.1, 125.3, 122.1, 121.2 (d, J = 8.8 Hz), 119.9, 115.2 (d, J = 23.1 Hz), 112.7 (d, J = 23.4 Hz), 106.6, 47.0, 29.1, 14.5. IR (KBr, cm⁻¹) 2973, 2934, 1710, 1571, 1466, 1374, 1307, 1164, 1092, 954, 853, 744. HRMS (ESI) ([M+Na]⁺) Calcd. for $[C_{20}H_{15}FNaO_2]^+$: 329.0948, Found. 329.0944. HPLC: OD-H column, 99:1 hexane:isopropanol, 1.00 mL/min, t_R = major: 13.2 min, minor: 10.3 min. 61% ee. $[\alpha]_D^{24}$ -85.5° (c 1.5, CH₂Cl₂).

1-(5-(2-Fluoro-6-methyl-9H-fluoren-9-yl)-2-methylfuran-3-yl)ethanone (6f) Yield: 76%, yellow oil, R_f = 0.3 (petroleum ether/AcOEt = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.67 (dd, J = 8.4, 5.0 Hz, 1H), 7.53 (s, 1H), 7.42 (d, J = 7.7 Hz, 1H), 7.24 (s, 1H), 7.15 – 7.05 (m, 2H), 6.22 (s, 1H), 5.05 (s, 1H), 2.56 (s, 3H), 2.44 (s, 3H), 2.31 (s, 3H). ¹⁹F NMR (471 MHz, CDCl₃) δ -114.4. ¹³C NMR (101 MHz, CDCl₃)

δ 194.1, 162.5 (d, J = 245.5 Hz), 158.4, 151.6, 146.1 (d, J = 8.3 Hz), 140.6 (d, J = 2.0 Hz), 140.3, 138.0, 136.9 (d, J = 2.5 Hz), 128.0, 124.9, 122.1, 121.0 (d, J = 8.9 Hz), 120.5, 115.1 (d, J = 22.9 Hz), 112.7 (d, J = 23.3 Hz), 106.5, 46.7, 29.1, 21.6, 14.5. IR (KBr, cm⁻¹) 2971, 2930, 2885, 1711, 1565, 1449, 1372, 1310, 1233, 1137, 957, 849, 741. HRMS (ESI) ([M+Na]⁺) Calcd. for [C₂₁H₁₇FNaO₂]⁺: 343.1105, Found. 343.1100. HPLC: OD-H column, 99:1 hexane:isopropanol, 1.00 mL/min, t_R = major: 11.6 min, minor: 9.6 min. 87% ee. [α]_D²⁴ -88.0° (c 1.17, CH₂Cl₂).

1-(2-Ethyl-5-(2-methyl-9H-fluoren-9-yl)furan-3-yl)propan-1-one (6g) Yield: 99%, yellow oil, R_f = 0.3 (petroleum ether/AcOEt = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, J = 7.5 Hz, 1H), 7.54 (d, J = 7.7 Hz, 1H), 7.46 (d, J = 7.5 Hz, 1H), 7.32 - 7.24 (m, 2H), 7.18 (t, J = 7.4 Hz, 1H), 7.10 (d, J = 7.4 Hz, 1H), 6.03 (s, 1H), 4.99 (s, 1H), 2.94 (q, J = 7.5 Hz, 2H), 2.49 (q, J = 7.3 Hz, 2H), 2.31 (s, 3H), 1.17

(t, J = 7.5 Hz, 3H), 0.97 (t, J = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 197.1, 163.0, 152.2, 144.0, 143.6, 141.1, 138.3, 137.4, 128.8, 127.9, 126.9, 126.0, 125.3, 120.6, 119.9, 119.9, 105.5, 47.0, 34.4, 21.8, 21.7, 12.1, 7.8. IR (KBr, cm⁻¹) 2975, 2890, 1712, 1557, 1459, 1373, 1247, 1157, 1132, 952, 821, 766. HRMS (ESI) ([M+H]⁺) Calcd. for [C₂₃H₂₃O₂]⁺: 331.1693, Found. 331.1696. HPLC: OD-H column, 99:1 hexane:isopropanol, 1.00 mL/min, t_R = major: 7.2 min, minor: 8.2 min. 98% ee. [α]_D²⁴-102.1° (c 0.67, CH₂Cl₂).

(5-(2-Methyl-9H-fluoren-9-yl)-2-phenylfuran-3-yl)(phenyl)methanone (6h) Yield: 95%, yellow oil, $R_f = 0.3$ (petroleum ether/AcOEt = 10:1). ¹H NMR (500 MHz, CDCl₃) δ 7.80 – 7.73 (m, 3H), 7.70 – 7.65 (m, 4H), 7.49 (s, 1H), 7.46 – 7.38 (m, 2H), 7.34 – 7.26 (m, 6H), 7.23 (t, J = 3.9 Hz, 1H), 6.28 (s, 1H), 5.24 (s, 1H), 2.43 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 191.9, 155.6, 153.5, 143.6, 143.3, 141.2,

138.5, 138.0, 137.5, 132.8, 130.0, 129.8, 128.9, 128.9, 128.4, 128.3, 128.0, 127.5, 127.0, 126.1, 125.4, 121.7, 120.0, 119.9, 109.6, 47.1, 21.8. IR (KBr, cm⁻¹) 2974, 2888, 1711, 1560, 1466, 1375, 1306, 1160, 1130, 951, 818, 693. HRMS (ESI) ([M+H]⁺) Calcd. for $[C_{31}H_{23}O_2]^+$: 427.1693, Found. 427.1694. HPLC: OD-H column, 99:1 hexane:isopropanol, 1.00 mL/min, t_R = major: 14.3 min, minor: 18.2 min. 98% ee. $[\alpha]_D$ ²⁴ -146.7° (c 1.17, CH₂Cl₂).

Ethyl 2-methyl-5-(2-methyl-9H-fluoren-9-yl)furan-3-carboxylate (6i) Yield: 97%, yellow oil, $R_f = 0.3$ (petroleum ether/AcOEt = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, J = 7.5 Hz, 1H), 7.64 (d, J = 7.7 Hz, 1H), 7.52 (d, J = 7.5 Hz, 1H), 7.40 - 7.33 (m, 2H), 7.27 (t, J = 7.4 Hz, 1H), 7.23 - 7.17 (m,

1H), 6.29 (s, 1H), 5.06 (s, 1H), 4.22 (q, J = 7.1 Hz, 2H), 2.54 (s, 3H), 2.40 (s, 3H), 1.28 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 164.2, 159.0, 152.1, 144.0, 143.7, 141.1, 138.3, 137.3, 128.7, 127.8, 126.9, 125.9, 125.2, 119.9, 119.8, 114.1, 106.7, 60.0, 47.0, 21.7, 14.4, 13.9. IR (KBr, cm⁻¹) 2975, 2889, 1711, 1563, 1465, 1375, 1248, 1158, 1131, 1078, 951, 820. HRMS (ESI) ([M+H]⁺) Calcd. for [C₂₂H₂₁O₃]⁺: 333.1485, Found. 333.1490. HPLC: OD-H column, 99:1 hexane:isopropanol, 1.00 mL/min, t_R = major: 7.4 min, minor: 9.2 min. 97% ee. [α]_D ²⁴ -94.4° (c 0.5, CH₂Cl₂).

1-(5-(3-Fluoro-9H-fluoren-9-yl)-2-methylfuran-3-yl)ethanone (6j) Yield: 91%, yellow oil, $R_f = 0.3$ (petroleum ether/AcOEt = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, J = 7.6 Hz, 1H), 7.57 (d, J = 7.5 Hz, 1H), 7.51 (dd, J = 8.4, 5.1 Hz, 1H), 7.46 – 7.40 (m, 2H), 7.36 (t, J = 7.4 Hz, 1H), 7.02 (td, J = 8.7, 2.3 Hz, 1H), 6.21 (s, 1H), 5.09 (s, 1H), 2.57 (s, 3H), 2.30 (s, 4H). ¹⁹F NMR (376 MHz, CDCl₃) δ -114.5. ¹³C

NMR (101 MHz, CDCl₃) δ 194.0, 163.2 (d, J = 244.9 Hz), 158.3, 151.6, 144.5, 143.0 (d, J = 9.0 Hz), 140.1, 139.0, 128.1 (d, J = 5.4 Hz), 126.3 (d, J = 9.0 Hz), 125.4, 122.1, 120.4, 114.3 (d, J = 23.1 Hz), 107.3 (d, J = 23.3 Hz), 106.4, 46.5, 29.1, 14.5. IR (KBr, cm⁻¹) 2975, 2931, 1751, 1698, 1595, 1465, 1362, 1200, 1162, 1089, 949, 818, 766. HRMS (ESI) ([M+H]⁺) Calcd. for [C₂₀H₁₆FO₂]⁺: 307.1129, Found. 307.1133. HPLC: OD-H column, 99:1 hexane:isopropanol, 1.00 mL/min, t_R = major: 13.6 min, minor: 15.3 min. 95% ee. [α]_D²⁴-102.2° (c 1.17, CH₂Cl₂).

1-(5-(4H-indeno[1,2-b]thiophen-4-yl)-2-methylfuran-3-yl)ethanone (6k) Yield: 99%, yellow oil, R_f =
0.25 (petroleum ether/AcOEt = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, J = 7.5 Hz, 1H), 7.47 (d, J =
7.5 Hz, 1H), 7.37 - 7.31 (m, 2H), 7.25 - 7.19 (m, 1H), 7.15 (d, J = 4.9 Hz, 1H), 6.19 (s, 1H), 4.94 (s, 1H),
2.57 (s, 3H), 2.30 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 194.2, 158.3, 150.9, 147.4, 146.5, 143.4, 137.9,

128.0, 127.95, 125.6, 125.3, 122.6, 122.1, 119.2, 106.1, 44.4, 29.1, 14.5. IR (KBr, cm⁻¹) 3027, 2924, 1710, 1666, 1574, 1476, 1423, 1370, 1243, 1175, 1023, 953, 851, 762. HRMS (ESI) ($[M+H]^+$) Calcd. for $[C_{18}H_{15}O_2S]^+$: 295.0787, Found. 295.0785. HPLC: OD-H column, 95:5 hexane:isopropanol, 1.00 mL/min, t_R = major: 8.8 min, minor: 12.5 min. 96% ee. $[\alpha]_D$ ²⁴ -118.2° (c 1.17, CH₂Cl₂).

1-(5-(4H-indeno[1,2-b]furan-4-yl)-2-methylfuran-3-yl)ethanone (6l) Yield: 99%, yellow oil, R_f = 0.3 (petroleum ether/AcOEt = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, J = 7.9 Hz, 2H), 7.40 (d, J = 7.5 Hz, 1H), 7.26 (t, J = 7.5 Hz, 1H), 7.12 (t, J = 7.5 Hz, 1H), 6.55 (s, 1H), 6.15 (s, 1H), 4.69 (s, 1H), 2.50 (s, 3H),

2.23 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 194.1, 159.4, 158.2, 150.7, 147.1, 146.3, 132.5, 128.6, 127.8, 125.6, 125.3, 122.0, 116.9, 108.6, 106.0, 40.2, 29.1, 14.5. IR (KBr, cm⁻¹) 3029, 2928, 1710, 1665, 1572, 1426, 1373 1243, 1175, 1008, 956, 856, 761. HRMS (ESI) ([M+H]⁺) Calcd. for [C₁₈H₁₅O₃]⁺: 279.1016, Found. 279.1019. HPLC: OD-H column, 99:1 hexane:isopropanol, 1.00 mL/min, t_R = major: 11.9 min, minor: 19.8 min. 99% ee. [α]_D ²⁴ -124.6° (c 1.17, 120.100 mL/min, t_R = major: 11.9 min, minor: 19.8 min. 99% ee. [α]_D ²⁴ -124.6° (c 1.17, 120.100 mL/min, t_R = major: 11.9 min, minor: 19.8 min. 99% ee. [α]_D ²⁴ -124.6° (c 1.17, 120.100 mL/min, t_R = major: 11.9 min, minor: 19.8 min. 99% ee. [α]_D ²⁴ -124.6° (c 1.17, 120.100 mL/min, t_R = major: 11.9 min, minor: 19.8 min. 99% ee. [α]_D ²⁴ -124.6° (c 1.17, 120.100 mL/min, t_R = major: 11.9 min, minor: 19.8 min. 99% ee. [α]_D ²⁴ -124.6° (c 1.17, 120.100 mL/min, t_R = major: 11.9 min, minor: 19.8 min. 99% ee. [α]_D ²⁴ -124.6° (c 1.17, 120.100 mL/min, t_R = major: 11.9 min, minor: 19.8 min. 99% ee. [α]_D ²⁴ -124.6° (c 1.17, 120.100 mL/min, t_R = major: 11.9 min, minor: 19.8 min. 99% ee. [α]_D ²⁴ -124.6° (c 1.17, 120.100 mL/min, t_R = major: 11.9 min, minor: 19.8 min. 99% ee. [α]_D ²⁴ -124.6° (c 1.17, 120.100 mL/min, t_R = major: 11.9 min, minor: 19.8 min. 99% ee. [α]_D ²⁴ -124.6° (c 1.17, 120.100 mL/min, t_R = major: 11.9 min, minor: 19.8 min. 99% ee. [α]_D ²⁴ -124.6° (c 1.17, 120.100 mL/min, t_R = major: 11.9 min, minor: 19.8 min. 99% ee. [α]_D ²⁴ -124.6° (c 1.17, 120.100 mL/min, t_R = major: 11.9 min, minor: 19.8 min. 99% ee. [α]_D ²⁴ -124.6° (c 1.17, 120.100 mL/min, t_R = major: 11.9 min, minor: 19.8 min. 99% ee. [α]_R = major: 11.9 min, minor: 19.8 min. 99% ee. [α]_R = major: 11.9 min, minor: 19.8 min. 99% ee. [α]_R = major: 11.9 min, minor: 19.8 min. 99% ee. [α]_R = major: 11.9 min, minor: 19.8 min. 99% ee. [α]_R = major: 11.9 min, minor: 19.8 m

 $CH_2Cl_2).$

15. [4+2] cycloaddition of cycloheptatriene 4 with PTAD.

To a solution of 4 (0.10 mmol, 1.0 equiv.) in ethyl acetate (1.0 mL) was added the PTAD (0.105 mmol, 18.4mg). The reaction mixture was stirred at room temperature and monitored by TLC. After the reaction was completed, the solvent was removed in vacuo and the crude product was directly purified by flash chromatography.

(5bR)-14-Bromo-2,5b-diphenyl-5a,5b-dihydro-1H,5H,11H-5,11-

ethenobenzofuro[2',3':1,3]cyclopropa[1,2-d][1,2,4]triazolo[1,2-a]pyridazine-1,3(2H)-dione

(10a) Yield: 68%, > 95:5 dr, white solid, $R_f = 0.45$ (petroleum ether/AcOEt = 5:1). ¹H NMR (500

MHz, Chloroform-d) δ 7.49 – 7.44 (m, 6H), 7.42 – 7.37 (m, 1H), 7.33 (q, J = 3.1 Hz, 2H), 7.24 (t, J = 7.7 Hz, 1H), 6.96 – 6.89 (m, 2H), 6.83 (d, J = 7.6 Hz, 1H), 6.14 (dd, J = 6.7, 2.3 Hz, 1H), 5.77 (d, J = 6.7 Hz, 1H), 5.59 (dd, J = 4.8, 2.4 Hz, 1H), 1.52 (d, J = 4.8 Hz, 1H). ¹³C NMR (126 MHz, Chloroform-d) δ 156.8, 156.3, 156.2, 134.2, 132.9, 131.0, 130.7, 129.6, 129.2, 129.2, 129.1, 128.6, 128.6, 127.7, 127.1, 125.5, 124.7, 121.8, 117.7, 111.1, 72.8, 62.3, 57.8, 46.4, 20.6. HRMS (ESI) ([M+Na]⁺) Calcd. for [C₂₇H₁₈BrNaN₃O₃]⁺: 534.0424, Found. 534.0424. HPLC: OD-H column, 90:10 hexane:isopropanol, 1.00 mL/min, t_R = major: 26.2 min, minor: 30.965 min. 99% ee.

(5bR)-2,5b-Diphenyl-5a,5b-dihydro-1H,5H,11H-5,11-

ethenobenzofuro[2',3':1,3]cyclopropa[1,2-d][1,2,4]triazolo[1,2-a]pyridazine-1,3(2H)-

dione (10b) Yield: 36%, > 95:5 dr, red oil, $R_f = 0.45$ (petroleum ether/AcOEt = 5:1). ¹H NMR (500 MHz, Chloroform-d) δ 7.50 – 7.36 (m, 6H), 7.31 (dd, J = 6.1, 2.9 Hz, 2H), 7.26 – 7.21 (m, 2H), 7.06 (d, J = 8.1 Hz, 1H), 6.96 (dt, J = 6.5, 2.0 Hz, 1H), 6.91 (td, J = 7.5, 1.0 Hz, 1H), 6.80 (dd, J = 7.6, 1.3 Hz, 1H), 5.88 (ddd, J = 8.0, 6.1, 1.8 Hz, 1H), 5.73 (dd, J = 6.3, 1.4 Hz, 1H), 5.67 (ddd, J = 7.6, 5.7, 1.5 Hz, 1H), 5.56 (ddd, J = 5.9, 4.6, 1.8 Hz, 1H), 1.49 (d, J = 4.6 Hz, 1H). ¹³C NMR (126 MHz, Chloroform-d) δ 156.7, 156.6, 156.2, 135.6, 133.4, 131.2, 130.8, 129.4, 129.2, 128.9, 128.8, 128.4, 127.9, 127.6, 125.6, 125.3, 124.7, 121.6, 111.1, 73.4, 55.9, 53.9, 46.1, 19.8. HRMS (ESI) ([M+H]⁺) Calcd. for [C₂₇H₂₀N₃O₃]⁺: 434.1499, Found. 434.1499. HPLC: MD(2) column, 80:20 hexane:isopropanol, 0.50 mL/min, t_R = major: 36.6 min, minor: 41.9 min. 99% ee.

(7aR)-2,7a-diphenyl-5,7a-dihydro-1H-5,12a-ethenobenzofuro[2,3-c][1,2,4]triazolo[1,2-(7aR)-2,7a-diphenyl-5,7a-dihydro-1H-5,12a-ethenobenzofuro[2,3-c][1,2,4]triazolo[1,2-(7aR)-2,7a-diphenyl-5,7a-dihydro-1H-5,12a-ethenobenzofuro[2,3-c][1,2,4]triazolo[1,2-(7aR)-2,7a-diphenyl-5,7a-dihydro-1H-5,12a-ethenobenzofuro[2,3-c][1,2,4]triazolo[1,2-(7aR)-2,7a-diphenyl-5,7a-dihydro-1H-5,12a-ethenobenzofuro[2,3-c][1,2,4]triazolo[1,2-(7aR)-2,7a-diphenyl-5,7a-dihydro-1H-5,12a-ethenobenzofuro[2,3-c][1,2,4]triazolo[1,2-(7aR)-2,7a-diphenyl-5,7a-dihydro-1H-5,12a-ethenobenzofuro[2,3-c][1,2,4]triazolo[1,2-(7aR)-2,7a-diphenyl-5,7a-dihydro-1H-5,12a-ethenobenzofuro[2,3-c][1,2,4]triazolo[1,2-(7aR)-2,7a-diphenyl-5,7a-dihydro-1H-5,12a-ethenobenzofuro[2,3-c][1,2,4]triazolo[1,2-(7aR)-2,7a-diphenyl-5,7a-dihydro-1H-5,12a-ethenobenzofuro[2,3-c][1,2,4]triazolo[1,2-(7aR)-2,7a-diphenyl-5,7a-dihydro-1H-5,12a-ethenobenzofuro[2,3-c][1,2,4]triazolo[1,2-(7aR)-2,7a-diphenyl-5,7a-dihydro-1H-5,12a-ethenobenzofuro[2,3-c][1,2,4]triazolo[1,2-(7aR)-2,7a-diphenyl-5,7a-dihydro-1H-5,12a-ethenobenzofuro[2,3-c][1,2,4]triazolo[1,2-(7aR)-2,7a-diphenyl-5,7a-dihydro-1H-5,12a-ethenobenzofuro[2,3-c][1,2,4]triazolo[1,2-(7aR)-2,7a-diphenyl-5,7a-dihydro-1H-5,12a-ethenobenzofuro[2,3-c][1,2,4]triazolo[1,2-(7aR)-2,7a-diphenyl-5,7a-dihydro-1H-5,12a-ethenobenzofuro[2,3-c][1,2,4]triazolo[1,2-(7aR)-2,7a-diphenyl-5,7a-dihydro-1H-5,12a-ethenobenzofuro[2,3-c][1,2,4]triazolo[1,2-(7aR)-2,7a-diphenyl-5,7a-dihydro-1H-5,12a-ethenobenzofuro[2,3-c][1,2,4]triazolo[1,2-(7aR)-2,7a-diphenyl-5,7a-dihydro-1H-5,12a-ethenobenzofuro[2,3-c][1,2,4]triazolo[1,2-(7aR)-2,7a-diphenyl-5,7a-dihydro-1H-5,12a-ethenobenzofuro[2,3-c][1,2,4]triazolo[1,2-(7aR)-2,7a-dihydro-1H-5,12a-ethenobenzofuro[2,3-c][1,2-(7aR)-2,7a-dihydro-1H-5,12a-ethenobenzofuro[2,3-c][1,2-(7aR)-2,7a-dihydro-1H-5,12a-ethenobenzofuro[2,3-c][1,2-(7aR)-2,7a-dihydro-1H-5,12a-ethenobenzofuro[2,3-c][1,2-(7aR)-2,7a-dihydro-1H-5,12a-ethenobenzofuro[2,3-c][1,3-c][1,3-c][1,3-c][1,3-c][1,3-c][1,3-c][1,3-c][1,3-c][1,3-c][1,3-c]

ether/AcOEt = 5:1). ¹H NMR (500 MHz, Chloroform-d) δ 7.46 – 7.39 (m, 5H), 7.38 – 7.32 (m, 2H), 7.27 – 7.22 (m, 3H), 7.21 – 7.14 (m, 2H), 7.07 – 6.99 (m, 2H), 6.62 (dd, J = 9.4, 6.9 Hz, 1H), 6.50 (dd, J = 10.8, 7.8 Hz, 1H), 6.42 (d, J = 10.8 Hz, 1H), 6.03 (d, J = 9.4 Hz, 1H), 5.35 (t, J = 7.3 Hz, 1H). ¹³C NMR (126 MHz, Chloroform-d) δ 159.7, 150.3, 149.9, 136.1, 133.4, 131.4, 130.4, 130.1, 129.8, 129.5, 129.3, 129.0, 128.2, 128.0, 126.1, 123.9, 123.5, 123.4, 113.0, 104.8, 64.4, 47.8. HRMS (ESI) ([M+H]⁺) Calcd. for [C₂₇H₂₀N₃O₃]⁺: 434.1499, Found. 434.1495. HPLC: MD(2) column, 80:20 hexane:isopropanol, 0.50 mL/min, t_R = major: 45.7 min, minor: 58.6 min. > 99% ee.

(7aR)-5-Methoxy-2,7a-diphenyl-5,7a-dihydro-1H-5,12a-ethenobenzofuro[2,3-

c][1,2,4]triazolo[1,2-a][1,2]diazepine-1,3(2H)-dione (11b) Yield: 49%, > 95:5 dr, white solid, Rf =

0.25 (petroleum ether/AcOEt = 4:1). ¹H NMR (500 MHz, Chloroform-d) δ 7.45 (t, J = 7.8 Hz, 2H), 7.38

(dd, J = 8.0, 6.0 Hz, 3H), 7.31 – 7.20 (m, 7H), 7.13 (d, J = 8.1 Hz, 1H), 7.02 (t, J = 7.5 Hz, 1H), 6.70 (d, J = 11.8 Hz, 1H), 5.76 (dd, J = 11.9, 2.0 Hz, 1H), 5.66 (d, J = 7.3 Hz, 1H), 5.33 (dd, J = 7.5, 1.9 Hz, 1H), 3.46 (s, 3H). ¹³C NMR (126 MHz, 1H), 5.37 (dd, J = 7.5, 1.9 Hz, 1H), 3.46 (s, 3H). Chloroform-d) & 157.4, 156.3, 155.8, 150.2, 138.0, 132.7, 131.3, 129.8, 129.2, 128.98, 128.97, 128.5, 128.1, 127.5, 126.3, 125.7, 123.6, 123.5, 112.8, 101.3, 95.0, 64.8, 60.2, 55.0. HRMS (ESI) ([M+H]⁺) Calcd. for [C₂₈H₂₂N₃O₄]⁺: 464.1605, Found. 464.1598. HPLC: MD(2) column, 80:20 hexane: isopropanol, 0.50 mL/min, $t_R =$ major: 25.3 min, minor: 24.7 min. > 99% ee.

16. Hydrogenation of cycloheptatriene 4c.

A suspension of Pd/C 10% (10 mg) and 4c (25.8 mg, 0.1 mmol) in ethyl acetate (3.0 mL) was stirred at room temperature under 1 atm hydrogen atmosphere. After being stirred 3 hours, the mixture was filtrated through a pad of Celite and the filtration was concentrated in vacuo, the residue was purified by column chromatography on silica gel to afford the desired the product 12 in 94% yield (24.6 mg, 98% ee).

(R)-10a-phenyl-8,9,10,10a-tetrahydro-7H-cyclohepta[b]benzofuran (12) Yield: 94%, white solid, $R_f = 0.7$ (petroleum ether). ¹H NMR (500 MHz, Chloroform-d) δ 7.64 – 7.55 (m, 2H), 7.38 (t, J = 7.8 Hz, Chloroform-d) δ 7.64 – 7.55 (m, 2H), 7.38 (t, J = 7.8 Hz, Chloroform-d) δ 7.64 – 7.55 (m, 2H), 7.38 (t, J = 7.8 Hz, Chloroform-d) δ 7.64 – 7.55 (m, 2H), 7.38 (t, J = 7.8 Hz, Chloroform-d) δ 7.64 – 7.55 (m, 2H), 7.38 (t, J = 7.8 Hz, Chloroform-d) δ 7.64 – 7.55 (m, 2H), 7.38 (t, J = 7.8 Hz, Chloroform-d) δ 7.64 – 7.55 (m, 2H), 7.38 (t, J = 7.8 Hz, Chloroform-d) δ 7.64 – 7.55 (m, 2H), 7.38 (t, J = 7.8 Hz, Chloroform-d) δ 7.64 – 7.55 (m, 2H), 7.38 (t, J = 7.8 Hz, Chloroform-d) δ 7.64 – 7.55 (m, 2H), 7.38 (t, J = 7.8 Hz, Chloroform-d) δ 7.64 – 7.55 (m, 2H), 7.38 (t, J = 7.8 Hz, Chloroform-d) δ 7.64 – 7.55 (m, 2H), 7.38 (t, J = 7.8 Hz, Chloroform-d) δ 2H), 7.26 – 7.21 (m, 1H), 7.19 (dd, J = 7.5, 1.4 Hz, 1H), 7.11 (td, J = 7.8, 1.4 Hz, 1H), 6.92 – 6.81 (m, 2H), 5.82 (dd, J = 9.3, 4.8 Hz, 1H), 2.80 (ddd, J = 14.1, 5.3, 2.3 Hz, 1H), 2.14 – 1.90 (m, 4H), 1.71 (dddt, J = 18.7, 10.7, 5.3, 2.8 Hz, 2H), 1.54 – 1.43 (m, 1H). ¹³C NMR (126 MHz, Chloroform-d) δ 163.8, 155.9, 141.7, 135.8, 129.0, 128.1, 126.4, 126.2, 123.1, 121.6, 109.3, 104.0, 56.2, 36.6, 28.0, 27.3, 23.9. HRMS (ESI) ([M+Na]⁺) Calcd. for [C₁₉H₁₈NaO]⁺: 285.1250,

Found. 285.1251. HPLC: MD(2) column, 99.2:0.8 hexane: isopropanol, 0.40 mL/min, $t_R = major$: 11.6 min, minor: 11.4

min. 98% ee.

17. Computational details

All of the calculations were performed with Gaussian 16 program.⁷ The hybrid B3LYP functional in conjunction with the def2SVP basis sets,⁸⁻⁹ was applied for the optimization of all stationary points in gas phase. Empirical dispersion was included using the D3 version of Grimme's dispersion with Becke-Johnson damping.¹⁰ Frequency calculations were performed at the same level to confirm whether each stationary point was either a minimum or a transition structure. All the thermochemistry data were obtained at 253.15 K. Single point energy calculations were carried out with Truhlar's M06 functional with def2TZVP basis set for all atoms in dichloroethane with SMD solvent model.¹¹⁻¹² Rh₂(OAc)₄ was used as the catalyst model during the investigation of reaction mechanism to reduce the computation cost. For each stationary point, the free energy corrections were calculated using Grimme's quasiharmonic approximation with GoodVibes.¹³ Computed structures were illustrated using CYLView.¹⁴

1. DFT studies on Rh2(II)-catalyzed Büchner reaction of enynones.

Scheme S1. Plausible reaction pathways of Rh₂(II)-catalyzed Büchner reaction of enynone 1a. If not otherwise noted, relative Gibbs free energies computed at 253.15 K with M06/def2TZVP-SMD(dichloroethane)//B3LYP-D3(BJ)/def2SVP theoretical level are reported in kcal/mol.

Scheme S2. Free energy profiles of Rh₂(II)-catalyzed Büchner reaction pathways of enynone 1a.

Figure S1. Optimized structures of important stationary points. NBO charge is present in brackets. And distance is given at angstrom.

Based on our experimental observations and DFT calculations, the plausible reaction mechanism was proposed. The reaction starts with the coordination of rhodium catalyst with alkyne moiety, followed by a 5-*exo-dig* cyclization to afford rhodium carbene intermediate **IIa**. Then, electrophilic addition of carbene to phenyl ring leads to the formation of intermediate **IIIa**. Due to the breaking of aromatic system, intermediate **IIIa** is highly unstable, and the free energy increased by 15.0 kcal/mol related to carbene **IIa**. From intermediate **IIIa**, there is a competition between ring closure and [1,2]-H shift. The ring-closure step is favored with a low free energy barrier of 4.2 kcal/mol, which could be possibly contributed to the close distance and attractive electrostatic interaction between two carbons of the forming bond in intermediate **IIIa**. Moreover, there is a smaller distortion energy penalty to overcome during the ring-closure step, as the structure of **TS3a** is closer to that of intermediate **IIIa** than the [1,2]-H shift transition state structure of **TS4a**. Moreover, a concerted cyclopropanation step *via* **TS5a** was also considered, but the free energy barrier, 23.7 kcal/mol is higher than the ring-closure step by 4.5 kcal/mol.

2. DFT studies on Rh₂(II)-catalyzed aromatic substitution reaction of enyones.

Scheme S3. Plausible reaction pathways of Rh₂(II)-catalyzed aromatic substitution reaction of enyone 5e. After extensive optimization, we ultimately found that TS10e could not be located.

Scheme S4. Free energy profiles of Rh₂(II)-catalyzed aromatic substitution reaction of enyone 5e.

Figure S1. Optimized structures of selected stationary points.

For Rh(II)-catalyzed transformation of enynone **5e**, the possible Büchner reaction is impossible, as the corresponding product **8e** is even higher in free energy than reactant **5e** by 18.3 kcal/mol. This could be contributed to the high ring strain

of the fused cyclobutene in structures **Xe** and **8e**. However, the aromatic substitution process *via* **TS9e** is more favorable due the release of this high ring strain.

3	Tables o	f energies	and other	thermodynar	nic parameters.
---	----------	------------	-----------	-------------	-----------------

Table	S1
-------	-----------

Index	E _{ele}	E _{ele} (SP)	ZPE	Н	G(T)	qh-G(T)
1a	-1095.87583	-1096.29686	0.29546	-1095.56312	-1095.62384	-1095.61806
[Rh ₂]	-1134.67797	-1135.13924	0.21028	-1134.45046	-1134.50769	-1134.50398
Ia	-2230.60765	-2231.45456	0.50765	-2230.06551	-2230.16119	-2230.15298
TS1a	-2230.58192	-2231.43429	0.50617	-2230.04159	-2230.13881	-2230.12920
IIa	-2230.61504	-2231.46800	0.50965	-2230.07166	-2230.16703	-2230.15812
TS2a	-2230.59493	-2231.43922	0.50844	-2230.05323	-2230.14605	-2230.13822
IIIa	-2230.59969	-2231.44415	0.50904	-2230.05716	-2230.15048	-2230.14261
TS3a	-2230.59295	-2231.43823	0.50924	-2230.05065	-2230.14283	-2230.13514
IVa	-1095.89761	-1096.31675	0.29878	-1095.58337	-1095.63580	-1095.63327
TS4a	-2230.57899	-2231.42253	0.50437	-2230.04139	-2230.13368	-2230.12613
TS5a	-2230.58567	-2231.43022	0.50788	-2230.04470	-2230.13590	-2230.12878
TS6a	-1095.88968	-1096.30560	0.29751	-1095.57693	-1095.62860	-1095.62633
2a	-1095.91075	-1096.32204	0.29880	-1095.59631	-1095.64882	-1095.64642
7a	-1095.96323	-1096.37285	0.30033	-1095.64739	-1095.70046	-1095.69763

Table S2

_

Index	Eele	E _{ele} (SP)	ZPE	Н	G(T)	qh-G(T)
5e	-1020.72428	-1021.08524	0.29160	-1020.41629	-1020.47294	-1020.46869
VIIe	-2155.45219	-2156.24324	0.50368	-2154.91493	-2155.00748	-2155.00021
TS7e	-2155.43685	-2156.22220	0.50331	-2154.90085	-2154.99123	-2154.98419
VIIIe	-2155.46761	-2156.25844	0.50560	-2154.92897	-2155.02244	-2155.01393
TS8e	-2155.41961	-2156.21431	0.50294	-2154.88406	-2154.97582	-2154.96785
IXe	-2155.45028	-2156.24398	0.50451	-2154.91251	-2155.00736	-2154.99810
TS9e	-2155.44470	-2156.23263	0.50071	-2154.91160	-2155.00168	-2154.99458
6e	-1020.80159	-1021.15834	0.29575	-1020.49095	-1020.54252	-1020.53988
TS11e	-2155.37720	-2156.16366	0.50277	-2154.84184	-2154.93229	-2154.92506

Xe	-1020.68359	-1021.04999	0.29312	-1020.37534	-1020.42692	-1020.42447
TS12e	-1020.67645	-1021.04099	0.29198	-1020.36955	-1020.42104	-1020.41844
8e	-1020.70062	-1021.05969	0.29331	-1020.39205	-1020.44398	-1020.44144

Notes: E_{ele} , ZPE, H, G(T), and qh-G(T) were the electronic energies, zero-point energies, sum of electronic and thermal ethalpies, sum of electronic and thermal free energies, and sum of electronic and thermal free energies using Grimme's quasiharmonic approximation, respectively, which were given at the B3LYP-D3(BJ)/def2SVP level. $E_{ele}(SP)$ were electronic energies with solvent correction at the M06/def2TZVP-SMD(dichloroethane) level.

9.5 Coordinates of all stationary points.

1a

С	0.223343	1.710976	0.001690
С	1.568811	1.257857	0.000681
С	2.622029	2.177551	-0.002096
С	2.346144	3.546529	-0.003460
С	1.027369	4.014327	-0.002059
С	-0.021846	3.100809	0.000263
С	-0.846764	0.782426	0.004961
0	1.745658	-0.089083	0.002965
С	3.021640	-0.619638	-0.001891
С	3.642284	-0.907251	-1.219175
С	4.910489	-1.490538	-1.226319
С	5.531664	-1.773867	-0.011276
С	4.918671	-1.492586	1.208371
С	3.650454	-0.909233	1.210686
F	6.748348	-2.333626	-0.015819
С	-1.805851	0.023540	0.010309
С	-2.829385	-0.933247	0.021087
С	-4.190441	-0.791359	0.006628
С	-4.908933	0.517312	-0.065301
0	-6.090122	0.567426	-0.363636
С	-4.158916	1.801978	0.229711
0	-4.323068	-3.156136	0.000604
С	-4.947716	-2.111175	0.026997
С	-6.454491	-2.131897	0.108781
Н	3.651953	1.821437	-0.003136
Н	3.177196	4.255736	-0.005783
Н	0.821700	5.086225	-0.003176

Н	-1.058194	3.443094	0.001699
Н	3.123754	-0.677028	-2.151326
Н	5.422055	-1.732902	-2.159192
Н	5.436532	-1.736455	2.137371
Н	3.138213	-0.680420	2.146652
Н	-2.496494	-1.980571	0.028643
Н	-3.558696	1.730850	1.148235
Н	-3.462023	2.030799	-0.591457
Н	-4.896686	2.610295	0.312380
Н	-6.772620	-3.173514	0.245484
Н	-6.820625	-1.499687	0.930710
Н	-6.892275	-1.707973	-0.805748

[Rh ₂]			
Rh	-0.003812	-0.004932	1.188560
Rh	-0.004708	-0.003925	-1.188152
0	1.437811	1.444398	1.126476
0	1.436394	1.445906	-1.125220
0	1.443830	-1.445610	-1.127166
0	-1.453814	1.436944	-1.124141
0	-1.445115	-1.452729	-1.125633
0	-1.444644	-1.453311	1.126103
0	1.444124	-1.446924	1.124543
0	-1.452576	1.436521	1.127576
С	-1.861124	1.854429	0.002132
С	1.853811	1.854058	0.000739
С	1.859978	-1.855916	-0.001714
С	-1.861803	-1.861761	0.000276

С	-2.963394	-2.889155	-0.001065	С	-5.147415	0.843533	-1.926805
С	-2.887559	2.957018	0.000745	C	-5.674090	1.431918	-0.779390
С	2.954291	2.882909	-0.001442	С	-5.041398	1.216417	0.447307
С	2.959410	-2.885815	-0.000695	F	-5.755263	1.045150	-3.105165
Н	2.935787	-3.472124	-0.927911	С	0.113575	1.109226	2.221520
Н	2.870688	-3.535342	0.879817	С	0.942235	2.249497	2.154904
Н	3.927947	-2.362892	0.056380	С	0.780666	3.383169	1.421266
Н	2.856771	3.541291	-0.874526	С	-0.348878	3.621134	0.466517
Н	3.921412	2.359536	-0.075602	0	-0.139672	4.245799	-0.561284
Н	2.941764	3.459922	0.931742	С	-1.714005	3.064119	0.770106
Н	-2.361627	3.922918	-0.071147	О	2.981587	4.035355	2.014473
Н	-3.545313	2.862487	-0.873132	С	1.930198	4.366511	1.496006
Н	-3.465481	2.944259	0.933369	С	1.744750	5.763124	0.954312
Н	-2.883961	-3.530959	-0.888035	Н	-4.644511	-1.945895	1.790139
Н	-3.930898	-2.362980	-0.044214	Н	-3.773749	-4.125658	2.641955
Н	-2.933393	-3.483734	0.920743	Н	-1.418116	-4.303918	3.447657
				Н	0.077601	-2.302785	3.345870
Ia				Н	-2.441324	-0.730888	-0.584825
С	-1.447898	-1.002396	2.559714	Н	-3.610317	-0.380921	-2.802372
С	-2.786488	-0.914040	2.120619	Н	-6.571919	2.047293	-0.856602
С	-3.615940	-2.036322	2.143179	Н	-5.422966	1.663622	1.366385
С	-3.120139	-3.250379	2.620082	Н	1.891835	2.179738	2.697702
С	-1.799268	-3.350167	3.077464	Н	-1.739042	2.028053	0.408357
С	-0.968731	-2.235361	3.046782	Н	-1.947941	3.046998	1.842644
С	-0.579554	0.108583	2.388154	Н	-2.462698	3.641770	0.211984
0	-3.243193	0.308215	1.712892	Н	2.583530	6.384721	1.292060
С	-3.893223	0.425097	0.501547	Н	1.706905	5.727223	-0.143689
С	-3.362183	-0.153094	-0.655670	Н	0.785628	6.195015	1.279716
С	-3.999690	0.053105	-1.879424	Rh	0.927141	-0.421227	0.279127

Rh	1.969549	-1.291492	-1.694884				
0	-0.595630	-1.764433	-0.077615	TS1a			
0	0.458712	-2.668350	-1.845117	С	1.035464	-1.905082	-0.877354
0	0.868955	0.062578	-2.778470	С	2.191289	-2.352645	-0.196856
0	2.996473	-2.582373	-0.478378	С	2.597569	-3.686480	-0.290779
0	3.444143	0.101196	-1.476223	С	1.869250	-4.580137	-1.076748
0	2.552050	0.808803	0.460055	С	0.715253	-4.155135	-1.745302
0	-0.021411	0.935630	-0.907101	С	0.287797	-2.836284	-1.623961
0	1.926688	-1.846301	1.364511	С	0.616310	-0.528762	-0.762707
С	2.748464	-2.605380	0.762342	0	2.812806	-1.472712	0.644517
С	-0.497379	-2.608147	-1.023198	С	4.171050	-1.306590	0.663199
С	0.131810	0.891308	-2.170567	С	4.705202	-0.723866	1.817309
С	3.440441	0.836808	-0.445474	С	6.069980	-0.442123	1.892511
С	4.579848	1.802720	-0.259909	С	6.887663	-0.755859	0.809525
С	3.460114	-3.643910	1.591849	С	6.367689	-1.337744	-0.344484
С	-1.639739	-3.578179	-1.180837	С	5.001331	-1.610844	-0.421888
С	-0.651063	1.895171	-2.970998	F	8.202789	-0.488995	0.877156
Н	-0.336679	1.887193	-4.021288	С	1.153759	0.637411	-0.795801
Н	-0.526070	2.892358	-2.523296	С	1.163461	2.011998	-0.608377
Н	-1.720524	1.639733	-2.900526	С	2.330460	2.734687	-0.725016
Н	-1.319371	-4.464961	-1.741548	С	3.448047	1.863112	-1.100269
Н	-2.447906	-3.081210	-1.742261	0	3.168925	0.667601	-1.277640
Н	-2.037414	-3.850738	-0.194034	С	4.877988	2.299565	-1.269535
Н	2.862180	-4.569793	1.580038	0	1.187629	4.730974	-0.257575
Н	4.443250	-3.867671	1.158149	С	2.261687	4.205718	-0.499302
Н	3.557165	-3.305614	2.631369	С	3.518563	5.049299	-0.567301
Н	4.811785	2.289017	-1.217746	Н	3.478957	-4.015984	0.261504
Н	5.472949	1.235926	0.048616	Н	2.195568	-5.620329	-1.149571
Н	4.334347	2.544072	0.510774	Н	0.139222	-4.860306	-2.348098

Η	-0.626052	-2.489499	-2.105448
Н	4.032710	-0.488083	2.643541
Н	6.508319	0.011985	2.782898
Н	7.035655	-1.562336	-1.178053
Н	4.577132	-2.030660	-1.333161
Н	0.216499	2.499492	-0.375158
Н	4.972334	3.060864	-2.057687
Н	5.257561	2.740381	-0.335964
Н	5.485927	1.423506	-1.525143
Н	3.248407	6.088673	-0.344010
Н	4.272674	4.702595	0.155401
Н	3.975077	5.000094	-1.567816
Rh	-1.448965	-0.090078	-0.157458
Rh	-3.721247	0.192189	0.647923
0	-1.425636	-1.878805	0.848998
0	-3.573202	-1.666589	1.499611
0	-2.924047	1.043287	2.337140
0	-4.374414	-0.667526	-1.094869
0	-3.727537	2.047147	-0.237035
0	-1.669988	1.727325	-1.090950
0	-0.825322	0.888779	1.531124
0	-2.264810	-1.016749	-1.808347
С	-3.528692	-1.097269	-1.926332
С	-2.474549	-2.287008	1.436824
С	-1.679156	1.235552	2.408542
С	-2.720091	2.421914	-0.895155
С	-2.721181	3.803141	-1.499401
С	-4.046038	-1.796192	-3.159655
С	-2.374088	-3.620410	2.135513

С	-1.136200	1.945636	3.623391
Н	-1.936800	2.146033	4.345138
Н	-0.673079	2.892662	3.305597
Н	-0.347561	1.333247	4.084916
Н	-3.372346	-4.010219	2.369142
Н	-1.812001	-3.484883	3.073372
Н	-1.811288	-4.327731	1.510721
Н	-3.929215	-2.883475	-3.022913
Н	-5.108045	-1.569495	-3.313578
Н	-3.452264	-1.503204	-4.036419
Н	-3.651184	4.331814	-1.259313
Н	-2.603381	3.722762	-2.590712
Н	-1.852480	4.362600	-1.117850

-	-	
		A
		а

С	0.914586	-1.881747	-0.797157	
С	2.034151	-2.354636	-0.070714	
С	2.390176	-3.704547	-0.095161	
С	1.665244	-4.598840	-0.883991	
С	0.558107	-4.153271	-1.615001	
С	0.167552	-2.820081	-1.541873	
С	0.465089	-0.498177	-0.691712	
0	2.672322	-1.473055	0.767132	
С	4.025314	-1.280849	0.746311	
С	4.541080	-0.484403	1.777297	
С	5.902955	-0.188526	1.821306	
С	6.742600	-0.698576	0.831901	
С	6.242413	-1.485105	-0.201351	
С	4.875911	-1.773349	-0.251039	

F	8.055901	-0.420645	0.874355	0	-2.870170	1.313408	2.252283
С	1.373573	0.556506	-0.816139	0	-4.414375	-0.539952	-1.071183
С	1.289540	1.902493	-0.474565	0	-3.577261	2.179505	-0.411684
С	2.545390	2.497461	-0.737937	0	-1.511475	1.690746	-1.175082
С	3.348149	1.481905	-1.271468	0	-0.781878	0.910134	1.503065
0	2.665208	0.339560	-1.320827	0	-2.326941	-1.020285	-1.776990
С	4.752442	1.426834	-1.750973	С	-3.597214	-1.045721	-1.882228
0	1.940953	4.643205	-0.032057	С	-2.626721	-2.124840	1.534952
С	2.829976	3.926753	-0.450563	С	-1.618059	1.392943	2.336669
С	4.230343	4.458206	-0.675438	С	-2.532874	2.446803	-1.060159
Н	3.229681	-4.046887	0.511975	С	-2.443264	3.778779	-1.764741
Н	1.954001	-5.652309	-0.907397	С	-4.146362	-1.772082	-3.086754
Н	-0.018161	-4.856198	-2.220311	С	-2.616701	-3.430789	2.292914
Н	-0.722820	-2.465075	-2.059758	С	-1.022225	2.129577	3.511582
Н	3.854078	-0.101438	2.533441	Н	-1.810106	2.462878	4.197347
Н	6.324015	0.426920	2.618264	Н	-0.455478	2.998147	3.141577
Н	6.924456	-1.860792	-0.966269	Н	-0.311581	1.473138	4.035332
Н	4.474758	-2.367542	-1.071074	Н	-3.626845	-3.686403	2.634875
Н	0.420944	2.387596	-0.049758	Н	-1.950010	-3.330335	3.163969
Н	5.024891	2.324608	-2.319913	Н	-2.206837	-4.227269	1.655660
Н	5.442589	1.340449	-0.895069	Н	-3.983486	-2.853664	-2.954573
Н	4.892216	0.538144	-2.378766	Н	-5.220128	-1.578252	-3.196175
Н	4.281496	5.490287	-0.306927	Н	-3.602126	-1.462929	-3.990466
Н	4.980783	3.838749	-0.160071	Н	-3.369234	4.350459	-1.631111
Н	4.476091	4.448590	-1.750035	Н	-2.248116	3.615265	-2.835180
Rh	-1.437604	-0.094600	-0.163160	Н	-1.588854	4.343281	-1.359418
Rh	-3.718175	0.399348	0.617559				
0	-1.557222	-1.841367	0.904605	TS2a			
0	-3.664949	-1.413595	1.590596	С	-1.215547	2.286948	-0.220850

С	-1.679926	3.359324	0.561532	Н	-2.306522	-3.947959	-0.476940
С	-1.666647	4.679834	0.106584	Н	-0.161124	1.610853	2.249159
С	-1.242745	4.947149	-1.192056	Н	-0.244701	-0.811240	2.855988
С	-0.856463	3.890839	-2.027670	Н	-4.476612	-0.444230	3.501598
С	-0.843470	2.584853	-1.547407	Н	-4.422872	1.938210	2.663991
С	-1.095973	0.896287	0.292315	Н	-6.301985	-0.640680	-3.636887
С	-2.310487	1.868495	2.253808	Н	-5.850166	0.534410	-2.353414
0	-2.317702	3.123831	1.765675	Н	-4.703511	0.183935	-3.658711
С	-2.132034	0.020446	-0.192223	F	-2.425885	-1.993370	3.676472
С	-3.163090	0.203954	-1.091304	Rh	0.925954	0.045566	0.040521
С	-3.769938	-1.073791	-1.311301	Rh	3.105357	-0.928646	-0.497211
С	-3.078803	-1.962181	-0.491852	0	1.656856	1.790495	-0.763492
0	-2.112333	-1.310239	0.162534	0	3.628468	0.865026	-1.341557
С	-3.226961	-3.406969	-0.201014	0	3.744412	-0.239955	1.336110
С	-1.115914	1.083517	2.196700	0	2.297206	-1.540643	-2.284527
С	-1.154536	-0.218064	2.812555	0	2.467983	-2.674473	0.380723
С	-2.352248	-0.734812	3.215033	0	0.464300	-1.774164	0.880731
С	-3.546451	0.020939	3.169430	0	1.725268	0.625379	1.840797
С	-3.520268	1.327836	2.707490	0	0.299999	-0.604412	-1.809567
0	-5.353886	-2.534933	-2.287471	С	1.097358	-1.262034	-2.552414
С	-4.901614	-1.405774	-2.202931	С	2.818255	1.830482	-1.274457
С	-5.479199	-0.263925	-3.016632	С	2.951431	0.378505	2.092607
Н	-2.030086	5.466482	0.769690	С	1.307325	-2.723562	0.871668
Н	-1.235364	5.975614	-1.559543	С	0.852259	-4.029019	1.479923
Н	-0.543500	4.089492	-3.055094	С	0.529591	-1.779778	-3.852068
Н	-0.506336	1.763404	-2.178608	С	3.266720	3.165965	-1.816595
Н	-3.428127	1.152747	-1.548403	С	3.485968	0.905870	3.401558
Н	-3.377291	-3.556690	0.881279	Н	2.729905	0.800091	4.191715
Н	-4.077020	-3.809287	-0.762226	Н	3.701583	1.980392	3.285629

Н	4.412328	0.386422	3.675609	С	-2.653075	1.220132	3.191089
Н	3.735749	3.736217	-0.998329	С	-3.725613	2.104020	2.865273
Н	2.402400	3.738670	-2.177871	С	-3.650203	2.906848	1.741841
Н	4.011666	3.025940	-2.610364	0	-4.401053	-4.024276	-1.345092
Н	0.022528	-2.738326	-3.654790	С	-3.902608	-3.022406	-1.831485
Н	-0.217079	-1.079668	-4.249676	С	-3.890300	-2.803103	-3.332810
Н	1.332490	-1.953823	-4.579344	Н	-1.858643	5.257840	-2.039067
Н	0.497210	-4.687021	0.669959	Н	-0.808946	4.583794	-4.222221
Н	0.023768	-3.858073	2.179566	Н	-0.130371	2.201280	-4.568760
Н	1.692525	-4.532282	1.976608	Н	-0.355777	0.557528	-2.724297
				Н	-2.600638	-0.383487	-2.479306
IIIa				Н	-4.158214	-2.431816	2.182692
С	-1.216659	1.952381	-1.333025	Н	-4.075665	-3.769226	0.979648
С	-1.655317	3.285848	-1.203759	Н	-2.636699	-3.315918	1.957381
С	-1.500927	4.241609	-2.212248	Н	-0.443846	2.445607	1.210369
С	-0.938341	3.852288	-3.421766	Н	-0.757282	0.396543	2.676394
С	-0.562208	2.512570	-3.614885	Н	-4.600531	2.123241	3.517853
С	-0.702879	1.581309	-2.593211	Н	-4.453466	3.593142	1.470277
С	-1.310148	1.043371	-0.173245	Н	-4.378841	-3.651541	-3.828022
С	-2.507967	2.839626	0.934364	Н	-4.414016	-1.868793	-3.592329
0	-2.440452	3.641335	-0.124761	Н	-2.854618	-2.703790	-3.696920
С	-2.173763	-0.106604	-0.344322	F	-2.798061	0.481083	4.303029
С	-2.677956	-0.741883	-1.458907	Rh	0.828782	0.062046	0.063105
С	-3.270538	-1.970139	-1.010431	Rh	3.021798	-0.993635	0.215034
С	-3.124152	-1.984873	0.369066	0	1.708828	1.432208	-1.189622
0	-2.478990	-0.868531	0.758406	0	3.703020	0.382894	-1.144769
С	-3.527490	-2.934802	1.430545	О	3.440541	0.315449	1.744942
С	-1.400470	1.892939	1.175221	0	2.444007	-2.232162	-1.319234
С	-1.547848	1.099440	2.421955	0	2.214600	-2.313603	1.563800

0	0.173623	-1.372085	1.389952	С	-1.431924	3.101576	-3.005329
0	1.392736	1.252305	1.642479	С	-1.394479	2.001216	-2.150348
0	0.446905	-1.203590	-1.514043	С	-1.831798	1.088453	0.217685
С	1.309648	-2.076357	-1.848321	С	-2.860525	2.191302	1.477049
С	2.923767	1.299511	-1.530942	0	-3.036139	3.351290	0.778796
С	2.566060	1.138991	2.125621	С	-2.320880	-0.230265	-0.094372
С	0.987465	-2.234256	1.846974	С	-2.924283	-0.731876	-1.223955
С	0.415759	-3.269168	2.785967	С	-2.912879	-2.163146	-1.101219
С	0.924677	-2.989647	-2.987198	С	-2.341886	-2.435181	0.133175
С	3.480751	2.353038	-2.457078	0	-2.014183	-1.280822	0.735814
С	2.934914	2.100289	3.228843	С	-2.036443	-3.683068	0.869504
Н	2.074511	2.264227	3.892110	С	-1.502060	1.632627	1.646645
Н	3.200231	3.069608	2.776459	С	-1.376102	0.677030	2.773343
Н	3.797632	1.725990	3.793424	С	-2.481314	0.168180	3.349943
Н	3.818331	3.209723	-1.851434	С	-3.815226	0.598449	3.019894
Н	2.696373	2.709029	-3.138380	С	-3.989619	1.621918	2.130959
Н	4.341441	1.959797	-3.012758	0	-3.153164	-4.359042	-1.943310
Н	-0.066490	-3.423560	-2.789047	С	-3.350088	-3.162360	-2.092307
Н	0.847642	-2.397814	-3.912850	С	-4.035808	-2.631439	-3.336352
Н	1.670639	-3.782113	-3.120161	Н	-2.849111	5.412862	-0.903246
Н	-0.035145	-4.074883	2.183973	Н	-1.935644	5.196923	-3.236240
Н	-0.375268	-2.825430	3.405417	Н	-1.059066	3.001451	-4.027206
Н	1.206560	-3.702614	3.410827	Н	-0.974718	1.051672	-2.479991
				Н	-3.278383	-0.143143	-2.064175
TS3a				Н	-2.439043	-3.634290	1.894148
С	-1.851836	2.123212	-0.828476	Н	-2.451816	-4.541307	0.330533
С	-2.401099	3.356940	-0.435827	Н	-0.943698	-3.806810	0.956605
С	-2.418320	4.477383	-1.263238	Н	-0.682855	2.358818	1.598884
С	-1.922062	4.338975	-2.560278	Н	-0.384192	0.352234	3.077529

Н	-4.657502	0.121058	3.522673	
Н	-4.975379	2.027230	1.898323	
Н	-4.343628	-3.472857	-3.969639	
Н	-4.912171	-2.019369	-3.069698	
Н	-3.346929	-1.980018	-3.899037	
F	-2.379710	-0.771898	4.305637	
Rh	0.852844	0.196917	0.085832	
Rh	3.072371	-0.654516	-0.200973	
0	1.298526	1.591586	-1.338334	IV
0	3.311280	0.670540	-1.742004	
0	3.699066	0.780912	1.124106	
0	2.294536	-2.051750	-1.485873	
0	2.748774	-1.940078	1.354698	
0	0.618278	-1.241470	1.535905	
0	1.590186	1.473379	1.510517	
0	0.248199	-1.125684	-1.349031	
С	1.066212	-1.994698	-1.785129	
С	2.403508	1.527155	-1.956422	
С	2.846962	1.516621	1.700203	
С	1.595458	-1.972277	1.876562	
С	1.352162	-2.976688	2.974290	
С	0.507227	-3.031698	-2.724543	
С	2.663866	2.573850	-3.008682	
С	3.357062	2.554070	2.666989	
Н	2.636115	2.700553	3.482222	
Н	3.459955	3.510918	2.129785	
Н	4.340122	2.264854	3.058734	
Н	3.283220	3.369885	-2.564731	
Н	1.718907	3.013535	-3.351486	

Η	3.226801	2.137347	-3.844599
Η	-0.311659	-3.573714	-2.227066
Η	0.072873	-2.527696	-3.601227
Η	1.288270	-3.731664	-3.043449
Η	1.245287	-3.975392	2.521132
Η	0.433932	-2.730495	3.522113
Η	2.217163	-3.011958	3.650828

IVa

С	-2.113671	-0.689693	-0.484451
С	-3.187671	-0.152104	0.239225
С	-4.431502	-0.770284	0.289807
С	-4.573484	-1.982525	-0.399631
С	-3.505272	-2.545422	-1.109610
С	-2.262288	-1.898788	-1.156511
С	-0.941595	0.224754	-0.342450
С	-1.529108	1.330491	0.559001
0	-2.861199	1.009493	0.883577
С	0.405830	-0.322133	-0.154645
С	1.593873	-0.195740	-0.809746
С	2.548385	-1.019580	-0.106387
С	1.852588	-1.594669	0.942447
0	0.569063	-1.173554	0.913863
С	2.240288	-2.530112	2.025465
С	-1.187059	1.624532	-0.920531
С	-0.101661	2.589224	-1.144784
С	0.634610	3.040150	-0.107689
С	0.315865	2.764852	1.275382
С	-0.763800	2.014385	1.594710

0	4.702101	-1.942641	0.238153	0	0.689068	3.722521	-0.410228
С	3.980635	-1.209909	-0.417615	С	-2.347829	0.746634	0.066901
С	4.521661	-0.436839	-1.605704	С	-3.506090	0.626071	-0.660956
Н	-5.251694	-0.328005	0.857039	С	-4.337115	-0.338494	0.014625
Н	-5.536239	-2.498393	-0.375429	С	-3.627474	-0.736826	1.131601
Н	-3.643010	-3.493748	-1.633186	0	-2.453246	-0.074513	1.168481
Н	-1.423585	-2.330227	-1.707427	С	-3.893053	-1.699588	2.226068
Н	1.774058	0.423146	-1.683257	С	-0.455920	2.152516	1.061347
Н	3.303067	-2.774847	1.920603	С	-0.817464	1.898258	2.438050
Н	2.058940	-2.077334	3.014388	С	-0.193608	2.588278	3.454219
Н	1.641067	-3.454331	1.973096	С	0.707917	3.627364	3.209329
Н	-2.024395	1.664662	-1.623013	С	0.984797	3.983321	1.888194
Н	0.084966	2.970044	-2.150373	0	-6.273596	-1.682468	0.236319
Н	0.926159	3.245989	2.041663	С	-5.668814	-0.830132	-0.393593
Н	-1.099658	1.891179	2.625758	С	-6.256621	-0.224350	-1.654125
Н	5.589463	-0.658361	-1.725846	Н	1.030945	4.672004	-2.715253
Н	3.980177	-0.712217	-2.525380	Н	0.029350	3.818423	-4.863513
Н	4.380566	0.646312	-1.458413	Н	-1.471718	1.812804	-4.785454
F	1.664519	3.877356	-0.314742	Н	-1.945790	0.712920	-2.627966
				Н	-3.752301	1.171056	-1.564858
TS4a				Н	-3.901957	-1.190590	3.204790
С	-0.841355	2.113037	-1.427043	Н	-4.863838	-2.177620	2.054218
С	0.037365	3.207640	-1.518938	Н	-3.100441	-2.465921	2.261958
С	0.347073	3.821867	-2.726141	Н	0.412463	1.253422	0.981208
С	-0.210113	3.337498	-3.912876	Н	-1.488081	1.079377	2.673032
С	-1.053736	2.227307	-3.865410	Н	1.177450	4.143182	4.048055
С	-1.350003	1.622626	-2.643085	Н	1.650875	4.814444	1.653241
С	-1.089833	1.462406	-0.124280	Н	-7.242520	-0.666828	-1.843770
С	0.390790	3.304420	0.829517	Н	-6.352440	0.868610	-1.550020

Н	-5.594441	-0.409975	-2.515431	Н	-0.093147	-2.518906	4.004261
F	-0.464680	2.251690	4.725802	Н	0.591672	-0.931443	4.423839
Rh	0.626877	-0.221360	-0.082935	Н	1.651063	-2.399125	4.368431
Rh	2.182084	-2.116250	-0.173015				
0	1.020382	0.054645	-2.068873	TS5a			
0	2.376844	-1.742884	-2.184489	Rh	0.840524	-0.103760	0.055130
0	3.711265	-0.793101	0.202825	Rh	2.674720	-1.669949	-0.267182
0	0.552675	-3.317673	-0.534183	0	1.991294	1.257413	-0.952082
0	1.892714	-2.363040	1.850241	0	3.649035	-0.220086	-1.332788
0	0.376975	-0.697317	1.910208	0	-0.131526	-1.610886	1.084866
0	2.291815	0.954169	0.322295	0	1.592621	-3.038303	0.824830
0	-0.842687	-1.548515	-0.582562	0	3.507342	-0.933591	1.458051
С	-0.584995	-2.791414	-0.670882	0	1.763325	0.450109	1.808680
С	1.793470	-0.743087	-2.687291	0	0.094257	-0.781256	-1.740380
С	3.453504	0.426633	0.362571	0	1.737951	-2.305282	-1.976813
С	1.058607	-1.631538	2.444726	С	3.120462	0.925959	-1.422151
С	0.800059	-1.880023	3.910226	С	0.682491	-1.723512	-2.355363
С	-1.750726	-3.690680	-0.999270	С	2.885563	-0.058651	2.121367
С	2.047586	-0.433904	-4.141396	С	0.442614	-2.736053	1.240007
С	4.597705	1.378560	0.606146	С	3.500748	0.404390	3.419484
Н	4.369951	2.014726	1.473630	Н	3.134288	-0.242827	4.233230
Н	4.701709	2.040286	-0.267953	Н	4.593654	0.313100	3.377039
Н	5.532155	0.827636	0.765476	Н	3.199585	1.437308	3.637364
Н	2.989052	0.133929	-4.217189	С	3.906585	2.007304	-2.120230
Н	1.235853	0.182021	-4.548804	Н	3.240497	2.822212	-2.430210
Н	2.167751	-1.365036	-4.710969	Н	4.651173	2.408639	-1.413922
Н	-2.690334	-3.245968	-0.645333	Н	4.449350	1.586759	-2.977572
Н	-1.810983	-3.800139	-2.094282	С	-0.350919	-3.803247	1.955887
Н	-1.595849	-4.687065	-0.565509	Н	-0.944499	-3.359045	2.766710

Н	-1.050585	-4.261449	1.237675	С	-2.645739	-0.573413	-0.117605	
Н	0.313712	-4.585317	2.343050	0	-2.775808	1.167128	-1.523071	
С	0.069082	-2.159800	-3.663533	С	-3.768882	-0.763188	-0.984929	
Н	0.431768	-3.155647	-3.946566	Н	-2.237405	-1.257498	0.615700	
Н	-1.026970	-2.147936	-3.588367	С	-3.784538	0.330607	-1.839087	
Н	0.360899	-1.440603	-4.445808	С	-4.655587	0.705351	-2.977092	
С	-0.984373	1.366139	0.101874	Н	-5.461888	-0.031003	-3.068480	
С	-0.440155	2.601765	-0.458379	Н	-5.075378	1.714165	-2.831858	
С	0.944763	4.464052	0.325347	Н	-4.073887	0.725495	-3.914362	
С	-1.109809	1.889554	1.766042	С	-4.732656	-1.883929	-0.962555	
С	-2.444425	2.489571	1.607621	С	-4.552214	-2.889093	0.158970	
С	-1.030730	0.805483	2.739106	Н	-3.554602	-3.354550	0.103995	
С	-3.576148	1.769513	1.926605	Н	-4.619133	-2.379912	1.133986	
Н	-2.509897	3.445422	1.087866	Н	-5.326863	-3.662302	0.085022	
С	-2.155876	0.101433	3.052701	О	-5.632318	-1.992838	-1.778081	
Н	-0.041379	0.523871	3.092984	F	-4.482361	-0.217334	2.813662	
С	-3.411186	0.534068	2.555498					
Н	-4.578884	2.122666	1.682255	TS6a				
Н	-2.119806	-0.789574	3.681055	С	-2.107787	-0.763650	-0.194273	
0	-0.063695	2.830873	1.819653	С	-3.103752	-0.250830	0.642284	
С	1.084610	4.872598	-1.010334	С	-4.283053	-0.936418	0.903579	
С	0.464000	4.168053	-2.048824	С	-4.435948	-2.190725	0.295175	
С	-0.304632	3.029543	-1.781552	С	-3.444144	-2.723796	-0.537907	
Η	-0.765357	2.457102	-2.586134	С	-2.264247	-2.008415	-0.791342	
Н	0.583679	4.508117	-3.079938	С	-0.992650	0.248762	-0.252033	
Н	1.677833	5.761671	-1.236807	С	-1.512512	1.315494	0.662845	
Н	1.410956	5.007268	1.148514	0	-2.769625	0.978325	1.150207	
С	0.174159	3.339723	0.571027	С	0.395421	-0.253112	-0.139967	
С	-2.054779	0.622540	-0.471563	С	1.306501	-0.332259	0.865943	

С	2.477643	-0.972751	0.311919	2a			
С	2.177718	-1.236893	-1.011949	С	-2.067101	-0.465884	-0.593907
0	0.923484	-0.803292	-1.281739	С	-2.987532	-0.375352	0.449966
С	2.935977	-1.865156	-2.120087	С	-4.125936	-1.168325	0.516564
С	-1.280346	1.397677	-1.189951	С	-4.320246	-2.086564	-0.524446
С	-0.317943	2.375870	-1.535838	С	-3.405316	-2.196244	-1.579625
С	0.548760	2.931157	-0.620089	С	-2.263122	-1.383103	-1.618461
С	0.314032	2.944321	0.771462	С	-0.945349	0.530211	-0.328316
С	-0.761385	2.299407	1.344271	С	-1.462826	1.165739	0.968617
0	4.680246	-1.834441	0.438954	0	-2.637550	0.581248	1.370094
С	3.750980	-1.277208	0.998467	С	-0.850785	1.615841	-1.380179
С	3.850915	-0.856370	2.452583	С	-0.080426	2.719362	-1.247113
Н	-5.045752	-0.513647	1.558823	С	0.610072	3.138242	-0.055537
Н	-5.348294	-2.762588	0.479783	С	0.253654	2.919630	1.240242
Н	-3.591935	-3.704274	-0.995168	С	-0.871946	2.147090	1.686319
Н	-1.483929	-2.412552	-1.439170	С	0.374930	-0.165053	-0.124657
Н	1.167272	0.037358	1.877106	С	1.591279	-0.109573	-0.731582
Н	3.927849	-2.151375	-1.752977	С	2.431051	-1.076737	-0.059598
Н	2.410759	-2.759422	-2.495315	С	1.642011	-1.651975	0.919260
Н	3.040536	-1.165334	-2.965666	0	0.405333	-1.102167	0.874950
Н	-2.170154	1.282844	-1.813777	F	1.646733	3.973586	-0.290272
Н	-0.321238	2.787103	-2.548744	С	1.889042	-2.692786	1.945402
Н	0.924790	3.625986	1.367246	0	4.468026	-2.234625	0.286530
Н	-1.106828	2.575509	2.342781	С	3.848525	-1.389407	-0.337504
Н	4.838103	-1.133698	2.842757	С	4.509038	-0.596444	-1.449639
Н	3.704625	0.231680	2.549923	Н	-4.829310	-1.073110	1.344712
Н	3.064555	-1.344191	3.051271	Н	-5.203332	-2.729475	-0.508248
F	1.532412	3.734583	-1.072089	Н	-3.581015	-2.923679	-2.374737
				Н	-1.537459	-1.473207	-2.430373

Н	-1.431668	1.471860	-2.294418	C	-1.769748	2.041257	-0.728251
Н	0.021150	3.399073	-2.099325	С	-2.598294	2.881429	0.005775
Н	0.829427	3.466998	1.991447	C	-3.287719	2.427426	1.129685
Н	-1.298856	2.379820	2.664962	C	-3.146585	1.095611	1.512138
Н	1.864004	0.550121	-1.548857	0	5.063954	0.817233	0.831215
Н	2.925312	-3.037839	1.858380	С	4.141390	0.019570	0.837211
Н	1.715846	-2.290165	2.957243	С	4.257866	-1.306656	1.564672
Н	1.202390	-3.544720	1.808726	Н	-2.526981	-3.557788	1.610710
Н	5.552848	-0.918154	-1.553042	Н	-1.636636	-5.401464	0.161856
Н	3.977172	-0.750188	-2.402683	Н	-0.344215	-4.836464	-1.904220
Н	4.472310	0.482720	-1.228766	Н	0.083253	-2.449216	-2.473427
				Н	1.574674	-1.563448	0.524588
7a				Н	2.724101	3.544136	-0.504969
С	-0.977381	-1.669594	-0.773054	Н	4.261992	2.618708	-0.430307
С	-1.711854	-2.005668	0.371223	Н	3.370026	2.791421	-1.979632
С	-1.948012	-3.343237	0.710998	Н	-0.731964	-0.037044	-2.148787
С	-1.451414	-4.357999	-0.103035	Н	-1.226492	2.437525	-1.587234
С	-0.728143	-4.042608	-1.260431	Н	-3.928878	3.115341	1.682922
С	-0.496598	-2.706291	-1.583094	Н	-3.677839	0.694382	2.376474
С	-0.648908	-0.221177	-1.063272	Н	5.249696	-1.379589	2.028006
С	-2.316768	0.241543	0.778454	Н	3.478625	-1.391478	2.339513
0	-2.237069	-1.058145	1.205203	Н	4.111167	-2.145888	0.865488
С	0.769394	0.078861	-0.662363	F	-2.734499	4.161820	-0.373245
С	1.699840	-0.580418	0.080335				
С	2.860081	0.281199	0.147785	5e			
С	2.535266	1.416183	-0.570522	С	1.169742	1.789044	-0.046546
0	1.275900	1.289793	-1.058833	С	2.487541	1.248674	-0.045000
С	3.267922	2.664949	-0.888850	С	3.568292	2.143512	-0.022298
С	-1.615721	0.704525	-0.342481	С	3.374241	3.525016	-0.013603

С	2.078616	4.052697	-0.028306	Н	-2.501829	2.399751	-0.623580
С	0.988278	3.190382	-0.044197	Н	-3.892446	3.110553	0.253148
С	0.019577	0.955565	-0.004696	Н	-6.199040	-2.499034	0.450070
С	2.740636	-0.212651	-0.053248	Н	-6.099436	-0.796582	1.054220
С	2.079551	-1.068621	-0.952440	Н	-6.222789	-1.080466	-0.669318
С	2.337586	-2.438422	-0.964393				
С	3.265760	-2.958410	-0.064952	VIIe			
С	3.942358	-2.141154	0.837001	С	1.775685	0.767711	2.489534
С	3.677173	-0.771931	0.834241	C	3.014445	1.095027	1.872156
F	3.515086	-4.273882	-0.069398	С	4.190785	0.612010	2.460263
С	-1.004281	0.288805	0.044776	С	4.157821	-0.172006	3.615171
С	-2.096833	-0.587731	0.098902	С	2.934570	-0.500754	4.209264
С	-3.441976	-0.342943	0.073673	С	1.750468	-0.036020	3.645633
С	-4.056987	1.013350	-0.061508	C	0.550022	1.182410	1.900312
0	-5.225054	1.138906	-0.386515	С	3.060332	1.842898	0.592859
С	-3.216160	2.247764	0.200520	C	2.343926	3.035690	0.400638
0	-3.759780	-2.688481	0.145782	С	2.325365	3.673394	-0.838624
С	-4.300430	-1.597737	0.148362	С	3.036883	3.110450	-1.893023
С	-5.801744	-1.494103	0.257723	С	3.787128	1.949611	-1.731786
Н	4.582985	1.740608	-0.035539	С	3.793556	1.323525	-0.486763
Н	4.238561	4.193071	-0.005407	F	2.989094	3.693613	-3.101712
Н	1.921453	5.133322	-0.026016	С	-0.492687	1.646115	1.440380
Н	-0.029473	3.584636	-0.042257	C	-1.542116	2.435785	0.931393
Н	1.365328	-0.655969	-1.665547	С	-2.885627	2.319741	1.108064
Н	1.834821	-3.108470	-1.663743	С	-3.533534	1.217963	1.886903
Н	4.658007	-2.584944	1.531034	0	-4.669840	0.863109	1.618173
Н	4.189873	-0.127157	1.551000	С	-2.771327	0.538863	3.000673
Н	-1.842381	-1.655556	0.153873	0	-3.153807	4.141154	-0.379617
Н	-2.626389	2.161152	1.124431	С	-3.712701	3.340518	0.347213

С	-5.212644	3.379442	0.513776	С	-2.818665	-0.782011	-1.197040	
Н	5.149545	0.865654	2.003083	С	-4.248001	-0.387415	-1.450926	
Н	5.092670	-0.528251	4.054414	С	-1.553740	-3.838806	2.325804	
Н	2.906331	-1.120963	5.107608	С	3.649066	-2.426003	-0.071348	
Н	0.783772	-0.302596	4.075183	С	0.878090	1.165454	-3.793511	
Н	1.791560	3.474068	1.232100	Н	0.731668	2.216687	-3.521508	
Н	1.761800	4.593633	-1.000257	Н	0.335699	0.916872	-4.715676	
Н	4.339714	1.543173	-2.580606	Н	1.950865	1.000811	-3.977771	
Н	4.346419	0.392838	-0.358143	Н	4.016175	-1.944620	0.843489	
Н	-1.231501	3.229528	0.239243	Н	4.256359	-2.091899	-0.927835	
Н	-2.106903	-0.228763	2.572954	Н	3.745039	-3.518230	-0.004656	
Н	-2.148752	1.237952	3.575842	Н	-1.006449	-3.629035	3.254680	
Н	-3.500075	0.042247	3.655113	Н	-2.616816	-3.606302	2.500763	
Н	-5.585192	4.301863	0.050082	Н	-1.464553	-4.896142	2.047995	
Н	-5.665353	2.500451	0.033353	Н	-4.251410	0.557391	-2.018354	
Н	-5.506208	3.326127	1.572087	Н	-4.754962	-0.198004	-0.494290	
Rh	-0.386413	-2.266261	-1.519522	Н	-4.764267	-1.160177	-2.032900	
Rh	-0.198588	-0.451553	0.043926					
0	1.554434	-2.769281	-1.133446	TS7e				
0	1.762858	-1.031009	0.275906	С	0.772512	-2.397788	-0.970970	
0	0.323397	0.756913	-1.519947	С	1.793982	-2.961913	-0.155150	
0	-0.739463	-1.760746	1.528841	С	1.856550	-4.358125	-0.042568	
0	-2.187180	-0.105896	-0.325391	С	0.951167	-5.185608	-0.708146	
0	-2.324603	-1.734337	-1.864670	С	-0.059321	-4.623165	-1.492818	
0	0.228274	-0.962373	-2.973309	С	-0.160416	-3.238967	-1.604775	
0	-0.997143	-3.441580	0.050137	С	0.653787	-0.964451	-1.142122	
С	-1.050194	-2.954211	1.214267	С	2.778561	-2.109515	0.555526	
С	2.210378	-2.052316	-0.325222	С	2.367435	-0.975197	1.276545	
С	0.436486	0.252462	-2.679755	С	3.301713	-0.073140	1.785118	

С	4.655548	-0.336247	1.602764	Rh	-3.113107	0.867302	0.812261
С	5.099890	-1.493810	0.972198	0	-1.126753	-1.490554	1.127247
С	4.153370	-2.373582	0.445701	0	-2.869073	-0.589274	2.237337
F	5.564214	0.577465	2.009324	0	-1.858355	2.127967	1.845119
С	1.399839	0.039988	-1.441139	0	-4.244366	-0.422618	-0.307634
С	1.705163	1.387680	-1.268276	0	-3.221751	2.273092	-0.679761
С	3.020638	1.785741	-1.210894	0	-1.316539	1.539721	-1.633245
С	3.913088	0.672570	-1.546953	0	-0.037800	1.175534	0.929675
0	3.361174	-0.408566	-1.807451	0	-2.444210	-1.128791	-1.466151
С	5.411629	0.759351	-1.625456	С	-3.687762	-1.119327	-1.200621
0	2.393695	3.939272	-0.521821	C	-1.960854	-1.452911	2.086308
С	3.312680	3.161191	-0.723995	C	-0.613378	2.032096	1.678574
С	4.735800	3.561640	-0.395860	C	-2.305942	2.336985	-1.544642
Н	2.624520	-4.797952	0.597697	С	-2.351614	3.463919	-2.545200
Н	1.025473	-6.270235	-0.599383	С	-4.555037	-2.038544	-2.024866
Н	-0.779758	-5.263823	-2.006502	C	-1.862349	-2.561040	3.104573
Н	-0.964337	-2.780011	-2.179068	C	0.294332	3.001121	2.391285
Н	1.306542	-0.774758	1.416858	Н	-0.285628	3.692371	3.013868
Н	2.987570	0.834844	2.301592	Н	0.878174	3.556613	1.640159
Н	6.170994	-1.669992	0.859743	Н	1.007151	2.441565	3.016244
Н	4.489067	-3.247021	-0.116505	Н	-2.340594	-2.262369	4.045654
Н	0.889815	2.089197	-1.097797	Н	-0.811156	-2.835813	3.264383
Н	5.720534	1.562344	-2.311053	Н	-2.384707	-3.446541	2.707747
Н	5.837335	0.980765	-0.637021	Н	-4.291459	-3.082038	-1.791278
Н	5.802751	-0.201632	-1.979061	Н	-5.616210	-1.868419	-1.807812
Н	4.723767	4.584724	-0.000485	Н	-4.350751	-1.878714	-3.093555
Н	5.159634	2.880832	0.359571	Н	-3.343324	3.932045	-2.553317
Н	5.385275	3.521216	-1.282682	Н	-2.085167	3.092578	-3.544381
Rh	-1.154619	-0.022056	-0.309174	Н	-1.600030	4.216988	-2.257815

				Н	-1.167881	0.983615	1.564423
VIIIe				Н	-2.648230	-0.404904	3.013678
С	-0.875706	2.160776	-1.056201	Н	-6.112872	1.538219	1.375330
С	-1.933686	2.787359	-0.335943	Н	-4.640988	2.889975	-0.137669
С	-2.123108	4.168361	-0.489699	Н	-0.943811	-2.204639	-0.727457
С	-1.305486	4.927349	-1.327618	Н	-5.636760	-1.211651	-2.606712
С	-0.250123	4.315094	-2.009750	Н	-5.767278	-0.356207	-1.049243
С	-0.021450	2.950912	-1.852560	Н	-5.217885	0.527932	-2.492065
С	-0.619437	0.721916	-1.002997	Н	-5.249974	-4.660430	-0.956199
С	-2.800034	2.025539	0.596306	Н	-5.696567	-2.952293	-0.625178
С	-2.249140	1.100790	1.500836	Н	-5.330629	-3.461018	-2.287717
С	-3.068496	0.327224	2.322980	Rh	1.133788	0.036948	-0.275150
С	-4.448437	0.495790	2.255165	Rh	3.191811	-0.785318	0.794555
С	-5.027084	1.426591	1.393918	0	0.120213	-1.069654	1.130337
С	-4.196436	2.185226	0.568198	0	2.001157	-1.894150	2.056836
F	-5.242991	-0.253181	3.036244	0	3.145719	-2.338506	-0.557321
С	-1.647930	-0.186998	-1.263385	О	3.056209	0.833061	2.062063
С	-1.751565	-1.557599	-1.042956	О	4.242862	0.361380	-0.544821
С	-3.097837	-1.930998	-1.254299	0	2.361212	1.036361	-1.588729
С	-3.763624	-0.760925	-1.644941	0	1.218021	-1.619978	-1.485373
0	-2.913421	0.260825	-1.670648	О	1.206059	1.617369	1.034561
С	-5.175169	-0.440536	-1.976777	С	2.131201	1.673115	1.910494
0	-2.820604	-4.162052	-0.612937	С	0.751918	-1.814676	1.952562
С	-3.593480	-3.309318	-1.005826	С	2.189836	-2.439061	-1.369297
С	-5.059041	-3.615664	-1.230850	С	3.625800	1.004067	-1.432953
Н	-2.914377	4.657009	0.083385	С	4.431772	1.824635	-2.410917
Н	-1.477621	6.001725	-1.427307	С	2.108552	2.879204	2.817751
Н	0.407237	4.905407	-2.652327	С	-0.108307	-2.656403	2.863258
Н	0.818202	2.464387	-2.347492	С	2.151930	-3.639636	-2.283321

Н	3.093625	-4.198305	-2.224722	С	1.936360	1.710007	-0.598759	
Н	1.955785	-3.317132	-3.315896	С	3.261489	2.205862	-0.836827	
Н	1.318458	-4.292267	-1.977992	С	4.072465	1.089844	-0.976361	
Н	0.510507	-3.339238	3.457201	0	3.321832	-0.023852	-0.846260	
Н	-0.835887	-3.220612	2.260493	С	5.520474	0.869142	-1.246234	
Н	-0.677495	-1.996018	3.536079	0	2.698579	4.478439	-0.780566	
Н	1.074928	3.117356	3.104059	С	3.578849	3.647000	-0.914964	
Н	2.731772	2.705710	3.703525	С	5.015864	4.065115	-1.166727	
Н	2.507169	3.743420	2.262454	Н	2.853340	-4.962701	-0.857407	
Н	5.505514	1.687478	-2.236661	Н	1.987417	-5.230746	-3.183262	
Н	4.166267	2.886883	-2.295487	Н	0.672609	-3.407757	-4.241948	
Н	4.171717	1.530789	-3.438704	Н	0.131875	-1.326371	-2.983090	
				Н	0.548266	-1.749890	1.345940	
TS8e				Н	1.516193	0.179908	2.597694	
С	1.207126	-1.950009	-1.218372	Н	4.961764	-2.383603	2.943368	
С	1.973834	-2.987993	-0.626802	Н	4.208385	-3.761453	0.995785	
С	2.265616	-4.170186	-1.326892	Н	1.049961	2.308311	-0.441062	
С	1.781340	-4.316826	-2.621835	Н	5.810703	1.235586	-2.244355	
С	1.025973	-3.286945	-3.214807	Н	6.155645	1.385650	-0.510589	
С	0.723824	-2.114993	-2.522989	Н	5.735974	-0.206813	-1.199810	
С	1.035515	-0.729257	-0.381524	Н	5.066073	5.160527	-1.204810	
С	2.421785	-2.564703	0.680302	Н	5.676776	3.695389	-0.366403	
С	1.615328	-1.470571	1.165273	Н	5.386669	3.646462	-2.115794	
С	2.107503	-0.668714	2.251326	Rh	-0.960661	-0.054718	-0.102968	
С	3.294798	-1.018860	2.837926	Rh	-3.240717	0.711178	0.426004	
С	4.029244	-2.156225	2.421818	0	-1.241330	-1.539680	1.289924	
С	3.597152	-2.930255	1.352772	0	-3.319640	-0.842581	1.793759	
F	3.787863	-0.305751	3.859421	0	-2.392698	1.938046	1.850085	
С	1.997780	0.345023	-0.619953	О	-3.912459	-0.560519	-1.041389	

0	-2.956964	2.195488	-0.965558	С	-0.425103	-1.658595	3.977418
0	-0.879508	1.470500	-1.467447	С	0.770251	-2.360212	3.600788
0	-0.309909	1.194506	1.406641	С	1.681029	-1.814977	2.733760
0	-1.821184	-1.250164	-1.537125	С	2.207648	0.308747	1.367648
С	-3.082808	-1.243601	-1.699138	С	0.146322	1.412377	1.874686
С	-2.343206	-1.613766	1.940521	С	1.409128	1.546963	1.053728
С	-1.148688	1.926150	2.030475	С	1.943432	2.943316	0.962960
С	-1.863922	2.270161	-1.588078	С	1.105048	3.962325	1.242951
С	-1.669228	3.408667	-2.559943	С	-0.227560	3.795266	1.777449
С	-3.619302	-2.115610	-2.810348	С	-0.677918	2.553357	2.119071
С	-2.441784	-2.730498	2.950230	F	1.503254	5.234494	1.060640
С	-0.568076	2.845680	3.078844	С	3.418115	-0.003833	0.683199
Н	-1.343045	3.505453	3.486615	С	4.157912	0.664652	-0.267766
Н	0.245838	3.438261	2.635322	С	5.242568	-0.193486	-0.640433
Н	-0.132956	2.243463	3.892201	С	5.106450	-1.343865	0.119661
Н	-3.411329	-2.703128	3.461156	0	4.012936	-1.229415	0.907730
Н	-1.626357	-2.635573	3.683614	С	5.874358	-2.612360	0.252159
Н	-2.312329	-3.696412	2.438594	0	6.176984	1.249313	-2.227928
Н	-2.961049	-2.978866	-2.973576	С	6.253692	0.177365	-1.656663
Н	-4.642801	-2.438577	-2.580054	С	7.370789	-0.799998	-1.965726
Н	-3.647815	-1.521290	-3.738267	Н	-1.648037	0.087846	3.716774
Н	-2.572383	4.027612	-2.618404	Н	-1.113335	-2.131176	4.682131
Н	-1.418429	3.006050	-3.552725	Н	0.953503	-3.350111	4.026007
Н	-0.813304	4.018278	-2.230296	Н	2.589527	-2.349350	2.461644
				Н	1.103927	1.311483	0.007064
IXe				Н	2.937789	3.145380	0.565557
С	1.439828	-0.507222	2.202779	Н	-0.824386	4.693073	1.945727
С	0.186996	0.167344	2.532345	Н	-1.648557	2.421567	2.599384
С	-0.721382	-0.427065	3.458932	Н	3.970556	1.644710	-0.694021

Н	5.949486	-3.144944	-0.708518	
Н	6.901275	-2.432385	0.608113	
Н	5.370768	-3.269946	0.973192	
Н	8.028057	-0.359358	-2.725664	
Н	7.955573	-1.028432	-1.060599	
Н	6.964306	-1.752769	-2.341053	
Rh	-1.343659	0.043389	0.182733	
Rh	-2.583390	-0.738306	-1.724383	
0	-1.093911	1.815066	-0.828624	Т
0	-2.308554	1.100851	-2.583454	
0	-0.807632	-1.373383	-2.542475	
0	-4.272398	-0.050788	-0.786941	
0	-2.789435	-2.545360	-0.788661	
0	-1.662163	-1.805161	1.014592	
0	0.340568	-0.665820	-0.741595	
0	-3.109205	0.705868	0.990506	
С	-4.184890	0.508495	0.344143	
С	-1.624592	1.970246	-1.971781	
С	0.259805	-1.208369	-1.888034	
С	-2.293726	-2.692009	0.366679	
С	-2.489607	-4.020592	1.053162	
С	-5.469511	0.948641	1.000853	
С	-1.441943	3.315908	-2.625694	
С	1.552310	-1.710354	-2.480200	
Η	1.813146	-2.662475	-1.990634	
Н	2.361401	-0.996526	-2.269450	
Н	1.446553	-1.879198	-3.558739	
Н	-2.173517	4.017058	-2.192622	
Н	-1.614035	3.247461	-3.706867	

Н	-0.438058	3.705661	-2.409650
Н	-5.289158	1.807891	1.659675
Н	-6.224110	1.187753	0.240691
Н	-5.850605	0.116763	1.615359
Н	-2.718910	-4.804192	0.320435
Н	-3.335173	-3.932345	1.754279
Н	-1.594319	-4.274361	1.636626

'S9e			
С	-0.490628	2.360887	1.640880
С	-1.784628	2.861470	1.284224
С	-2.765971	3.047027	2.276698
С	-2.452261	2.758788	3.596313
С	-1.172485	2.268093	3.947566
С	-0.196746	2.057760	2.986789
С	0.302819	2.186695	0.446140
С	-1.843367	3.040734	-0.138604
С	-0.579697	2.596400	-0.698621
С	-0.294457	2.842604	-2.078539
С	-1.324818	3.322396	-2.856030
С	-2.599431	3.651827	-2.347895
С	-2.848750	3.519316	-0.987615
F	-1.110981	3.508619	-4.168603
С	1.707927	1.910618	0.337952
С	2.527541	1.583274	-0.713049
С	3.796657	1.225943	-0.155299
С	3.681746	1.397296	1.215627
0	2.429133	1.804897	1.507232
С	4.597755	1.227789	2.376238

0	4.733993	0.415818	-2.142127	С	-2.744921	-1.266477	-1.594095
С	4.905846	0.682370	-0.963935	С	0.952524	-1.596214	-2.244108
С	6.246287	0.439346	-0.298670	С	1.550172	-2.020394	1.338808
Н	-3.758925	3.415023	2.008626	С	2.832016	-2.221549	2.108043
Н	-3.202060	2.907702	4.377186	С	-2.937599	-1.645348	3.289678
Н	-0.955634	2.044064	4.994798	С	-3.997725	-1.042944	-2.401660
Н	0.779365	1.657158	3.253101	С	1.900975	-1.546595	-3.412412
Н	-0.652917	1.306441	-0.574609	Н	2.123107	-2.556565	-3.776636
Н	0.663138	2.603098	-2.533756	Н	2.825544	-1.031520	-3.105997
Н	-3.356629	4.024643	-3.038910	Н	1.447719	-0.949221	-4.218412
Н	-3.816633	3.816958	-0.578323	Н	-4.074822	-1.796459	-3.196455
Н	2.265082	1.498549	-1.759432	Н	-4.008981	-0.027430	-2.817112
Н	4.886307	0.173253	2.514026	Н	-4.867722	-1.160462	-1.735398
Н	5.524133	1.809539	2.256874	Н	-3.231830	-0.623636	3.559890
Н	4.091195	1.564906	3.290468	Н	-3.818137	-2.287714	3.151430
Н	6.959793	0.084270	-1.052651	Н	-2.336064	-2.074903	4.106766
Н	6.627630	1.359060	0.172196	Н	2.917068	-3.256855	2.459108
Η	6.151725	-0.318393	0.495907	Н	2.875565	-1.518331	2.951191
Rh	-0.464819	-0.430670	0.000533	Н	3.676359	-1.995697	1.437156
Rh	-0.734786	-2.811841	-0.234528				
0	-2.181887	-0.235242	-1.112608	6e			
0	-2.358268	-2.458744	-1.427790	С	-1.233436	-1.541361	-0.594003
0	0.520116	-2.720534	-1.858582	С	-2.451860	-1.217381	0.038569
0	-1.943451	-2.736208	1.427473	С	-3.282253	-2.230484	0.525401
0	0.918081	-3.045646	0.959377	С	-2.878472	-3.561925	0.379412
0	1.213105	-0.818732	1.107135	С	-1.663106	-3.878205	-0.241324
0	0.655795	-0.478686	-1.712272	С	-0.830337	-2.863797	-0.733356
0	-1.603861	-0.522442	1.687094	С	-0.521101	-0.272226	-1.050746
С	-2.104507	-1.635766	2.033355	С	-2.592824	0.245321	0.065420

С	-1.460825	0.819139	-0.550808	Н	5.429783	-0.623248	1.347720
С	-1.309427	2.197011	-0.643403				
С	-2.325256	2.994033	-0.111922	TS11e			
С	-3.460667	2.454059	0.495219	С	-0.269106	2.685077	-1.373355
С	-3.597287	1.066001	0.586627	С	-0.248816	3.557310	-0.263562
F	-2.205417	4.328433	-0.185961	С	0.530711	4.693887	-0.218158
С	0.886036	-0.142464	-0.574962	С	1.359575	4.914834	-1.340958
С	2.086880	-0.022203	-1.202727	С	1.341913	4.051678	-2.448098
С	3.089597	0.060828	-0.168502	С	0.512367	2.917998	-2.502603
С	2.408382	-0.016255	1.032102	С	-1.200704	1.754716	-0.739586
0	1.082207	-0.138721	0.782771	С	-1.357959	2.788024	0.463002
С	2.796219	0.005419	2.470231	С	-1.335943	2.338747	1.875902
0	4.933925	0.246834	-1.598128	С	-2.479641	1.884918	2.442404
С	4.533991	0.199158	-0.448696	С	-3.720989	1.979776	1.723038
С	5.497895	0.279514	0.720064	С	-3.852019	2.720128	0.563778
Н	-4.228733	-1.990445	1.015597	С	-2.695197	3.216493	-0.038190
Н	-3.516482	-4.364513	0.757121	F	-4.800079	1.441814	2.302676
Н	-1.362113	-4.923615	-0.341643	С	-1.907379	0.567186	-1.013348
Н	0.121355	-3.106934	-1.212777	С	-2.612670	-0.295632	-0.182791
Н	-0.481154	-0.245887	-2.153595	С	-3.125624	-1.337882	-1.014026
Н	-0.434869	2.660623	-1.103768	С	-2.697636	-1.057437	-2.303703
Н	-4.219204	3.131382	0.891175	0	-2.004394	0.101201	-2.314577
Н	-4.479909	0.636054	1.065230	С	-2.795294	-1.803704	-3.577209
Н	2.281678	0.007818	-2.271276	0	-4.067199	-3.491264	-1.308235
Н	3.474217	-0.824629	2.723104	С	-3.812402	-2.559692	-0.559662
Н	3.307196	0.942383	2.741518	С	-4.146849	-2.621215	0.918612
Н	1.892467	-0.086463	3.087354	Н	0.539718	5.377097	0.634288
Н	6.519176	0.379243	0.331624	Н	2.030753	5.777138	-1.350885
Н	5.263393	1.142350	1.363552	Н	1.996892	4.271875	-3.295314

Η	0.513867	2.247851	-3.361709
Н	-0.380075	2.299780	2.394939
Н	-2.500807	1.455743	3.446045
Н	-4.843686	2.891410	0.141496
Н	-2.736605	3.846607	-0.925062
Н	-2.602737	-0.262949	0.897491
Н	-3.486291	-2.644751	-3.452691
Н	-3.126243	-1.146539	-4.397182
Н	-1.801987	-2.200703	-3.851028
Н	-4.723367	-3.531017	1.127191
Н	-3.212111	-2.634070	1.504114
Н	-4.709462	-1.729070	1.236134
Rh	0.574720	-0.202856	0.015501
Rh	2.478357	-1.492736	0.693210
0	-0.314052	-0.726525	1.797499
0	1.514146	-1.859882	2.464855
0	1.578744	-3.142712	-0.123975
0	3.290118	0.221920	1.467603
0	3.345220	-1.049019	-1.104850
0	1.580979	0.210185	-1.714898
0	-0.139667	-1.903184	-0.877146
0	1.444826	1.401171	0.949793
С	2.612384	1.289345	1.434078
С	0.336742	-1.430369	2.630032
С	0.484145	-2.998886	-0.744732
С	2.732048	-0.286192	-1.907595
С	3.416514	0.082761	-3.198891
С	3.215985	2.536296	2.028267
С	-0.373590	-1.813118	3.904263

С	-0.121733	-4.210279	-1.406551
Н	0.230789	-4.249648	-2.450234
Н	-1.217536	-4.134248	-1.419948
Н	0.204226	-5.127213	-0.899391
Н	-1.091529	-1.033607	4.191246
Н	0.350759	-1.995969	4.708041
Н	-0.933035	-2.745890	3.725181
Н	2.708521	2.759964	2.980350
Н	4.287509	2.397853	2.215834
Н	3.040998	3.384326	1.350934
Н	4.378515	-0.434608	-3.292811
Н	3.570722	1.172653	-3.218089
Н	2.761671	-0.170454	-4.045742

\$7	
x	Δ
_^	E.

С	-2.124363	-0.898493	-0.495395
С	-2.898466	-0.067508	0.329184
С	-4.156678	-0.428204	0.773258
С	-4.616913	-1.698838	0.357993
С	-3.840744	-2.530650	-0.454472
С	-2.557816	-2.144904	-0.905429
С	-0.958461	0.061111	-0.592792
С	-1.865671	1.026547	0.378802
С	-1.455931	1.409480	-1.068167
С	-0.547495	2.569235	-1.158960
С	-0.031507	3.125939	-0.041846
С	-0.395319	2.737766	1.298738
С	-1.341987	1.778767	1.488956
F	0.824283	4.154816	-0.139491

С	0.425654	-0.317159	-0.389540	С	-4.633700	-1.762759	0.085297
С	1.645720	0.299948	-0.460849	С	-3.864003	-2.450785	-0.861893
С	2.630444	-0.681833	-0.090905	С	-2.579345	-2.004217	-1.242950
С	1.936589	-1.844120	0.190858	С	-0.981189	0.145945	-0.530129
0	0.612781	-1.621814	0.016908	С	-1.838919	0.854263	0.545033
С	2.309565	-3.222213	0.616345	С	-1.341491	1.448280	-1.148085
0	4.496409	0.711851	-0.338940	С	-0.541420	2.620419	-1.046973
С	4.080372	-0.395533	-0.050433	С	0.046928	3.017550	0.132891
С	5.030764	-1.506637	0.356020	С	-0.354436	2.586049	1.419139
Н	-4.761014	0.203862	1.427875	С	-1.379014	1.675843	1.591407
Н	-5.598940	-2.045416	0.689005	F	0.889145	4.066364	0.098272
Н	-4.234098	-3.509291	-0.740522	С	0.411772	-0.268682	-0.324494
Н	-1.946276	-2.813614	-1.514051	С	1.612880	0.090612	-0.855538
Н	-2.237221	1.364473	-1.837055	С	2.611619	-0.725176	-0.213879
Н	-0.333051	3.013671	-2.131949	С	1.932108	-1.532915	0.680739
Н	0.048910	3.287923	2.129368	О	0.609583	-1.255737	0.612911
Н	-1.706340	1.544353	2.491482	С	2.322474	-2.590180	1.654987
Н	1.865389	1.325090	-0.733614	0	4.453365	0.150123	-1.365428
Н	2.957032	-3.719301	-0.123345	С	4.054249	-0.633158	-0.522945
Н	2.849017	-3.221452	1.576286	С	5.018392	-1.531756	0.229149
Н	1.396950	-3.821741	0.734819	Н	-4.777858	-0.070387	1.458970
Н	6.058201	-1.122680	0.327287	Н	-5.620017	-2.153509	0.347761
Н	4.801582	-1.866828	1.371603	Н	-4.270148	-3.358463	-1.315033
Н	4.941236	-2.368897	-0.323703	Н	-1.983740	-2.553024	-1.975654
				Н	-2.115853	1.418290	-1.920751
TS12e				Н	-0.487505	3.306360	-1.896135
С	-2.135586	-0.857050	-0.615179	Н	0.043908	3.142201	2.270012
С	-2.900470	-0.169987	0.344679	Н	-1.877484	1.603956	2.561601
С	-4.170039	-0.588723	0.714220	Н	1.808088	0.851738	-1.604233

Н	2.836519	-3.430635	1.163227
Н	2.999286	-2.199924	2.431264
Н	1.419895	-2.976762	2.147002
Н	6.038654	-1.326951	-0.118672
Н	4.956733	-1.353182	1.314414
Н	4.778772	-2.593510	0.059056

8e

С	-2.079255	-0.726582	-0.711900
С	-2.722815	-0.385963	0.493719
С	-3.845943	-1.077070	0.945296
С	-4.291720	-2.127204	0.125350
С	-3.644596	-2.460234	-1.076056
С	-2.506315	-1.760231	-1.524342
С	-1.002240	0.369958	-0.539077
С	-1.787479	0.714675	0.762573
С	-1.007437	1.542554	-1.478560
С	-0.535086	2.756595	-1.122557
С	-0.140497	3.178238	0.206240
С	-0.592689	2.759970	1.420736
С	-1.555863	1.709994	1.644126
F	0.686880	4.244625	0.192107
С	0.382414	-0.156479	-0.321692
С	1.618890	0.195855	-0.768790
С	2.555096	-0.719396	-0.164650
С	1.804358	-1.574297	0.621563
0	0.497556	-1.233768	0.522400
С	2.104325	-2.733045	1.508581
0	4.481283	0.170059	-1.156457

С	4.011998	-0.666499	-0.406112
С	4.903323	-1.672442	0.298805
Н	-4.357970	-0.835433	1.879082
Н	-5.167671	-2.706251	0.428491
Н	-4.036110	-3.286071	-1.675238
Η	-2.005131	-2.034509	-2.455386
Н	-1.378100	1.390571	-2.496143
Η	-0.454518	3.542392	-1.880696
Η	-0.259448	3.352119	2.277330
Н	-2.143671	1.758354	2.566248
Η	1.876537	1.008615	-1.439761
Н	2.583636	-3.557260	0.957329
Η	2.778554	-2.453050	2.332945
Н	1.166312	-3.106484	1.940873
Η	5.945203	-1.487508	0.008651
Η	4.805188	-1.584881	1.392559
Η	4.623745	-2.702925	0.027695

18. Reference.

- a) D. M. T. Chan, K. L. Monaco, R.-P. Wang, M. P. Winters, Tetrahedron Lett., **1998**, 39, 2933; b) J.
 W. Lockner, D. D. Dixon, R. Risgaard, P. S. Baran, *Org. Lett.*, **2011**, *13*, 5628.
- a) D. Zhu, J. Ma, K. Luo, H. Fu, L. Zhang, S. Zhu, *Angew. Chem. Int. Ed.*, 2016, 55, 8452; b) D.
 Zhu, L. Chen, H. Zhang, Z. Ma, H. Jiang, S. Zhu, *Angew. Chem. Int. Ed.*, 2018, 57, 12405.
- 3. G. Shi, D. Chen, H. Jiang, Y. Zhang, Y. Zhang, Org. Lett., 2016, 18, 2958.
- 4. Z. Liu, H. Tan, L. Wang, T. Fu, Y. Xia, Y. Zhang, J. Wang, Angew. Chem. Int. Ed., 2015, 54, 3056.
- C. Soldi, K. N. Lamb, R. A. Squitieri, M. G.-Lopez, M. J. D. Maso, J. T. Shaw, J. Am. Chem. Soc., 2014, 136, 15142.
- 6. T. Fujita, I. Takahashi, M. Hayashi, J. Wang, K. Fuchibe, J. Ichikawa, Eur. J. Org. Chem., 2017, 262.
- Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
- (a) A. D. Becke, J. Chem. Phys., 1993, 98, 5648-5652; (b) C. Lee, W. Yang, R. G. Parr, Phys. Rev. B, 1988, 37, 785-789.
- (a) F. Weigend and R. Ahlrichs, *Phys. Chem. Chem. Phys.*, 2005, 7, 3297-3305. (b) F. Weigend, *Phys. Chem. Chem. Chem. Phys.*, 2006, 8, 1057-1065.
- 10. S. Grimme, S. Ehrlich, L. Goerigk, J. Comp. Chem., 2011, 32, 1456-1465.
- 11. Y. Zhao and D. G. Truhlar, Theor. Chem. Acc., 2008, 120, 215-241.
- 12. A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B, 2009, 113, 6378-6396.
- 13. G. Luchini, J. V. Alegre-Requena, I. Funes-Ardoiz, R. S. Paton, F1000Research, 2020, 9, 291.
- 14. CYLview20, C. Y. Legault, Université de Sherbrooke, 2020 (http://www.cylview.org).

19. Spectra of NMR

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

155.8 154.4 154.4 152.2 142.9 132.6 131.0 132.6 131.0 132.6 131.0 122.6 111.0 110.2 110.2

— -104.7

catalyzed by Rh₂(S-BTPCP)₄

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: ſ1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm) 20. Data of HPLC

〈峰	:表>
	Cl-1

PDA Ch	1 254nm					
峰号	保留时间	面积	高度	化合物名	面积%	高度%
1	6.585	5924618	508908		49.816	48.014
2	7.150	5968344	551000		50.184	51.986
总计		11892962	1059908		100.000	100.000

〈峰表	>					
PDA Ch	1 254nm					
峰号	保留时间	面积	高度	化合物名	面积%	高度%
1	6.771	202297	18612		1.964	2.152
2	7.248	10096260	846142		98.036	97.848
总计		10298557	864754		100.000	100.000

$\langle 1$	隆	天	₹>
	÷	V	~

PDA Ch	1 254nm					
峰号	保留时间	面积	高度	化合物名	面积%	高度%
1	10.475	7690956	319043		49.680	44.160
2	11.949	7789968	403431		50. 320	55.840
总计		15480924	722474		100.000	100.000

く峰	表>	
PDA	Ch1	254nm

IDA CI	1 20411					
峰号	保留时间	面积	高度	化合物名	面积%	高度%
1	10.842	232053	15616		1.026	1.459
2	11.839	22388679	1054883		98.974	98.541
总计		22620732	1070499		100.000	100.000

	1112	с.	-	-	~
<	119	E.	_	~	- 2
N	-	F-	-1	~	/

PDA Ch	1 254nm					
峰号	保留时间	面积	高度	化合物名	面积%	高度%
1	11.056	6963614	290291		49.729	51.749
2	12.128	7039482	270666		50.271	48.251
总计		14003096	560957		100.000	100.000

1	12	==	1
≤ 1	年	$\overline{\mathcal{X}}$	`>
	1	1	

PDA Ch	n1 254nm					
峰号	保留时间	面积	高度	化合物名	面积%	高度%
1	11.186	270703	17964		0.978	1.718
2	11.815	27417314	1027428		99.022	98.282
总计	-	27688016	1045392		100.000	100.000

〈峰表〉

PDA Ch	1 254nm					
峰号	保留时间	面积	高度	化合物名	面积%	高度%
1	9.041	5596521	311889		50.255	66.753
2	13.923	5539822	155337		49.745	33.247
总计		11136343	467225		100.000	100.000

く峰	表>	
PDA	Ch1	254nm

FDA CH	DR CHI 254hii							
峰号	保留时间	面积	高度	化合物名	面积%	高度%		
1	9.091	1163235	70702		4.920	9.832		
2	13.474	22479278	648370		95.080	90.168		
总计		23642513	719072		100.000	100.000		
ACT N		20012010	110012		100.000	100.00		

/	WX = E	\[
<.	山王 スマ	- 2

PDA Ch	1 254nm					
峰号	保留时间	面积	高度	化合物名	面积%	高度%
1	8. 793	15876381	1016350		50.205	61.885
2	12.806	15746983	625980		49.795	38.115
总计		31623364	1642330		100.000	100.000

く峰	表>	
PDA	Ch1	254nm

IDA CH	1 20411					
峰号	保留时间	面积	高度	化合物名	面积%	高度%
1	8.998	1463115	82498		5. 555	10.451
2	12.850	24876275	706889		94.445	89.549
总计		26339390	789387		100.000	100.000

1	北谷	Ŧ	\sim
~	叫手	x	/

PDA Ch	1 254nm					
峰号	保留时间	面积	高度	化合物名	面积%	高度%
1	9.121	13649733	996078		49.692	66.255
2	12.797	13818669	507332		50.308	33.745
总计		27468401	1503409		100.000	100.000

く峰	表>	
PDA	Ch1	254nm

IDA CII	1 20411					
峰号	保留时间	面积	高度	化合物名	面积%	高度%
1	9.297	2122820	155440		4.885	11.150
2	12.733	41330739	1238675		95.115	88.850
总计		43453559	1394115		100.000	100.000

<Щ	夆	表	>
	-	-	

254nm					
保留时间	面积	高度	化合物名	面积%	高度%
10.111	2818837	120678		49.752	46.866
12.421	2846928	136817		50.248	53.134
	5665765	257495		100.000	100.000
ß	<u>未留时间</u> 10.111 12.421	234nm 菜留时间 面积 10.111 2818837 12.421 2846928 5665765	234hm 百尺 高度 泉留时间 面积 高度 10.111 2818837 120678 12.421 2846928 136817 5665765 257495	234nm こののの目的 回利 高度 化合物名 10.111 2818837 120678 12.421 2846928 136817 12.421 2846928 136817 5665765 257495	234nm 234nm R留时间 面积 高度 化合物名 面积% 10.111 2818837 120678 49.752 12.421 2846928 136817 50.248 5665765 257495 100.000

<峰表> PDA Ch1 254nm

	DA CHI 254III								
峰号	保留时间	面积	高度	化合物名	面积%	高度%			
1	10.453	265352	12066		1.529	1.763			
2	12.318	17085696	672533		98.471	98.237			
总计		17351048	684599		100.000	100.000			

1	1.0	,	-	-	N
<			-	-	- >
~	мн	Ε.	л	x	1
	_	-		-	

2DA Ch1 254nm									
峰号	保留时间	面积	高度	化合物名	面积%	高度%			
1	9.579	3380453	187989		49.934	54.274			
2	10.804	3389375	158379		50.066	45.726			
总计		6769827	346368		100.000	100.000			

く峰	:表>	
PDΔ	Ch1	254

PDA Ch	DA CHI 254hm								
峰号	保留时间	面积	高度	化合物名	面积%	高度%			
1	9.838	552976	34077		1.869	2.399			
2	10.718	29033764	1386579		98.131	97.601			
总计		29586740	1420656		100.000	100.000			

1	邮络	秉	5
~	M =	15	/

PDA Ch1 254nm									
峰号	保留时间	面积	高度	化合物名	面积%	高度%			
1	8.720	10958318	591396		49.626	45.303			
2	9.468	11123301	714029		50.374	54.697			
总计		22081619	1305424		100.000	100.000			

く峰	:表>	
PDΔ	Ch1	254

гра сп	DA CHI 254Hm								
峰号	保留时间	面积	高度	化合物名	面积%	高度%			
1	8.796	272419	22686		1.388	2.127			
2	9.341	19361338	1043999		98.612	97.873			
总计		19633756	1066684		100.000	100.000			

〈峰表〉

PDA Ch1 254nm									
峰号	保留时间	面积	高度	化合物名	面积%	高度%			
1	6.310	1977886	144565		50.285	49.013			
2	7.009	1955450	150385		49.715	50.987			
总计		3933336	294949		100.000	100.000			

<峰表> PDA_Cb1_254;

PDA Ch	DA Chi 254nm								
峰号	保留时间	面积	高度	化合物名	面积%	高度%			
1	6.556	846283	72988		5.041	6.458			
2	7.214	15940130	1057273		94.959	93.542			
总计		16786413	1130262		100.000	100.000			

1	1.4		-	N
<.		<u></u>		~
\mathbf{i}	мэ	E /	CC.	/

Ph

Bz

1 254nm					
保留时间	面积	高度	化合物名	面积%	高度%
8. 559	6779700	367581		49.842	74.261
13.027	6822812	127405		50.158	25.739
	13602512	494986		100.000	100.000
	11 254nm 保留时间 8.559 13.027	n1 254nm 保留时间 面积 8.559 6779700 13.027 6822812 13602512	n1 254nm 保留时间 面积 高度 8.559 6779700 367581 13.027 6822812 127405 13602512 494986	11 254nm 高度 化合物名 保留时间 面积 高度 化合物名 8.559 6779700 367581 13.027 6822812 127405 13602512 494986	11 254nm 保留时间 面积 高度 化合物名 面积% 8.559 6779700 367581 49.842 13.027 6822812 127405 50.158 13602512 494986 100.000

<峰表> PDA_Ch1_254nm

PDA Ch	1 Zə4nm					
峰号	保留时间	面积	高度	化合物名	面积%	高度%
1	8.373	7586281	428071		19.024	44.006
2	11.807	32291010	544681		80.976	55.994
总计		39877291	972753		100.000	100.000

1	レタ	-	E	>
$\langle 1$	峍	え	र	/

PDA Ch	1 254nm					
峰号	保留时间	面积	高度	化合物名	面积%	高度%
1	11.788	4875208	186102		50. 187	47.027
2	12.371	4838782	209632		49.813	52.973
总计		9713989	395734		100.000	100.000

FDA CITI 234IIII								
峰号	保留时间	面积	高度	化合物名	面积%	高度%		
1	11.822	651763	43430		3.088	5.894		
2	12.272	20453331	693430		96.912	94.106		
总计		21105094	736860		100.000	100.000		
					2000000			

21 (The racemic sample can't be obtained from $Rh_2(OPiv)_4$ and other Rh(II)catalyzed conditions, the enantiomers was identified from UV spectrum with Shimadzu LabSolutions)

The major enantiomer's UV spectrum

The minor enantiomer's UV spectrum

<峰表> PDA Ch1 254

PDA UN	1 204nm					
峰号	保留时间	面积	高度	化合物名	面积%	高度%
1	13.157	11292744	398509		50.330	73.504
2	17.215	11144744	143649		49.670	26.496
- 总计		22437488	542158		100.000	100.000

mAU

<峰表> PDA Ch1 254

PDA Ch	1 254nm					
峰号	保留时间	面积	高度	化合物名	面积%	高度%
1	13.013	16852688	569364		84.952	92.124
2	17.996	2985136	48680		15.048	7.876
总计		19837824	618044		100.000	100.000

峰号	保留时间	面积	高度	面积%	高度%
1	17.385	904571	41037	3.972	4.941
2	18.229	21868019	789584	96.028	95.059
总计		22772590	830620	100.000	100.000

Ac

`N Рń

〈峰表〉 PDA Ch1 254nm 峰号 保留时间 面积 高度 化合物名 面积 高度 1 24.030 13605323 226222 98.047 97.675 2 28.069 270939 5386 1.953 2.325 点計 13876262 231608 100.000 100.000

峰号	保留时间	面积	高度	面积%	高度%				
1	9.975	1755350	100187	9.083	9.732				
2	10.785	17570567	929234	90.917	90.268				
总计		19325917	1029421	100.000	100.000				

〈峰表〉 PDA(bl 254

PDA ChI 254nm				
峰号 保留时间 面积	高度	化合物名	面积%	高度%
1 5.564 105206	898587	RT: 5. 564	50.065	51.274
2 6. 341 104932	853928	RT:6.341	49.935	48.726
总计 210138	1752515		100.000	100.000

mAU 4000-PDA Multi 1 254nm, 4nm 3000-2000-5.5901000-6.283 0-5 $\frac{1}{3}$ $\frac{1}{7}$ 8 9 10 min 6 $\frac{1}{4}$ $\dot{2}$

<峰表> PDA Ch1 254

PDA UN	1 Zə4nm					
峰号	保留时间	面积	高度	化合物名	面积%	高度%
1	5.590	15051313	1442522		99.684	99.573
2	6.283	47691	6188		0.316	0.427
总计		15099004	1448709		100.000	100.000

<峰表> PDA Ch1 254nm

PDA UI	1 234111					
峰号	保留时间	面积	高度	化合物名	面积%	高度%
1	5.581	19624092	2097919		99.149	98.861
2	6.147	168391	24178		0.851	1.139
总计		19792483	2122096		100.000	100.000

积%
9.485
0.515
0.000

<	峰	耒	>
`	~÷	2	/

]	PDA Ch	1 254nm					
ĺ	峰号	保留时间	面积	高度	化合物名	面积%	高度%
ĺ	1	4.896	11468549	1001384		49.982	53.482
	2	7.068	11477026	870982		50.018	46.518
	总计		22945575	1872367		100.000	100.000

<峰表> PDA Ch1 254

PDA Ch	1 254nm					
峰号	保留时间	面积	高度	化合物名	面积%	高度%
1	4.709	14833266	1981040		99.569	99.692
2	7.083	64144	6115		0.431	0.308
总计		14897409	1987155		100.000	100.000

mAU

<1	恀	Ļ	₹	ŧ	>
`	14	-	ュ	~	/

PDA Ch	ıl 254nm					
峰号	保留时间	面积	高度	化合物名	面积%	高度%
1	6.691	12785057	1345697		50.258	63.137
2	8.759	12653596	785683		49.742	36.863
总计		25438653	2131380		100.000	100.000

mAU

<峰表> PDA Ch1 254nm

I DA UI											
峰号	保留时间	面积	高度	化合物名	面积%	高度%					
1	6.598	22613097	1833895		99.510	99.313					
2	8.766	111298	12681		0.490	0.687					
总计		22724396	1846576		100.000	100.000					

峰号	保留时间	面积	高度	化合物名	面积%	高度%
1	7.698	8892840	710953		50.268	56.423
2	8.691	8798034	549081		49.732	43.577
总计		17690874	1260034		100.000	100.000

〈峰表〉

 PDA
 Ch1
 254nm

 峰号
 保留时间
 1
 7.785

 2
 8.820
 8.820
化合物名 高度% 99.643 面积 高度 面积% 10643986 878591 99.622 2 总计 0.378 0.357 40379 3146 10684365 881737

〈峰表〉

PDA Ch	1 254nm					
峰号	保留时间	面积	高度	化合物名	面积%	高度%
1	4.712	5736005	813774		50.362	61.480
2	6.095	5653642	509862		49.638	38.520
总计		11389647	1323636		100.000	100.000

mAU

<峰表> PDA Ch1 254

PDA Ch	1 254nm					
峰号	保留时间	面积	高度	化合物名	面积%	高度%
1	4.729	10286591	1043973		99.755	99.752
2	6.300	25281	2598		0.245	0.248
总计		10311871	1046571		100.000	100.000

〈峰表〉

PDA Ch	ıl 254nm					
峰号	保留时间	面积	高度	化合物名	面积%	高度%
1	5.620	3841098	431512		49.932	50.635
2	5.923	3851526	420687		50.068	49.365
总计		7692623	852199		100.000	100.000

mAU

<峰表> PDA Ch1 254

PDA Ch	PDA Chi 254nm									
峰号	保留时间	面积	高度	化合物名	面积%	高度%				
1	5.644	4638783	506053		60.924	63.073				
2	6.030	2975238	296270		39.076	36.927				
总计		7614021	802324		100.000	100.000				

<峰表> PDA Ch1 254nm

FDA CD	DA CHI 254HII									
峰号	保留时间	面积	高度	化合物名	面积%	高度%				
1	11.947	39167726	1620756		98.477	98.509				
2	15.290	605673	24531		1.523	1.491				
总计		39773399	1645286		100.000	100.000				

- Z M	~	-		<u> </u>
<	er.	7	-	~
- PH	-	- 1	×.	/

PDA Ch	PDA Ch1 254nm									
峰号	保留时间	面积	高度	化合物名	面积%	高度%				
1	20.951	5223228	172092		49.677	60.506				
2	22.241	5291161	112329		50. 323	39.494				
总计		10514389	284421		100.000	100.000				

く峰	表>	
DDA	Ch1	954

PDA Ch	UA UNI 254nm									
峰号	保留时间	面积	高度	化合物名	面积%	高度%				
1	20.893	9608376	261690		97.593	97.738				
2	22.851	237018	6057		2.407	2.262				
总计		9845393	267748		100.000	100.000				

く叫手	衣/	
DDA	01.1	054

Ad

PDA Ch	1 254nm					
峰号	保留时间	面积	高度	化合物名	面积%	高度%
1	6.890	14551899	907034		50.010	52.485
2	7.520	14546075	821145		49.990	47.515
总计		29097973	1728178		100.000	100.000

く峰	表>	
PDΔ	Ch1	254

PDA Ch	I ZO4NM					
峰号	保留时间	面积	高度	化合物名	面积%	高度%
1	6.950	1204013	94488		4. 578	5.923
2	7.455	25098842	1500726		95.422	94.077
总计		26302855	1595214		100.000	100.000

<	崻	衣	>

14+11						
PDA Ch	1 254nm					
峰号	保留时间	面积	高度	化合物名	面积%	高度%
1	12.429	6334331	283978		49.658	54.951
2	13.218	6421708	232807		50.342	45.049
总计		12756039	516785		100.000	100.000

〈峰	表>	
PDΔ	Ch1	254

PDA Ch	1 ZO4nm					
峰号	保留时间	面积	高度	化合物名	面积%	高度%
1	12.588	7076919	269331		99.087	98.628
2	13.408	65209	3746		0.913	1.372
总计		7142128	273077		100.000	100.000

く峰	表	\geq		
	-	-	~ -	

PDA Ch	ıl 254nm					
峰号	保留时间	面积	高度	化合物名	面积%	高度%
1	10. 528	31742770	1581265		50.044	56.607
2	13.383	31687064	1212156		49.956	43.393
总计		63429834	2793420		100.000	100.000

く峰	衣〉	
PDA	Ch1	254nm

高度%
28.714
71.286
100.000

く峰	:表>	
PDA	Ch1	25

DA Ch	1 254nm							
峰号	保留时间	面积	高度	化合	物名	面积%	高度%	
1	9.459	17783809	962660			50.246	53.653	
2	11.209	17609946	831572			49.754	46.347	
总计		35393755	1794232			100.000	100.000	
20	00					DDA M	1.1.1.054	4
	-					PDA Mu	lti I 254nm,	4nm
	1							
15	~							
15	00-							
	-							
	1							
10	00-							
	1				2			
	-				22			
5	00-				11			
5	-				\wedge			
	1			5 58	/ \			
	-							
	0				<u></u>	- *		
	6	7	8 9	10	11 12	13	14	15
								min

〈峰	表〉	
PDA	Ch1	254

PDA Ch	1 ZƏ4nm					
峰号	保留时间	面积	高度	化合物名	面积%	高度%
1	9.558	829074	51369		6.449	9.547
2	11.557	12026722	486719		93. 551	90.453
总计		12855795	538087		100.000	100.000

〈崤	[衣>	
ΡΠΔ	Ch1	254

PDA Ch	1 ZO4nm					
峰号	保留时间	面积	高度	化合物名	面积%	高度%
1	7.190	53384828	3719318		98.984	99.020
2	8.192	548113	36809		1.016	0.980
总计		53932941	3756126		100.000	100.000

〈峰	表	\geq		
DD 4	01	-	0.5	

PDA Ch	1 254nm					
峰号	保留时间	面积	高度	化合物名	面积%	高度%
1	15.098	15795906	338740		50.387	62.702
2	16.956	15553312	201495		49.613	37.298
总计		31349217	540235		100.000	100.000

<1	佭	耒	ź	>
1.	Ŧ	V	-	/

PDA Ch	PDA Ch1 254nm									
峰号	保留时间	面积	高度	化合物名	面积%	高度%				
1	14.264	52822874	743697		99.194	99.090				
2	18.210	428964	6829		0.806	0.910				
总计		53251837	750526		100.000	100.000				

く峭	表と

PDA Ch	PDA Ch1 254nm									
峰号	保留时间	面积	高度	化合物名	面积%	高度%				
1	7.276	29607740	1568146		50.005	54.255				
2	8.745	29601968	1322159		49.995	45.745				
总计		59209708	2890305		100.000	100.000				

〈峰	表>	
₽D∆	Ch1	254

PDA Ch	DA Chi 254nm									
峰号	保留时间	面积	高度	化合物名	面积%	高度%				
1	7.363	42428434	3219757		98.855	98.865				
2	9.150	491315	36965		1.145	1.135				
总计		42919750	3256722		100.000	100.000				

Ac

修長 保留时间 面和 真度 化合物タ 面和%	THE PLEN
	尚度%
1 13.380 16773609 657593 49.856	56.948
2 15.100 16870375 497137 50.144	43.052
总计 33643984 1154730 100.000	100.000

〈峰表〉

2DA Ch1 254nm									
峰号	保留时间	面积	高度	化合物名	面积%	高度%			
1	13. 574	43730114	1549584		97.452	96.447			
2	15. 322	1143154	57081		2.548	3. 553			
总计		44873268	1606665		100.000	100.000			

1	al M	2	_	-	
<		2	-	1	>
~	100	Ε.	-1	x_	/

PDA Ch	1 254nm					
峰号	保留时间	面积	高度	化合物名	面积%	高度%
1	8.847	5381753	371024		50.486	61.783
2	12.370	5278065	229500		49.514	38.217
总计		10659818	600524		100.000	100.000

<峰表> PDA Ch1 254nm

FDA CH	DA CHI 254hii								
峰号	保留时间	面积	高度	化合物名	面积%	高度%			
1	8. 761	32326458	2049509		98.001	98.247			
2	12.480	659442	36563		1.999	1.753			
总计		32985899	2086072		100.000	100.000			

∕∎	r&	-	12
/ H	仹	-12	<i></i>

'DA Ch1 254nm									
保留时间	面积	高度	化合物名	面积%	高度%				
11.618	17849740	746353		50.432	60.646				
18.215	17543763	484322		49.568	39.354				
	35393504	1230675		100.000	100.000				
	<u>1 254nm</u> 保留时间 <u>11.618</u> 18.215	1 254nm 保留时间 面积 11.618 17849740 18.215 17543763 35393504 35393504	1 254nm 保留时间 面积 高度 11.618 17849740 746353 18.215 17543763 484322 35393504 1230675	1 254nm 保留时间 面积 高度 化合物名 11.618 17849740 746353 18.215 17543763 484322 35393504 1230675	1 254nm 保留时间 面积 高度 化合物名 面积% 11.618 17849740 746353 50.432 18.215 17543763 484322 49.568 35393504 1230675 100.000				

く峰	表>	
PDΔ	Ch1	254

PDA Ch	DA Chi 254hm									
峰号	保留时间	面积	高度	化合物名	面积%	高度%				
1	11.910	54095626	2701619		99.488	99.356				
2	19.763	278481	17522		0.512	0.644				
总计		54374107	2719141		100.000	100.000				

<峰表> PDA_Ch1_254nm

峰号	保留时间	面积	高度	面积%	高度%
1	26.227	6425231	56103	99.527	98.939
2	30.965	30546	601	0.473	1.061
总计		6455777	56704	100.000	100.000

<峰表>

PDA	Ch1	25^{4}
1 DIL	CILL	20

PDA Ch1 254nm						
峰号	保留时间	面积	高度	面积%	高度%	
1	36.867	10878011	107290	49.533	47.155	
2	41.095	11082954	120237	50.467	52.845	
总计		21960965	227526	100.000	100.000	

mAU

<峰表> PDA Ch1 254nm

峰号	保留时间	面积	高度	面积%	高度%
1	36.602	11997841	116955	99.414	99.344
2	41.905	70767	772	0.586	0.656
总计		12068608	117727	100.000	100.000

1							
	峰号	保留时间	面积	高度	面积%	高度%	
	1	45.674	22664478	230094	99.615	99.816	
	2	58.599	87508	423	0.385	0.184	
	总计		22751986	230517	100.000	100.000	

<	峰	表	$\cdot \rangle$
•	-	1	• *

PDA Ch	1 254nm				
峰号	保留时间	面积	高度	面积%	高度%
1	24.667	52310	3761	0.331	1.452
2	25.304	15754694	255204	99.669	98.548
总计		15807004	258966	100.000	100.000

PDA Chi Z54nm						
峰号	保留时间	面积	高度	面积%	高度%	
1	11.375	96914	10119	0.606	0.816	
2	11.642	15884787	1229933	99.394	99.184	
总计		15981701	1240052	100.000	100.000	