1 ONLINE SUPPLEMENT

Elevated Cytokine Levels in Plasma of Patients with SARS-CoV-2 do not contribute to Pulmonary Microvascular Endothelial Permeability Authors: Anita Kovacs-Kasa, Abdelrahman Zaied, Silvia Leanhart, Murat Koseoglu, Supriya

- 8 Sridhar, Rudolf Lucas, David J. Fulton, Jose A. Vazquez, and Brian H. Annex
- 10 Methods
- 11 Online Figure Legends
- Online Figures
 References 1-14
- 13 References 1-14

37 METHODS

38 Data Availability. The authors declare that all supporting data are available within the
39 manuscript and in the Online Supplement.

40

41 <u>Study Population</u>

SARS-CoV-2 Shedding, Sequence variation, and Immune responses in confirmed and suspected 42 SARS-CoV-2 patients (SSIC Study) were approved at Augusta University Medical Center. EDTA 43 blood was collected from 8 consecutively enrolled confirmed SARS-CoV-2 positive patients on 44 the day of admission. Whole blood samples were kept on ice and plasma was separated by 45 centrifugation at 2,000 \times g for 5 min at 4°C (1). Plasma aliquots were stored at -80°C. In the 46 normal plasma group, we utilized commercially available pooled EDTA plasma (Innovative 47 Research, Novi, MI) and control human EDTA plasma aliquots from our plasma biobank to 48 establish a value range for the controls we used (2). 5 control plasma was used for the ECIS 49 50 experiments and for the cytokine profiling experiment besides the pooled plasma. Serum was isolated from blood collected in serum separator tubes and stored at -80°C. Normal human serum 51 was purchased from Sigma. 52

53 <u>Cell culture</u>

Human Lung Microvascular ECs (HLMVECs) or human umbilical vein endothelial cells
(HUVECs) (Lonza, Morristown, NJ) were maintained in EBMTM-2 Basal Medium supplemented
with and EGMTM-2 MV Microvascular EC Growth Medium Single QuotsTM. Cells were grown at
37°C in a 5% CO₂ incubator and used from passage 2–6.

58 Endothelial permeability measurement with Electrical Cell Impedance Sensing System (ECIS)

HLMVECs were seeded on gold microelectrodes in 8 well ECIS plates (Applied Biophysics, Troy, 59 NY) as it was described previously (3). Briefly, EC monolayers resistance was tested by measuring 60 transendothelial resistance (TER) in real-time. After the baseline was set, cells were challenged 61 either with normal pooled plasma or SARS-CoV-2 patient's plasma (1:200) in EGM-2, and TER 62 63 was monitored for 15-20 hours in the presence of plasma or other treatments. IL-6, IL-10, IL-17, IFN-γ, ACE-2 neutralizing antibodies, soluble TNF receptor were used as a 2h pretreatment before 64 65 plasma treatment. Recombinant SARS-CoV-2 Spike Protein, S1 Subunit, and Host Cell Receptor 66 Binding Domain (RBD) were purchased from Ray Biotech (Atlanta, GA). 67 *Immunostaining* Human Lung ECs were grown to confluence on glass coverslips. HLMVEC were treated with 68 69 plasma from SARS-CoV-2 patients for 1 hr. Then EC monolayers were washed with 1xPBS twice, then fixed with 3.7% paraformaldehyde (PFA) for 10 minutes on RT. After 5 min RT 70 permeabilization (0.25% Triton X-100 in Tris-buffered saline with 0.1% Tween) HLMVECs were 71 blocked with 2% bovine serum albumin in TBST for 1hr. Primary antibodies were added overnight 72 1:500 dilution. Secondary antibody in 1:300 was incubated with the cells for 1 hr. between each 73 step, cells were rinsed three times with $1 \times PBS$. Coverslips were rinsed with 1xPBS, then mounted 74 with ProLong® Gold Antifade Reagent and observed with ×40 immersion oil objective lenses 75 using a Zeiss 780 Upright Confocal microscope at Augusta University Core Lab. 76

77 Image Analysis

The Gap area on an endothelial monolayer of CD31, VE-Cadherin, and F-actin was analyzed using
ImageJ & Fiji software. The area of interendothelial gaps was outlined manually. The values were
expressed as a percentile of the total surface area. Mean fluorescence intensity was analyzed by

81 ZEN Blue software by selecting the same size area on the normal plasma or SARS-CoV-2 plasma-

82 treated images. Images were thresholded by subtracting the background.

83 *Cytokine assay*

A panel of 15 pro-and anti-inflammatory cytokines; interleukin (II)1 beta (IL-1β), IL-2, IL-4, IL-

6, IL-7, IL-8, IL-10, IL-12p70, IL-13, IL-17A, IL-21, macrophage inflammatory protein-1 alpha

(MIP1α), interferon-gamma (IFNγ), TNF-α, and granulocyte-macrophage colony-stimulating
factor (GM-CSF) was assessed in duplicates in 50 µL plasma from the study subjects, using a
highly sensitive cytokine bead assay (MILLIPLEX MAP High Sensitivity Human Cytokine Panel

- 89 Premixed 13 Plex, EMD Millipore (4, 5).
- 90 <u>ELISA</u>

91 Human VEGF or Ang2 Quantikine ELISA Kit (R&D Systems, Minneapolis, MN) or COVID-19,

92 Spike Protein ELISA Kit (Abcam Cambridge, MA) were used to measure levels of VEGF and

Ang2 in SARS-CoV-2 patient plasma or levels of spike protein in SARS-CoV-2 patients' sera. In 93 94 total, 100 μ L of each standard and sample (1:20) were added into appropriate wells and incubated 95 for 2.5 hours at room temperature. After discarding the solution the plate was washed 4 times with 1X Wash Solution. 100 µL of 1X Biotinylated Angiopoietin 2 Detection Antibody was added to 96 each well, then incubated for 1 hour at RT. After washing 100 ul of 1X HRP-Streptavidin solution 97 was added to the wells and incubated for 45 minutes at RT. 100 µL of TMB One-Step Substrate 98 Reagent was added to the wells for 30 minutes at RT in the dark. After the addition of 50 µL of 99 100 Stop Solution, absorbance was read at 450 nm.

101 <u>Cell viability</u>

Human lung microvascular ECs plated in 96 well plate were either treated with normal pooled
plasma (1:200 dilution) or SARS-CoV-2 patients' plasma (1:200 dilution) for 1 hr. Then highly

104	water-soluble tetrazolium salt, WST-8 was added to the cells and further incubated for 1 hour. Cell
105	viability was assessed by reading the absorbance at 450nm.

106 <u>Statistical analysis</u>

107Independent experiments were performed at least three times to allow statistical analysis.108Normality was evaluated using the Shapiro–Wilk test and statistical significance was assessed by109one-way ANOVA followed by Tukey's post hoc test to analyze the difference between three or110more groups. Dunnett's post hoc test was used for multiple comparisons using Graph Pad Prism.111Results are presented as mean \pm SEM and differences were considered statistically significant at p112values ≤ 0.05 .

127 Supplementary Figures and Legends

and normal plasma vs. TNFα in HLMVEC, ****p < 0.0001 normal plasma vs. SARS-CoV-2 005
in HLMVECs. The statistical significance was assessed by one-way ANOVA followed by Tukey's
multiple comparisons post hoc test using Graph Pad Prism.

139

А

Figure S2. Impaired EC barrier after SARS-CoV-2 plasma treatment showed by CD31 141 staining. HLMVEC were treated either with normal pooled plasma (A) or with SARS-CoV-2 142 plasma in (1:200) 1 hour. Then cells were stained for CD31. Images were captured by Zeiss 780 143 Upright Confocal microscope, using 40x Plan-Apo (oil) objective. Scale bar is 50 µM. (B) Bar 144 145 graph represents mean ±SEM of gap area on HLMVEC monolayers, expressed as a percent of the total area of each image treated either with normal or SARS-CoV-2 plasma (n=3). (C) Bar graphs 146 147 represent mean ±SEM of fluorescence intensity of CD31 on HLMVEC monolayers treated either 148 with normal or SARS-CoV-2 plasma (n=5). **p < 0.01, ***p = 0.0001, ****p<0.0001 vs. normal plasma. The statistical significance was assessed by one-way ANOVA followed by Tukey's 149 150 multiple comparisons post hoc test using Graph Pad Prism.

151

Figure S3. SARS-CoV-2 plasma has no effect on cell viability. HLMVEC were treated either with normal pooled plasma or with SARS-CoV-2 plasma in 1:200 dilution in normal growth media for 1 hours. Water soluble tetrazolium (WST8) was added to the cells in cell survival proliferation assay at 1 hours after the plasma addition. Absorbance was measured at 450 nm. Representative data of 3 experiments .Values are present as Mean±SEM, n=8/group.

Supplementary Figure 4

А

Figure S4. Disruption in Adherens Junctions and cytoskeletal rearrangement after SARS-162 CoV-2 plasma treatment. HLMVEC were treated either with normal pooled plasma (A) or with 163 SARS-CoV-2 plasma in 1:200 dilution in normal growth media for 1 hour. Then cells were stained 164 for VE-Cadherin or F-Actin by immunofluorescence. Images were captured by Zeiss 780 Upright 165 Confocal microscope, using 40x Plan-Apo (oil) objective. (B) Bar graph represents mean ±SEM 166 of gap area on HLMVEC monolayers, expressed as a percent of the total area of each image treated 167 either with normal or SARS-CoV-2 plasma (n=3). (C) Bar graphs represent mean ±SEM of 168 fluorescence intensity of VE-Cadherin on HLMVEC monolayers treated either with normal or 169 SARS-CoV-2 plasma (n=5). (D) Bar graphs represent mean ±SEM of fluorescence intensity of F-170

Actin on HLMVEC monolayers treated either with normal or SARS-CoV-2 plasma (n=5). Scale bar is 50 μ M. Images were analyzed by the ZEN blue program. *p<0.05, **p<0.01, ****p<0.0001 vs. normal plasma. The statistical significance was assessed by one-way ANOVA followed by Tukey's multiple comparisons post hoc test using Graph Pad Prism.

Supplementary Figure 5

175

Figure S5. Spike protein concentration is not elevated in SARS-CoV-2 patients' samples.
Spike protein concentrations were measured from SARS-CoV-2 patients' sera and compared to
normal human serum (Sigma) using COVID-19 Spike Protein ELISA Kit (Abcam). OD values
were measured at 450 nm. The dashed line shows the level of the SARS-CoV-2 spike protein in
the normal plasma samples. Values are present as Mean±SEM.

183 Figure S6. Effect of IL-17, IFNγ, IL-6, IL-10, and TNFα effect on endothelial permeability.

We tested the effect of A) IL-17 (1 ng/ml) with or without IL-17 neutralizing antibody (nAb) (5 ng/ml), B) IFN γ (1 ng/ml) with or without IFN γ nAb (1 ng/ml), C) IL-6 (20 ng/ml) with or without IL-6 nAb (5 ng/ml), and D) IL-10 (10 ng/ml) with or without IL-10 nAb (25 ng/ml) E) TNF α (1 ng/ml) with or without the soluble TNF receptor (1 ng/ml) on endothelial permeability. TER was monitored for 18-20 hours. Commercially available pooled normal human plasma was used as the normal plasma group control. Results are shown from 3 independent experiments, n=3.

Supplementary Figure 7

Supplementary Figure 7

Figure S7. Combined blocking antibody combinations fail to reduce endothelial injury after
exposure to SARS-CoV-2 plasma. HLMVECs monolayers were incubated with combinations of
the indicated blocking antibodies for two hours prior to exposure to SARS-CoV-2 plasma (1:200
dilution in normal growth media) and TER was monitored for 18 hours. For each of the cytokines
individually targeted in Figure 3 including IFNγ, IL-10, TNFα, IL-6, and IL-17. For each cytokine

211	target, 1 patient plasma with the second-highest fold increase and 1 patient plasma with the lowest
212	or no increase was selected for the double targeting. (A) SARS-CoV-2 patient 008 and 004; B)
213	SARS-CoV-2 patient 007 and 002; C) SARS-CoV-2 patient 001 and 006; D) SARS-CoV-2 patient
214	008 and 006; E) SARS-CoV-2 patient 006 and 004. For each of these selected patient plasma, the
215	three other indicated cytokines with the highest increase were selected as the second target. Arrows
216	indicate the treatment time points. Bar graphs represent the selected time points for statistical
217	analysis to compare each treatment group at 2 hours after SARS-CoV-2 plasma treatment. Results
218	are expressed as Mean \pm SEM of 3 independent experiments, n=5. *p<0.05, **p<0.01,
219	****p<0.0001 vs. normal plasma. The statistical significance was assessed by one-way ANOVA
220	followed by Tukey's multiple comparisons post hoc test using Graph Pad Prism.

221 Supplementary Tables

SARS-CoV-2 patient	Sex	Age	Intubated day of admission	Intubated during clinical course	223 ICU Admission24
001	F	69	Ν	Y	Y 225
002	F	78	Ν	Ν	Ν
003	М	41	Ν	Y	Y 226
004	F	70	Ν	Ν	Ν
005	F	76	Ν	Ν	Y 227
006	F	29	Ν	Ν	N
007	М	20	Ν	Ν	N 228
008	F	73	Ν	Ν	Y 229

222 <u>Table S1. SARS-CoV-2 patient's characteristics.</u>

234 <u>Table S2. Pro-inflammatory cytokines involved in vascular permeability.</u>

cytokine	Levels in SARS-CoV-2	Effect on EC barrier	References
	(total of 8 patients)		
IL-10	\uparrow in 8 patients	Inhibits vascular leakage	(6)
IL-6	↑ in 7 patients	Promotes loss of endothelial barrier function	(7, 8)
IFNγ	\uparrow in 7 patients	Increase vascular permeability	(9, 10)
TNFα	\uparrow in 6 patients	Disrupt EC barrier function	(11, 12)
IL-17A	\uparrow in 5 patients	Break down blood brain barrier	(13, 14)

235

236 <u>Table S3. Neutralizing antibody combinations for each cytokine in 3 selected patients.</u>

Interferon γ				
SARS-CoV-2 patient	cytokine fold change	blocking antibody combinations	fold changes of 2 nd cytokine target	
	increased	IFNγ / IL-10	25	
SARS-CoV-2 006	3	IFNγ / IL-17	3	
		IFNγ / sTNFr	1	
	increased	IFNγ / sTNFr	2	
SARS-CoV-2 008	3	IFNγ / IL-17	3	
		IFNγ / IL-10	26	
	no change	IFNγ / IL-10	21	
SARS-CoV-2 004	0	IFNγ / IL-6	4	
		IFNγ / sTNFr	2	

Interleukin-10				
SARS-CoV-2 patient	Cytokine fold change	blocking antibody combinations	fold changes of 2 nd cytokine target	
	increased	IL-10 / IL-6	8	
SARS-CoV-2 001	63	IL-10 / IFNγ	2	
		IL-10 / IL-17	2	
	increased	IL-10 / IFNγ	2	
SARS-CoV-2 007	37	IL-10 / sTNFr	2	
		IL-10 / IL-17	2	
	increased	IL-10 / IL-6	7	
SARS-CoV-2 002	11	IL-10 / IFNγ	2	
		IL-10 / sTNFr	2	

Tumor Necrosis Factor α			
SARS-CoV-2 patient	cytokine fold change	blocking antibody combinations	fold changes of 2 nd cytokine target
	increased	sTNFr / IFNγ	3
SARS-CoV-2 008	2	sTNFr / IL-10	26
		sTNFr / IL-17	3
	increased	sTNFr / IL-10	22
SARS-CoV-2 005	2	sTNFr / IL-6	4
		sTNFr / IFNγ	1
	increased	sTNFr / IL-10	25
SARS-CoV-2 006	0.6	sTNFr / IL-17	4
		sTNFr / IL-IFNγ	6

Interleukin-6			
SARS-CoV-2 patient	cytokine fold change	blocking antibody combinations	fold changes of 2 nd cytokine target
	increased	IL-6 / IL-10	63
SARS-CoV-2 001	8	IL-6 / IFNγ	2
		IL-6 / IL-17	2
	increased	IL-6 / IL-10	11
SARS-CoV-2 002	7	IL-6 / IFNγ	2
		IL-6 / sTNFr	2
	increased	IL-6 / IL-10	25
SARS-CoV-2 006	1	IL-6 / IFNγ	3
		IL-6 / IL-17	3

Interleukin-17			
SARS-CoV-2 patient	cytokine fold change	blocking antibody combinations	fold changes of 2 nd cytokine target
	increased	IL-17 / sTNFr	2
SARS-CoV-2 008	3	IL-17 / IFNγ	3
		IL-17 / IL-10	26
	increased	IL-17 / IL-10	25
SARS-CoV-2 006	3	IL-17 / IFNγ	3
		IL-17 / sTNFr	1
	increased	IL-17 / IL-6	4
SARS-CoV-2 004	1	IL-17 / IL-10	21
		IL-17 / sTNFr	3

250	References					
251						
252						
253	1.	Findley CM, Mitchell RG, Duscha BD, Annex BH, Kontos CD. 2008. Plasma levels of soluble Tie2				
234		allu vascular endothenar growth factor distinguish childran into ischemia from intermittent				
255	2	claudication in patients with peripheral arterial disease. J Am Coll Cardiol 52:387-93.				
250	Ζ.	Ganta VC, Chol IVI, Farber CR, Annex BH. 2019. Antianglogenic VEGF165b Regulates Macrophage				
257	2	Polarization via S100A8/S100A9 in Peripheral Artery Disease. Circulation 139:226-242.				
258	3.	Kovacs-Kasa A, Varn MN, Verin AD, Gonzales JN. 2017. Method for the Culture of Mouse				
259		Pulmonary Microvascular Endothelial Cells. Sci Pages Pulmonol 1:7-18.				
260	4.	Eishal MF, McCoy JP. 2006. Multiplex bead array assays: performance evaluation and				
261		comparison of sensitivity to ELISA. Methods 38:317-23.				
262	5.	Richens JL, Urbanowicz RA, Metcalf R, Corne J, O'Shea P, Fairclough L. 2010. Quantitative				
263		validation and comparison of multiplex cytokine kits. J Biomol Screen 15:562-8.				
264	6.	Li L, Elliott JF, Mosmann TR. 1994. IL-10 inhibits cytokine production, vascular leakage, and				
265		swelling during T helper 1 cell-induced delayed-type hypersensitivity. J Immunol 153:3967-78.				
266	7.	Alsaffar H, Martino N, Garrett JP, Adam AP. 2018. Interleukin-6 promotes a sustained loss of				
267		endothelial barrier function via Janus kinase-mediated STAT3 phosphorylation and de novo				
268		protein synthesis. Am J Physiol Cell Physiol 314:C589-C602.				
269	8.	Blecharz-Lang KG, Wagner J, Fries A, Nieminen-Kelha M, Rosner J, Schneider UC, Vajkoczy P.				
270		2018. Interleukin 6-Mediated Endothelial Barrier Disturbances Can Be Attenuated by Blockade				
271		of the IL6 Receptor Expressed in Brain Microvascular Endothelial Cells. Transl Stroke Res 9:631-				
272		642.				
273	9.	Stewart RJ, Kashour TS, Marsden PA. 1996. Vascular endothelial platelet endothelial adhesion				
274		molecule-1 (PECAM-1) expression is decreased by TNF-alpha and IFN-gamma. Evidence for				
275		cytokine-induced destabilization of messenger ribonucleic acid transcripts in bovine endothelial				
276		cells. J Immunol 156:1221-8.				
277	10.	Youakim A, Ahdieh M. 1999. Interferon-gamma decreases barrier function in T84 cells by				
278		reducing ZO-1 levels and disrupting apical actin. Am J Physiol 276:G1279-88.				
279	11.	Clark PR, Kim RK, Pober JS, Kluger MS. 2015. Tumor necrosis factor disrupts claudin-5				
280		endothelial tight junction barriers in two distinct NF-kappaB-dependent phases. PLoS One				
281		10:e0120075.				
282	12.	Adam AP, Lowery AM, Martino N, Alsaffar H, Vincent PA. 2016. Src Family Kinases Modulate the				
283		Loss of Endothelial Barrier Function in Response to TNF-alpha: Crosstalk with p38 Signaling. PLoS				
284		One 11:e0161975.				
285	13.	Zenobia C, Hajishengallis G. 2015. Basic biology and role of interleukin-17 in immunity and				
286		inflammation. Periodontol 2000 69:142-59.				
287	14.	McGinley AM, Sutton CE, Edwards SC, Leane CM, DeCourcey J, Teijeiro A, Hamilton JA, Boon L,				
288		Djouder N, Mills KHG. 2020. Interleukin-17A Serves a Priming Role in Autoimmunity by				
289		Recruiting IL-1beta-Producing Myeloid Cells that Promote Pathogenic T Cells. Immunity 52:342-				
290		356 e6.				