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Fig. S1. Schematic illustration of 2-MIM anchored CNT and associated chemical bond and 

reactions. 

2-MIM was anchored onto CNT via interaction between NH groups and π bond. There could be a 

charge transfer between 2-MIM and CNT through this interaction (27). In the coordination process, 

the 2-MIM anchored CNT coordinates with zinc ion to form Zn-2-MIM complex.  

 

 

Fig. S2.  SEM and AFM characterizations of pristine CNT-AAO substrate. 

(a) SEM images of front view and cross view of pristine CNT supported AAO (pristine CNT-AAO). 

The cross-section view tells the CNT thickness is ~152 nm. (b) AFM Topography (3-D height) 

image and (c) AFM amplitude image of pristine CNT-AAO. 

  



 

 

 
 

Fig. S3. FTIR patterns of pristine CNT, 2-MIM treated CNT and 2-MIM.  

In comparison with pristine CNT, 2-MIM-CNT has extra peaks of 2904 cm-1, 2845 cm-1, 

1652 cm-1, 1540 cm-1, and 1403 cm-1. By referring to 2-MIM pattern, the peaks at 2904 cm-

1 and 2845 cm-1 were attributed to C-H stretching, while 1652 cm-1, 1540 cm-1 were assigned 

to C=C and C=N stretching of imidazole ring respectively (52).  The peak at 1403 cm-1 was 

contributed by C-H bending of -CH3 (30). All these peaks demonstrate the existence of 2-

MIM on CNT. In addition, all the three peaks (1652 cm-1, 1540 cm-1 and 1403 cm-1) of 2-

MIM-CNT shifted towards lower wavenumber as comparing with 2-MIM, suggesting the 

interaction between CNT surface and 2-MIM decreased the C=C and C=N stretching energy 

and the vibration energy C-H in 2-MIM. 

  



 

 

 
 

Fig. S4. Raman patterns of pristine CNT and 2-MIM treated CNT.  

2-MIM treated CNT (2-MIM-CNT) has five characteristic peaks at 168 cm-1, 269 cm-1, 1354 cm-

1,1599 cm-1 and 2674 cm-1. The peaks at 168 cm-1 and 269 cm-1 correspond to the radial breathing 

mode (RAM) attributed by the vibration of the carbon atoms along the radius of the tube, like ‘tube 

breathing’ (53). The RAM is uniquely observed in single walled CNT, confirming the intrinsic type 

of CNT used in this study. The peaks at 1599 cm-1 and 1354 cm-1 are so called G band and D band 

in CNT (54). The G band is contributed by in-plane C-C bond stretching mode (named as ‘sp2 

mode’) in the hexagonal lattice, while D band is attributed by the activation of ‘sp1 mode’ of in-

plane C-C stretching caused by surface defects or functionalization (54). The peak at 2674 cm-1 is 

the overtone of the D band at 1354 cm-1.  As a general consensus in CNT study, the intensity ratio 

of D band to G band (D/G) gives the purity of the CNT with the ratio proportional to the amount of 

structural defects or surface functionalization groups (54). Comparing with pristine CNT, 2-MIM-

CNT has higher D/G, confirming 2-MIM was anchored onto the CNT surface. In addition, we also 

observed that both D band (1354 cm-1) and RAM peak at 269 cm-1 was shifted towards lower 

frequency as compared with pristine CNT, implying 2-MIM applied a ‘tensile strength’ on CNT 

which increased the C-C bond length.  

  



 

 

 

 
 

Fig. S5. XPS characterizations of pristine CNT and 2-MIM treated CNT. 

XPS patterns of N1s for (a) pristine CNT and (b) 2-MIM treated CNT (2-MIM-CNT). XPS patterns 

of C1s for (c) pristine CNT and (d) 2-MIM treated CNT. For N1s peaks, it is clear that there is 

almost no peak for pristine CNT (Fig. S5a) while there is a sharp peak at 400.2 eV for 2-MIM-CNT 

(Fig. S5b). The signal at 400.2 eV was contributed by a combined contribution of N-H and C-N 

from 2-MIM (55). For C1s patterns of pristine CNT (Fig. S5b), three peaks at 284.5 eV, 285.1 eV 

and 288.0 eV were assigned to sp2 C=C, sp3 C-C, and π–π∗ transition (56-58). In comparison, 2-

MIM-CNT exhibited peaks at similar positions (284.6 eV, 285.9 eV and 288.0 eV) with a slightly 

peak shift towards higher binding energy, which is due to the effect of 2-MIM. In particular, the 

peak at 285.9 eV was contributed by combined effects of sp3 C-C, C-N and C=N. The area ratio of 

this peak to sp2 C=C (284.6 eV) was higher than that of pristine CNT, suggesting there are abundant 

2-MIM existed on the surface of CNT. This result is nicely corrected with the associated D/G band 

ratio comparison in Raman spectra study (Fig. S4). 

  



 

 

 
 

Fig. S6. Schematic illustration of configurations of XRD measurements. 

(a) XRD measurement collects the diffracted X-ray signal via Bruker D8 ADVANCE Twin X-ray 

diffractometer detector, a one-dimensional detector. (b) XRD measurement collects the diffracted 

X-ray signal via Bruker D8 Eiger diffractometer detector, an area detector. (c) Pole figure 

measurement was conducted by tiling (Ψ) the membrane samples up to 40 C and collect the 

diffracted X-ray signal using a Bruker D8 Eiger diffractometer detector. 

  



 

 

Table S1. Crystallographic preferred orientation CPO Indices. 

Calculated (CPO) Index for XRD peaks of Randomly oriented membrane (Ran-M) and {100} 

oriented membrane (100-M). CPO Indices were calculated based on Ref. (39). If the CPO index is 

⩾1, then the crystals in the membrane have a preferred (hlk) orientation. If CPO=0~1, the preferred 

orientation is nominal. In contrast, if CPO is negative, the membrane crystals even prefer (h′l′k′) 
orientation. It is clearly that compared with Ran-M, 100-M has much higher CPO indices of (200) 

reflection in relation to reflections of 110 (CPO200/110) and 211 (CPO200/211), demonstrating the 

highly preferred {100} orientation in 100-M. 

 

CPO Index Ran-M 100-M 

200/110 2.9 115.6 

200/211 1.6 81.8 

200/220 0.4 7.2 

200/310 -0.4 3.1 

200/222 0.8 15.5 

   



 

 

 
 

Fig. S7. Schematic illustration, XRD and SEM results of comparison experiment 1. 

(a) Schematic illustration of comparison experiment 1 which firstly immersed dopamine treated 

AAO in the 2-MIM solution for 3 min followed by in situ growth in ZIF-8 precursor for 3 hours at 

room temperature. (b) XRD pattern of the resultant sample of dopamine treated AAO after 3 hours 

reaction compared with simulated pattern of ZIF-8. (c) SEM image the resultant sample of 

dopamine treated AAO after 3 hours in situ growth in ZIF-8 precursor. 

  



 

 

 

 
Fig. S8. Schematic illustration, XRD and SEM results of comparison experiment 2. 

 (a) Schematic illustration of comparison experiment 2. The pristine CNT-AAO substrate was 

treated with zinc ion solution for 3 min followed by in situ growth in ZIF-8 precursor for 3 hours 

at room temperature. (b) XRD pattern of the resultant zinc ion treated CNT supported membrane 

compared with simulated pattern of ZIF-8. (c) Front view of SEM image the resultant zinc ion 

treated CNT supported membrane. (d) The cross-view SEM image of the resultant zinc ion treated 

CNT supported membrane. 

  



 

 

 
 

Fig. S9. Schematic illustration, XRD and SEM results of comparison experiment 3. 

(a) Schematic illustration of comparison experiment 3. The pristine CNT-AAO substrate was 

directly immersed into ZIF-8 reaction precursor and subjected to in situ growth for 3 hours at room 

temperature. (b) XRD pattern of the resultant pristine CNT supported membrane compared with 

simulated pattern of ZIF-8. (c) The front-view SEM image of the resultant pristine CNT supported 

membrane. (d) The cross-view SEM image of the resultant pristine CNT supported membrane. 

  



 

 

 
 

Fig. S10. SEM images of support layer composed of CNT with different outer diameters 

(ODs).  

The CNT layer was fabricated by vacuum filtering CNT solution of OD size (a) less than 2 nm, (b) 

less than 8 nm, and (c) 8-15 nm. The front views show the CNT layer have similar packing density 

while the cross view illustrates the thickness of the CNT layers are similar with the standard 

deviation less than 5%.  

 

 
 

Fig. S11. SEM images of support layer composed of CNT with different thicknesses.  

The CNT layer was fabricated by vacuum filtering CNT (OD, less than 2 nm) solution of different 

amount to form a layer with thickness (a) ~117 nm, (b) ~ 150 nm, and (c) ~227 nm. The front views 

show the CNT layers have a similar packing density while the cross views give the thickness of the 

support layers.  

  



 

 

 
 

Fig. S12. XRD and SEM imaging characterizations of ZIF-8 membranes supported by CNT 

layers of different outer diameters (ODs).  

 

(a) XRD patterns of ZIF-8 membranes synthesized using CNT layers of different ODs. All the 

patterns show (200) orientation is dominant with other peaks visually diminished, suggesting {100} 

oriented membranes were formed from the CNT of different ODs. SEM images show both front 

views and cross views of ZIF-8 membranes obtained from CNT OD of (a) less than 2 nm, (b) less 

than 8 nm, and (c) 8-15 nm. The front views of the three membranes all show characteristic 

morphology of {100} oriented rhombic dodecahedral crystals. Meanwhile, the cross views of the 

three membranes show a similar thickness of ~540 nm with less than 5% standard deviation. 

 

 

 

 
 

Fig. S13. XRD and SEM imaging characterizations of ZIF-8 membrane supported by CNT 

layers of different thicknesses. 

 

(a) XRD patterns of ZIF-8 membranes synthesized using CNT layers of different thicknesses. All 

the patterns show (200) orientation is dominant with other peaks visually diminished, suggesting 

{100} oriented membranes were formed from CNT of different thicknesses. SEM images show 

both front views and cross views of ZIF-8 membranes obtained from CNT thickness of (a) ~117 

nm, (b) ~150 nm, and (c) 227 nm. The front views of the three membranes all show characteristic 

morphology of {100} oriented rhombic dodecahedral crystals. Meanwhile, the cross views of the 

three membranes show a similar thickness of ~540 nm with less than 5% standard deviation. 

 

  



 

 

 

 
Fig. S14. The setup of Wicke–Kallenbach technique for gas permeation test. 

At the feed side to the membrane permeation cell, the mass flow rate of individual hydrocarbon gas 

was controlled by a flow meter, from which the required gas feed ratio could be manipulated via 

the flow meters before mixing them to the feed side of the membrane cell.  At the permeate side, 

the permeate hydrocarbon gas mixtures were swept by argon gas and fed into Gas Chromatography 

(GC) for analysis. The argon gas was used as both sweep gas and flush gas to get rid of all the 

hydrocarbon gases after one measurement. The mass flow rate of argon gas was controlled by flow 

meter as well.  

  



 

 

Table S2. List of gas molecule size used to test the critical size of 4-memberred window of 

ZIF-8. 

The van der Waals diameter (Å) was used for gas molecule C2H4, C2H6, C3H6 and C3H8 while 

kinetic diameter (Å) was used for nC4H10 and Iso C4H10 (Å) based on Ref. (11). 

 

Gas Molecular diameter (Å) 

C2H4 3.6 

C2H6 3.7 

C3H6 4.0 

C3H8 4.2 

nC4H10 4.3 

Iso C4H10 5.0 

 

 

 
Fig. S15. Gas permeation test of {100} oriented membrane (100-M). 

Binary gas permeation test of 100-M of different molecule sizes including C2 (C2H4, C2H6), C3 

(C3H6, C3H8) and C4 (nC4H10, isoC4H10). The plot gives the gas permeance of each gas versus 

molecular size. It is noted that the permeance of isoC4H10 was not plotted in this graph as we didn’t 

detect any isoC4H10 under the GC testing conditions of this study. 

 

 

  



 

 

Table S3. Gas separation performance of <100> oriented membrane (100-M). 

The permeation test was used the setup shown in Fig.S14 at room temperature and 1bar. The test 

was conducted using binary feed gas mixtures including C2H4/C2H6, C3H6/C3H8 and 

nC4H10/isoC4H10.  The data was plotted in Fig. S15.   

 

Gas Permeance 

(GPU) 

Flux 

(10-3 mol m-2 s-1) 

Selectivity  

(feed 50:50) 

C2H4 244 4.8 
 

C2H6 25.3 0.5 C2H4/C2H6 = 9.6 

C3H6 18.1 0.36 
 

C3H8 0.45 0.009 C3H6/C3H8 = 40.3 

nC4H10 0.5 0.01 
 

Iso C4H10 0 0 nC4H10/isoC4H10 = 

unlimited 

 

Table S4. Gas separation performance of randomly oriented membrane (Ran-M). 

The permeation test was used the setup shown in Fig.S14 at room temperature and 1bar. The test 

was conducted using binary feed gas mixtures including C2H4/C2H6 and C3H6/C3H8. The data was 

plotted in Fig 4a.  

 

Gas Permeance  

(GPU) 

Flux 

(10-3 mol m-2 s-1) 

Selectivity  

(feed 50:50) 

C2H4 581.1 11.4 
 

C2H6 169.9 3.3 C2H4/C2H6 = 3.4 

C3H6 53.4 1.05 
 

C3H8 0.349 0.007 C3H6/C3H8 = 153 

 

  



 

 

 
Fig. S16.  Gas separation performances of {100} oriented membrane. 

 

(a) C2H4/C2H6 separation performance of 100-M compared with Ran-M. (b) Long-term stability of 

100-M for C2H4/C2H6 separation at room temperature and 1 bar. (c) C2H4/C2H6 separation 

performance of 100-M at different feed ratios. (d) C2H4/C2H6 separation performances of 100-M as 

a function of feed pressure. (e) C2H4/C2H6 separation performances of 100-M as a function of 

temperature. All the gas transport was reported as flux in the unit of 10-3 mol m-2 s-1. 

 

  



 

 

 

 
 

Fig. S17. Images of bending the membrane and pristine AAO support to a specific 

curvature before breaking apart. 

(a) {100} oriented membrane (100-M) could sustain the bending to a curvature of ~ 109 m-1 without 

affecting the separation performances as shown in Fig. 4 (f) in the main text. (b) As a comparison 

test, pristine AAO could sustain a bending to a curvature ~15 m-1 before breaking apart. 

  



 

 

 
 

Fig. S18. Molecule dynamic simulation process. 

(a) Schematic illustration of molecular dynamic simulation process before mixture of C2H4 and 

C2H6 (50: 50 molar ratio) being fed into the membrane along <100> direction. The membrane was 

composed of 4 × 4 × 4 unit cells with a membrane thickness of 6.67 nm. (b) A snapshot of the 

separation process after the binary gas mixture being fed into the membrane.  
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