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Figure S1: Transposition activity of type I-F3 CRISPR-Tn under different conditions, related to Figure 1
(A) Integration efficiency for all homologs with regular CRISPR repeats at either 25 °C or 37 °C incubation, and atypical repeats (with 
perfectly matching 32-nt spacers) at 37 °C incubation, measured by qPCR. †, not detected. ‡, not tested. (B) Possible mini-Tn integra-
tion orientations (top), and the observed bias (tRL:tLR) for each CRISPR-Tn system under the temperature conditions as presented 
in (A), determined from qPCR measurements. Integration orientation data may be skewed for low efficiency systems because of 
detection limitations. (C) Layout of typical (dark grey) and atypical (light pink) repeats within the native CRISPR arrays. Atypical 
spacers (light blue) and their target genes (guaC, yciA, ffs, and rsmJ) are indicated. The orange spacer for Tn6900 targets a 
plasmid-encoded protospacer found adjacent to the integration site of Tn6900. The bracketed number indicates the length of the 
atypical spacer. Consensus logos of typical and atypical repeats are shown (bottom), revealing loss of conservation for the last 8 bp 
of the atypical repeats. Data in (A) and (B) are shown as mean ± s.d. for n = 3 biologically independent samples.
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Figure S2: PAM requirements and integration site variation for CRISPR-Tn homologs, related to Figure 2
(A) Violin plots displaying the enrichment of 1042 individual N5 PAM variants after RNA-guided transposition with different CRISPR-Tn 
homologs. Note that CRISPR-Tn with low overall integration efficiencies at 37°C may show skewed data due to artefactual bottleneck-
ing of the PAM diversity. (B) For each homolog with >0.5% total integration efficiency at 37 °C we show: Top left - a WebLogo for the 
top 5% enriched PAM sequences. The y-axis shows the information content of a sequence position, in bits. The x-axis shows the base 
position relative to the target site, with -1 representing the base immediately adjacent to the protospacer. Low sequence conservation 
represents the absence of sequence restraints and therefore more flexible PAM requirements. Right – a PAM wheel for visualizing 
PAM sequence conservation including positional information. The inner ring represents the -1 position, the middle ring the -2 position 
and the outer ring the -3 position of the PAM sequence. Bottom left - integration site distribution for ‘CC’ (Type I-F3) or ‘GTN’ (Type 
V-K) PAMs obtained from the PAM library dataset. The x-axis shows the distance in bp from the 3’ end of the target site to the integrat-
ed transposon (and therefore includes the 5-bp target site duplication). 
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Figure S3: Analysis of TniQ-family proteins associated with CRISPR-Tn, related to Figure 3 
(A) Size and domain organization of representative TniQ family proteins from characterized CRISPR-associated transposons and Tn7. 
Predicted TniQ (PF06527) and TnsD (PF15978) domains are shown. TniQ proteins involved in RNA-guided transposition are labelled 
in black while TnsD proteins involved in protein-mediated homing are shown in red. (B) Phylogenetic tree of a large diversity of TniQ 
proteins based on the TniQ domain as predicted and aligned by hmmersearch. This dataset shows the evolutionary relationship of 
different Tn7-like transposons and highlights the vast diversity of TniQ proteins that remains unexplored (C) Dendrogram of selected 
TniQ/TnsD proteins (left) and sequence identity matrix (right). Ptr and Pcu represent two type I-F CRISPR-Tn systems from Parashe-
wanella tropica and Parashewanella curva C51, respectively, and were shown to encode two TniQ family proteins of which the TnsD 
variants are expected to home to parE. Although Tn7017 TnsD and PtrTnsD/PcuTnsD are predicted to direct transposition to the same 
site, the proteins show very low sequence conservation. (D) Sanger sequencing data verifying integration at a plasmid-encoded parE 
sequence. Heterogeneity in the sequencing chromatogram at the transposon-target boundary is the result of amplification from a 
bacterial culture rather than individual clones and indicates flexibility in the exact integration site. (E) Integration efficiency at the 
genomic protospacer with or without pTarget present, under different gene deletion conditions. Data are shown as mean ± s.d. for n = 
2 biologically independent samples. 
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Figure S4

Figure S4: Analysis of co-evolution and recruitment of CRISPR-Tn machinery, related to Figure 4
(A) Sequence comparison of individual CRISPR-Tn protein components involved in RNA-guided transposition. Sequence identity 
patterns are consistent within the targeting and transposition machinery individually, but show discrepancies when cross-compared. 
(B) Integration efficiency for different combinations of tniQ-cas876 (QCas) operons and tnsA, tnsB, and tnsC genes or operons from 
Tn7005 and Tn7013, as measured by qPCR. Data are shown as mean ± s.d. for n = 3 biologically independent samples. (C) Analysis 
of the ffs locus from seven different V. cholerae isolates, with syntenic genes highlighted in gray blocks. Five of the loci are occupied 
by closely related CRISPR-transposons that exhibit similar QCascade and TnsABC operons; the highly dissimilar cargo genes 
elsewhere in the transposons highlight recombination events that caused payload diversity. Similarly, the transposon of V. cholerae 
SA7G shows high sequence homology of tnsABC compared to the other transposons, however, it lacks the CRISPR-Cas machinery 
altogether. Since each of these transposons likely homed to the ffs locus through the conserved atypical crRNAs, this transposon likely 
lost its CRISPR-Cas module, in concordance with high rates of cargo turnover.
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Figure S5: Genomic layout and cargo analysis of native CRISPR-transposons, related to Figure 5
CRISPR-Tn encode numerous cargo genes in addition to the transposase and CRISPR-Cas operons. The native genomic layout of 
homologs in this study are shown, with the transposon highlighted with a light blue box and shown with the right (R) end on the right 
side of the figure. Transposition and DNA targeting modules are shown in yellow and blue, respectively. Putative defense systems are 
highlighted in red when the complete gene set was found. Roman numerals in brackets indicate the predicted subtype of the defense 
system. A large diversity of defense systems are found, suggesting that CRISPR-Tn systems provide a benefit to bacterial hosts by 
providing innate immunity from phage predation.
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Figure S6

Figure S6: Transposon end sequence analysis and orthogonality of CRISPR-transposons, related to Figure 6
(A) Schematic representation of TnsB binding sites within the transposon ends reveals spatial conservation among different 
CRISPR-Tn. Blue box, terminal inverted repeat (TIR); red arrow, predicted TnsB binding site; yellow arrow, sequence with some 
similarity to predicted TnsB binding sites. (B) Dendrogram of TnsB proteins (left) and consensus logos for predicted TnsB binding sites 
for each CRISPR-Tn (right). Compatibility groups are indicated based on enrichment data shown in Figure 6B, and align with both 
TnsB phylogeny and predicted TnsB binding site consensus sequences. (C) External-external PCR analysis of integration events with 
Tn7016 in E. coli BL21(DE3) strains with or without a pre-existing mini-Tn6677 located downstream of the target site, verifying that 
orthogonal CRISPR-Tn systems can be used for side-by-side insertions of genetic payloads. (D) qPCR data to verify that mutations 
within the transposon ends to facilitate MmeI recognition sites for Tn-seq do not drastically affect integration efficiencies of the selected 
systems.


