
Magnetic control of tokamak plasmas 
through deep reinforcement learning

In the format provided by the 
authors and unedited

Nature | www.nature.com/nature

Supplementary information

https://doi.org/10.1038/s41586-021-04301-9



TCV Fusion Control Objectives 
This code release contains the rewards, control targets, noise model and parameter 
variation for the paper Magnetic Control of Tokamak Plasmas through Deep 
Reinforcement Learning. 

Further sensor and reconstruction data exceeding the size limits of the Supplementary 
Materials, are available on the DeepMind repository on github. 

Disclaimer 

This release is useful for understanding the details of specific elements of the learning 
architecture, however it does not contain the simulator (FGE, part of LIUQE), the 
trained/exported control policies, nor the agent training infrastructure. This release is 
useful for replicating our results which can be done by assembling all the components, 
many of which are open source elsewhere. Please see the "Code Availability" statement 
in the paper for more information. 

The learning algorithm we used is MPO, which has an open source reference 
implementation in Acme. Additionally, the open source software libraries launchpad 
(code), dm_env, sonnet, tensorflow (code) and reverb (code) were used. FGE and 
LIUQE are available on request from the Swiss Plasma Center at EPFL (email Federico 
Felici), subject to license agreement. 

Objectives used in published TCV experiments 

Take a look at rewards_used.py and references.py for the rewards and control targets 
used in the paper. 

To print the actual control targets, run: 

$ python3 -m fusion_tcv.references_main --refs=snowflake 
 

Make sure to install the dependencies: pip install -r fusion_tcv/requirements.txt. 



Overview of files 

● agent.py: An interface for what a real agent might look like. This mainly exists so 
the run loop builds. 

● combiners.py: Defined combiners that combine multiple values into one. Useful 
for creating a scalar reward from a set of reward components. 

● environment.py: Augments the FGE simulator to make it an RL environment 
(parameter variation, reward computation, etc.). 

● experiments.py: The environment definitions published in the paper. 
● fge_octave.py: An interface for the simulator. Given that FGE isn't open source, 

this is a sketch of how you might use it. 
● fge_state.py: A python interface to the simulator state. Given that FGE isn't 

open source, this is a sketch and returns fake data. 
● named_array.py: Makes it easier to interact with numpy arrays by name. Useful 

for referring to parts of the control targets/references. 
● noise.py: Adds action and observation noise. 
● param_variation.py: Defines the physics parameters used by the simulation. 
● ref_gen.py: The tools to generate control targets per time step. 
● references.py: The control targets used in the experiments. 
● references_main.py: Runnable script to output the references to the command 

line. 
● rewards.py: Computes all of the reward components and combines them 

together to create a single scalar reward for the environment. 
● rewards_used.py: The actual reward definitions used in the experiments. 
● run_loop.py: An example of interacting with the environment to generate a 

trajectory to send to the replay buffer. This code is notional as a complete version 
would require an Agent and a Simulator implementation. 

● targets.py: The reward components that pull data from the control targets and 
the simulator state for generating rewards. This depends on FGE, so cannot be 
run. 

● tcv_common.py: Defines the physical attributes of the TCV fusion reactor, and 
how to interact with it. 

● terminations.py: Defines when the simulation should stop. 
● trajectory.py: Stores the history of the episode. 
● transforms.py: Turns error values into normalized values. 

 


	Magnetic control of tokamak plasmas through deep reinforcement learning

