
Open Access This file is licensed under a Creative Commons Attribution 4.0 

International License, which permits use, sharing, adaptation, distribution and 

reproduction in any medium or format, as long as you give appropriate credit to 

the original author(s) and the source, provide a link to the Creative Commons license, and indicate if 

changes were made. In the cases where the authors are anonymous, such as is the case for the reports of 

anonymous peer reviewers, author attribution should be to 'Anonymous Referee' followed by a clear 

attribution to the source work.  The images or other third party material in this file are included in the 

article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is 

not included in the article’s Creative Commons license and your intended use is not permitted by statutory 

regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright 

holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. 

Peer Review File

Proteomic analysis of archival breast cancer clinical specimens

identifies biological subtypes with distinct survival outcomes



Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

Asleh et al have performed quantitative proteomics of 300 breast tumors from formalin fixed paraffin 

embedded (FFPE) material. The general idea and its potential value to the community of this work is 

great. 

The main Merits of the paper are: 1) the acquisition of proteomics data from FFPE samples across a 

large number of breast cancer samples with clinical follow up that can serve as a resource, 2) directly 

linking protein based sample groups with immune infiltration to improved outcome, 3) suggestion of 

potential biomarkers for tumor groups 4) identification of 4 TNBC groups as previously suggested at 

the RNA level and linking the immune infiltrated subgroup to good outcome, 5) identification of 3 ER 

positive tumor groups with a stromal enriched group. 

 

Limitations regarding merits above: 

To function as a resource the data needs to be judged as robust. 

To evaluate protein quantitative robustness, the number of peptides used for quantification per protein 

needs to be available and visualized. Now it is lacking from the supplementary data table with all 

ratios. A panel can also be added to figure 2 to show nr of psms/protein used for quantification. 

The supermix is present in all TMT sets and should represent how well quantifications can be 

reproduced between TMT sets. Can the supermix data be use for robustness evaluation between the 

sets? For example a heatmap for overview, variation of supermix in relation to the breast samples and 

particular sets with deviation on supermix-sample. 

An overview clustering of the 2 cohorts with replicates would also be useful to judge how the whole 

dataset behaves. Does the technical replicates cluster together? 

The data should also confirm with previous knowledge, as ER, PR, HER2, MKI67 levels in different 

PAM50 subtypes, and this would be good to show in a supplementary figure. 

Proteomics have previously identified immune infiltration in breast cancer subgroups without directly 

linking them to outcome (Krug 2020 Cell, Johansson et al 2019 Nat Comm). Tumor-infiltrating 

lymphocytes (TILs) have also been linked to better outcome in breast cancer subtypes (Dieci 2021 

Cells). The strength of this study is the direct link between proteomics data with “immune hot” tumors 

and outcome. 

Relation to published data 

In general, anchoring the novel findings further, e.g. by validation of findings in other breast 

proteomics data sets would be valuable to show the usefulness of the data as a resource and 

strengthen the findings. There is several decent datasets published now on breast cancer proteome so 

this should be done. 

The 4 TNBC groups are correlating to their suggested RNA based groups. To strengthen the finding of 

4 TNBC subtypes, can they be identified also at the protein level, for example in Krug 2020 Cell data? 

How generalizable are the 3 ER positive tumor subgroups identified in the manuscript? The authors 

cite Krug 2020 Cell in the discussion as consistent with the stromal-enriched subtype. But to my 

knowledge, the data in the Krug paper don’t show a separate luminal A subgroup enriched for stroma. 

Dennison 2016 CCR, however show a stromal subtype of ER positive tumors that are or mixed subtype 

but enriched in Luminal A with a favorable clinical outcome. Are the same proteins (in RPPA and your 

MS data) deterministic of the stromal subgroup? 

IHC validation of S100A8, TAP1, IFIT2, HLA-DQA1 and CD8 as suggested biomarkers of immune 

infiltration and better outcome are done on the same cohort as the proteomics. To consolidate the 

findings, validation in an independent cohort would be valuable. Also, what is correlation between the 

MS data and the IHC validated markers? Are the MS protein levels also related to outcome? 

 

Additional comments: 

 

From introduction: “This method can query large FFPE material cohorts linked to outcome data, 

enabling comprehensive quantification of protein expression from lower input quantities of routinely-



available patient specimens, and employs a more highly efficient workflow than other MS-based 

methods for protein profiling of clinical FFPE tissues21,22. “ 

Based on the data, the MS workflow seems efficient, but there is really no data to comparing all other 

methods to support your claim of “more highly efficient workflow than other MS-based methods….”? 

Many of the large MS proteomics groups have published their versions of FFPE sample preparation 

methods. See for example Coscia 2020 Modern Pathology, Griesser 2020 MCP, Marchione 2020 JPR, 

Zhu 2019 Molecular Oncology. 

 

In the abstract and in figure one, 300 samples are mentioned as included in the study. The number is 

correct but it is bit misleading since it’s divided up in 2 cohorts. The overview in Figure 1A is not useful 

since this collection of samples are not used together later on in the paper. The overview presented in 

fig S1A are much more useful since it gives an overview of the samples used together in each of the 

later analyses. Also the number of samples drop after QC and removal of replicates. To make it clearer 

for the reader I suggest you make a combination figure of fig S1A and S2H with the tumor 

characteristics and the numbers that make up each cohort used in the downstream analysis. Also 

include the info of how the TNBC cohort was made. This took time to figure out and with a figure 

outlining the 2 cohorts, it would be much clearer from the beginning for the readability of the entire 

paper. To make it even clearer one could add what type of analysis / aim you have with each cohort. 

There is also normal samples for which it is unclear of their purpose/how they are used. Did not find 

any comparison to the normal samples in the text? 

 

PAM50 is defined both by RNA and by surrogate IHC markers in the manuscript. However, it is unclear 

when each definition is used in the manuscript, which makes it confusing to read at times. 

 

The authors use a new method denoted isodoping, with the aim to increase the overlap of 

identifications between TMT sets. The dynamic range in the orbitrap is max 3 orders of magnitude and 

the practical with TMT is closer to 2 orders of magnitude. To the pool of samples, 4.26 pmol of each 

peptide is added as isodoping. What is the evidence that you have not added 2 orders of magnitude of 

your spike in peptide compared to the endogenous levels? Adding spike in peptide amounts in excess 

of 2 orders of magnitude would make the other TMT channels hover around background and lose 

quantitative accuracy. How is it checked that this don’t affect the quantification used? Could the same 

scenario happen for the SuperMix channel? 

 

The isodoping is presented in fig1. This to me indicates that it is one of the main concepts in the paper 

since if it comes in the first main figure. However, this is a technicality which the authors say that they 

are preparing a manuscript for and could be moved to supplementary. 

 

It is also unclear how the isodoping peptides were selected. Usually peptides are selected due to their 

good ionization capabilities which could explain much of the results in fig 1b? 

Figure 1C is unclear to me. How do you reach 74 isodoping dependent proteins? Can you update the 

figure legend or make a new clearer figure? 

 

From results: “The cases in the 08-13 cohort were treated in accordance with contemporary guidelines 

and contained cases from all four PAM50 subtypes, including all 75 basal-like cases (Supplementary 

Figs. S1a, S2h, Supplementary Data S1d).” 

Which contemporary guidelines are you referring to? 

 

LVI, lymphovascular invasion is mentioned. Don’t find it in materials & methods. 

 

When the tumor groups are defined they are given numbers. However, when they are first introduced 

in figures (for example 2b & c, 5a, 7a) they are not in numerical order. It would maybe be much 

easier to follow if the clusters are renumbered in numerical order in the first figure where they appear. 

 

The identification and quantification of 4214 proteins across all samples is a good result for MS 



analysis of FFPE samples. But could some of the results be explained by not reaching deep enough 

into the proteome, considering that there should be around 14000 proteins in a tissue according to 

ProteinAtlas. Could this be a reason for the grouping of Luminal A tumors with Her2 in fig 2b? In the 

Krug et al Cell 2020 paper their tumor grouping almost exclusively only mix luminal A and Bs. No 

HER2 based on 7679 proteins quantified across all 122 samples. Can the lum A mixing with Her2 be 

reproduced with the same proteins? Or is this an effect of FFPE? 

 

In fig S3a, you refer to biological replicates. How is biological replicates defined in clinical samples? 

For the technical replicates, it would have been better if they were spread out in different TMT sets. 

 

The PAM50 subtypes have got standard color code. See TCGA 2012 Nature or Krug et al Cell 2020. To 

avoid confusion I strongly recommended to use the same color code. 

 

In general the authors make a good job in describing their findings. But to make it easier to follow I 

would suggest to add ER, PR and HER2 status to fig 2C. For example in the text it says: “Most cases in 

Cluster-2 and -3 were associated with ER, PR and Her2 negativity by IHC clinical tests, high 

proliferation index (Ki67), and the “core basal” phenotype (defined as ER-, PR-, Her2- and [EGFR+ or 

CK5+])29 (Supplementary Table 1).” Adding the clinicopathological markers to the heatmap in fig 2c 

would make it easy to see this in addition to the table. But this is a matter of taste and you can ignore 

if you like. 

 

In fig 2c, 5a, there is a column called immune with 2 categories, Immune related and Other. How are 

they defined? Also, for the protein groups there are enrichments, how were the enrichments done? 

Specify in fig text how the terms were selected, representative/ cutoff? 

 

Fig 2a, is this using all or the most varying proteins? In 2b it does not say that the grouping is based 

on consensus clustering. 

 

In figure S2b-c, the authors show number of peptides per protein. Bit unclear to what it refers to when 

mentioning peptide? Is that unique peptides? Nr of peptides per protein, is that the per set or total 

across all TMT sets or mean/median? 

 

The number of unique peptides per protein, nr of psm per protein and nr of psms/protein for TMT 

quantification is missing from the supplementary table with all MS data. Please add this, since it is 

important when it comes to judging the quantitative robustness. Having said that, must give all the 

credits for clear clinical information and that the authors include it in the same document so it is easy 

to access! 

 

In figure 3e, the y-axis says abundance. Is this log2 ratio to the pool of samples? ESR1 is high in 

cluster 2 which is one of the basal enriched clusters, which is surprising. Could this be due to 

isodoping or poor quantification? KRT18 and FOXA1 on the other hand behave as expected. 

 

PECA is used for calculating p-values. Wonder if that inflates the p-values and makes them smaller 

just because you have a lot of peptides per protein? 

https://pubs.acs.org/doi/10.1021/acs.jproteome.5b00363 

 

Full credit for uploading the immunohistochemistry slides to http://www.gpec.ubc.ca/prot. But why 

limit to representative images. For the dataset to be useful, all images needs to be available. In 

addition, there should be an easy way to download all data for image analysis. 

 

To make the data analysis part transparent and reproducible, analysis code should be uploaded to 

Github or similar repository. 

 

Orbitrap MS2 data was matched with 0.5 Daltons tolerance. This is a very large window that is usually 



used for iontrap data. For orbitrap MS2, the tolerance should be around 0.02 Dalton to reduce the risk 

of miss assigning transitions. Since you are also using methylation of lysine as a variable modification, 

this in combination with a large tolerance will increase your FDR. You should research at least parts of 

the data and compare the results to your present results to determine if all data needs to be 

researched. In relation to this, what is the protein FDR of the dataset, q-value, pep value for each 

protein? 

 

From results: FFPE samples were macro-dissected from 3-6 sections to obtain >80% tumor content 

and analyzed using the SP3-CTP multiplex MS proteomics protocol24 (Supplementary Fig. S1b). 

Should it not be ref 19 instead of 24? 

 

 

 

Reviewer #2: 

Remarks to the Author: 

In this study, the authors carry out mass-spec proteomic profiling of 300 FFPE breast cancer surgical 

specimens. The specimens are separated into two cohorts based on batch effects. The 08-13 cohort 

included 75 basal-like, 62 Her2-Enriched, 30 luminal B, and 11 luminal A PAM50 defined cases. The 

86-92 cohort provided the long-term outcome data required for luminal cases and included 64 luminal 

A, 45 luminal B, and 13 Her2-Enriched PAM50 cases. The 08-13 cohort was used for subtype 

discovery, both across all tumors and within the TNBC subset. ER+ subtypes examined in the 08-13 

cohort were examined in the 86-92 cohort. 

 

Specific comments: 

1. Batch effects were found between the 08-13 and 86-92 cohorts, likely due to differences in 

collection techniques, pre-analytical handling, and fixation procedures. Could the authors try to 

harmonize the two datasets using Combat (https://rdrr.io/bioc/sva/man/ComBat.html)? In practice, 

Combat is very good at removing batch effect differences. Data from different platforms (RPPA, RNA-

seq, DNA methylation) have been successfully processed with Combat, and the method is independent 

of nature of the batch effect. The PAM50 subtype could be used as the experimental group. There 

would be advantages in having one harmonized dataset of 300 samples. It seems worth a try. As 

currently written, the Abstract suggests that there is one dataset that was analyzed, rather than two 

separate cohorts. 

 

2. Page 8: "Cluster-1 (n=34) consisted mostly of luminal B and Her2-Enriched PAM50 cases. Clusters-

2 (n=50) was enriched for basal-like subtype, included few Her2-Enriched, but had no luminal cases. 

Cluster-3 (n=47) was primarily basal-like cases but included Her2-Enriched cases. Cluster-4 (n=43) 

was mostly Her2-Enriched but included luminal A and luminal B cases." It seems that actual numbers 

to reflect the noted associations would be helpful here, e.g. exactly how many basal-like cases and 

Her2 cases were in Cluster-3, and was Cluster-2 SIGNIFICANTLY enriched for basal-like. 

 

3. In general, where the word "significantly" appears in the main text, it would be good to include a p-

value and associated test to support the claim. The figures referred to likely include the test, but 

reflecting this in the main text as well would be helpful to the reader. For example, page 11: "The 

immune hot cluster also had significantly higher CD8+ TILs in the intratumoral compartment 

compared to other clusters (Fig. 4a)." by what p-value and test? 

 

4. Wherever a p-value appears in the main text, the test used to derive that p-value should also be 

indicated. For example, page 12: "The subgroups with a high expression for only one of these 

biomarkers were characterized with intermediate RFS (Supplementary Fig. S5b). 70% (21/30) of the 

cases classified as (TAP1 high/HLA-DQA1 high) were in Cluster-3, while 90% (76/84) of (TAP1 

low/HLA-DQA1 low) cases were in other clusters (p-value<0.00001) (Supplementary Table 1)." What 

test was used here (we can save the reader from having to go the Table for the answer)? 

 



5. Page 15: "Multiple correction testing identified fatty 

acid-binding protein-7 (FABP7) as a candidate biomarker most significantly associated with >10-year 

RFS on tamoxifen treatment..." Was this the only protein that was significant? Were other proteins 

significant and using what statistical test and cutoff? 

 

6. Discussion, page 16. Many journals are uncomfortable with the phrase "(manuscript in 

preparation)." It seems that the method indicated should be described in sufficient detail in the 

Methods, if it isn't already. 

 

7. In addition to making the raw data available on ProteomeXchange, it would be most helpful to 

include the processed proteinXsample tables as Supplementary Data with the published paper. CPTAC 

has done a similar thing with their past publications. 

 

8. For boxplots in the figures, please define the ranges involved. 

 

 

 

Reviewer #3: 

Remarks to the Author: 

The authors present their previously described highly sensitive MS-based methodology termed 

“Single-Pot, Solid-Phase enhanced, Sample Preparation”-Clinical Tissue Proteomics (SP3-CTP). This 

technology has been shown to capture known and novel features in FFPE tumor samples. The authors 

have previously shown that this method can be applied on large FFPE material cohorts linked to 

outcome data. Comprehensive quantification of protein expression can be achieved even from lower 

input quantities of patient specimens such as small biopsies. Here is would have been useful to know 

how small? 

 

In this paper they have applied the method to 300 well-characterized archival FFPE breast cancer 

specimens in terms of clinical outcome, IHC, and PAM50 RNA-based intrinsic subtypes. The authors 

demonstrate that at the protein level one can identify groups characterized by high expression of 

immune-response proteins and favorable clinical outcomes. 

Doe this paper bring a sufficient novelty? While it is true that “classifications do not always guide 

therapeutic choices, due to the extensive heterogeneity that still characterizes breast cancers” can this 

be solved by adding one more, at the level of proteomics? 

 

Q1. How do this extension to 300 cases add to what we know from Johansson at al NatComm, 2019? 

Q2. How does the heterogeneity described here match what is known from RNA based classification 

(basal also divided in several immune clusters) 

Q3. If the authors were to make biomarkers based on protein as they suggest, which ones would they 

chose? 

 

An introduction of 5 pages and large number of references (81) makes it into a difficult read. This 

paper as rigorously performed and described, would benefit from some clarity and simplification, just 

highlighting the results that move the field forward. 
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RESPONSE TO REVIEWER COMMENTS 
 
Reviewer #1, expert in proteomics (Remarks to the Author): 
 
Asleh et al have performed quantitative proteomics of 300 breast tumors from formalin fixed 
paraffin embedded (FFPE) material. The general idea and its potential value to the community of 
this work is great.  
The main Merits of the paper are: 1) the acquisition of proteomics data from FFPE samples 
across a large number of breast cancer samples with clinical follow up that can serve as a 
resource, 2) directly linking protein based sample groups with immune infiltration to improved 
outcome, 3) suggestion of potential biomarkers for tumor groups 4) identification of 4 TNBC 
groups as previously suggested at the RNA level and linking the immune infiltrated subgroup to 
good outcome, 5) identification of 3 ER positive tumor groups with a stromal enriched group.  
 
We appreciate the reviewer’s view that the work will provide important value to both the fields 
of breast cancer and of proteomic analysis of patient samples in general.  
 
Limitations regarding merits above: 
1. To function as a resource the data needs to be judged as robust.  
To evaluate protein quantitative robustness, the number of peptides used for quantification per 
protein needs to be available and visualized. Now it is lacking from the supplementary data table 
with all ratios. A panel can also be added to figure 2 to show nr of psms/protein used for 
quantification.  
 
We thank the reviewer for this point. We have added the total number of peptides for each 
protein, number of unique peptides per protein and number of PSMs used in quantification per 
protein to the Supplementary Data S1c. We have also added the data on the peptide abundance 
per protein (now appears as new Supplementary Data S1d) and PSMs per protein in 
Supplementary Figure S2d. 
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2. The supermix is present in all TMT sets and should represent how well quantifications can be 
reproduced between TMT sets. Can the supermix data be use for robustness evaluation between 
the sets? For example a heatmap for overview, variation of supermix in relation to the breast 
samples and particular sets with deviation on supermix-sample.  
 
We thank the reviewer for this point. The 38 SuperMix replicates included in our experiment 
showed a high correlation across the 38 plexes. Unsupervised clustering of our data for all 
samples including breast tumors, normals, and SuperMix show the SuperMix samples clustered 
together and are clearly separated from the breast tumor and normal samples. The correlation 
between the SuperMix samples was the highest when compared to the breast tumor and normal 
samples, supporting the robustness of the evaluation of SuperMix samples across the sets 
(appears as new Supplementary Fig. S4c). Pairwise correlation between the 38 SuperMix 
replicates (ranged between 0.68-0.81, median 0.75) was significantly higher than the pairwise 
correlation across the 38 normals (ranged between 0.53- 0.85, median 0.71). These findings are 
shown in new Supplementary Fig. S4d.  
 
The following information has been added to the results section page #8: 
“An overview clustering of all the samples included in our study showed that the 38 SuperMix 
replicates had the highest correlation across the 38 plexes (range 0.68-0.81) when compared to 
the breast tumors and normal samples, supporting the robust quantification of SuperMix samples 
across the different sets (Supplementary Figs. S4c-S4d).  
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3. An overview clustering of the 2 cohorts with replicates would also be useful to judge how the 
whole dataset behaves. Does the technical replicates cluster together? 
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Per the reviewer’s request, we generated a heatmap showing the overview clustering for all the 
samples, as also requested in the previous comment. As now shown in Supplementary Fig. S4c, 
the three technical replicates indeed have clustered adjacent to each other (T_rep 5, T_rep 6, 
T_rep 7). Regarding the biological replicates, 2 of 3 replicates clustered adjacent to each other 
while the 3rd biological replicates clustered very closely together, a variance in line with 
expectations for intratumoral regional sampling. The normal samples clearly separated from 
tumor samples and showed an overall correlation of 0.70. An overall correlation of 0.5-0.6 was 
observed for the different breast tumor clusters and these included a mix of samples from both 
08-13 and 86-92 cohorts. 
 
This information has been added to the results section page #8: 
“All the technical replicates and 2 out of 3 biological replicates clustered adjacent to each other, 
while the 3rd biological replicates clustered very closely together, a variance in line with 
expectations for intra-tumoral regional sampling (Supplementary Fig. S4c).  
 
4. The data should also confirm with previous knowledge, as ER, PR, HER2, MKI67 levels in 
different PAM50 subtypes, and this would be good to show in a supplementary figure.  
 
HER2 (ERBB2) and MKI67 expression levels across the different PAM50 subtypes are found in 
Supplementary Fig. S6d. ER (ESR1) and PR (PGR) expression levels across the different 
PAM50 subtypes are now also included in Supplementary Fig. S6d.  
 
5. Proteomics have previously identified immune infiltration in breast cancer subgroups without 
directly linking them to outcome (Krug 2020 Cell, Johansson et al 2019 Nat Comm). Tumor-
infiltrating lymphocytes (TILs) have also been linked to better outcome in breast cancer subtypes 
(Dieci 2021 Cells). The strength of this study is the direct link between proteomics data with 
“immune hot” tumors and outcome.  
Relation to published data 
In general, anchoring the novel findings further, e.g. by validation of findings in other breast 
proteomics data sets would be valuable to show the usefulness of the data as a resource and 
strengthen the findings. There is several decent datasets published now on breast cancer 
proteome so this should be done. 
 
Per the reviewer’s request, we performed a validation of our findings on previous proteomic 
datasets published by Krug et al. Cell 2020 (CPTAC) and Johansson et al. Nat.Commun 2019 
(OSLO2). 
 
Validation using the Krug et al. 2020 CPTAC breast tumor cohort: In order to compare our 
results with available published datasets, we performed consensus clustering with the same 
parameters used in our cohort on the CPTAC Cell 2020 cohort, using 939 proteins from the 
CPTAC data that overlap with the 1054 mostly highly-variant proteins of the 08-13 cohort. This 
analysis identified four main proteome clusters that highly resembled the original CPTAC NMF 
clusters of “LumA-I”, “LumB-I”, “Basal-I”, “HER2-I”. Two of these were almost entirely 
similar to the original NMF clusters of “Basal-I”, and “LumA-I”. Another cluster highly 
resembled NMF “LumB-I” and consistent with Krug et al consisted of 54% luminal A cases 
(compared to 55% luminal A cases assigned as “LumB-I” in the original NMF CPTAC clusters 
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by Krug et al). Similar to the original NMF CPTAC clustering composition, the NMF CPTAC 
“HER2-I” cluster identified had a mix of Her2-Enriched, luminal A and luminal B breast 
cancers. Of note, the original Krug et al 2020 study of 122 breast tumors included a majority of 
luminal A PAM50 subtype (n=57, 47%), followed by basal-like (n=29, 24%), luminal B (n=17, 
14%) and Her2-Enriched (n=13, 11%) when compared to the composition of our 08-13 cohort 
consisting of a higher number of basal-like (n=73, 42%) and Her2-Enriched (n=62, 36%) cases, 
but few luminal A (n=11, 6%). Despite this, our analysis further reproduced the existence of 
subsets enriched for immune response pathways at the proteome level within the basal-like and 
Her2-Enriched subtypes not captured by CPTAC analysis. Consistent with our analysis on the 
08-13 cohort, stromal pathways were enriched in luminal A tumors and lipid metabolism was 
enriched within luminal B and Her2-Enriched tumors. A description of these findings is 
displayed in Supplementary Fig. S9a.  
  
Validation using the Johansson et al 2019 “OSLO2 breast cancer landscape cohort”: 
Validating our findings on the 36 cases of the 4 main subtypes (9 for each PAM50 type) on 
“OSLO2 landscape cohort”, we performed consensus clustering with the same parameters used 
in our analysis, using 775 proteins from the OSLO2 data that overlap with the 1054 mostly 
highly-variant proteins of the 08-13 cohort. This analysis identified 4 clusters that highly 
resembled the main consensus core tumor clusters (CoTCs) and their biological functions as 
reported in Johansson et al. These clusters consisted of CoTC1 (basal-like immune cold), CoTC2 
(basal-like immune hot), CoTC3 with few CoTC6 cases (luminal A-enriched) and CoTC6 
(luminal B and Her2-Enriched). Importantly, the immune distinctions within the basal-like 
subtype were entirely reproduced using our highly variant proteins showing that the two basal-
like samples of OSL.3EB and OSL.449 (CoTC2) were consistently classified as “basal immune 
hot cluster” when compared to other basal cases characterized as “basal immune cold”. These 
findings are displayed in Supplementary Fig. S9b.  
 
The results section page #14 has been updated to include our comparison analysis using the Krug 
et al 2020 and Johansson et al 2019 proteomics datasets, as a new section entitled “Comparison 
with previous breast cancer proteomics studies”. 
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6. The 4 TNBC groups are correlating to their suggested RNA based groups. To strengthen the 
finding of 4 TNBC subtypes, can they be identified also at the protein level, for example in Krug 
2020 Cell data? 
 
We validated our TNBC proteome clusters using the 935 proteins that overlap with the 1055 
mostly highly-variant proteins in our 08-13 TNBC (n=88) subset on a set of 28 TNBC cases 
included in the CPTAC breast cancer cohort by Krug et al. Our analysis reproduced the existence 
of the four main proteome TNBC subgroups and the biological features of ‘luminal-androgen 
receptor’, ‘mesenchymal’, ‘basal-immune suppressed’, and ‘basal-immune activated’ as now 
shown in Supplementary Fig. S11.  
The results section page #16 has been updated to include this information: 
“The existence of these TNBC proteome clusters and their biological features were validated 
when applying consensus clustering, with identical parameters, on 935 proteins overlapping 
with the 1055 mostly highly-variant proteins of the 08-13 TNBC subset on the proteomic data for 
a set of 28 TNBC cases included in the CPTAC breast cancer cohort by Krug et al1 
(Supplementary Fig. S11).  
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7. How generalizable are the 3 ER positive tumor subgroups identified in the manuscript? The 
authors cite Krug 2020 Cell in the discussion as consistent with the stromal-enriched subtype. 
But to my knowledge, the data in the Krug paper don’t show a separate luminal A subgroup 
enriched for stroma. Dennison 2016 CCR, however show a stromal subtype of ER positive 
tumors that are or mixed subtype but enriched in Luminal A with a favorable clinical outcome. 
Are the same proteins (in RPPA and your MS data) deterministic of the stromal subgroup? 
 
We agree with the reviewer that Krug 2020 Cell did not identify a separate stromal enriched 
subtype as a unique cluster by mass spectrometry, but described a subset of luminal A tumors as 
stromal-enriched since these tumors were classified originally in TCGA 2012 based on RPPA 
data as “reactive”. In the subsequent Nature 2016 CPTAC proteomics profiling breast cancer 
publication, the proteomic cluster that was highly correlated with the “reactive” RPPA cluster 
was referred to as stromal-enriched.  
The Dennison 2016 CCR basically tried to characterize the biological and clinical features of the 
stromal enriched tumors as a whole (i.e. reactive tumors) identified in the TCGA based on RPPA 
data. The majority of these tumors were found to be classified as luminal A by PAM50, and 
among the luminal A as a group those that had high stromal protein expression displayed 
favorable clinical outcomes.  
Comparing the proteins in our MS data that are in common with the RPPA proteins (n=30) used 
to classify the “stromal-enriched” vs. the “ER positive cancer derived” subtypes in Dennison 
2016 CCR, we found 5 proteins in the RPPA “stromal-enriched” Dennison 2016 CCR that were 
also characteristic for our luminal A stromal enriched proteomics cluster (log2FC>0.20, adjusted 
p-value<0.05). These were fibronectin, annexin, collagen VI, caveolin, and MYH11.  
While our data correlate with those results, the RPPA data only cover a small percentage of the 
proteome that was quantified in our experiment; thus, our data characterize the luminal A 
stromal enriched cluster in a more comprehensive manner and identify protein candidates that 
are beyond those captured by the restricted number of proteins in the antibody-based RPPA 
assay.  
 
The discussion page #22 has been updated to highlight this information.  
“Our analysis of ER+ cases with mature clinical data identified a stromal-enriched subset 
(86-92-Cluster-2) consistent with previous reports56,62, which could help sub-classify luminal 
breast cancer. However, our data characterize the luminal A stromal enriched cluster in a more 
comprehensive manner and identify protein candidates that are beyond those captured by the 
restricted number of proteins in the antibody-based RPPA assay”.  
 
8. IHC validation of S100A8, TAP1, IFIT2, HLA-DQA1 and CD8 as suggested biomarkers of 
immune infiltration and better outcome are done on the same cohort as the proteomics. To 
consolidate the findings, validation in an independent cohort would be valuable. Also, what is 
correlation between the MS data and the IHC validated markers? Are the MS protein levels also 
related to outcome? 
 
First part of the reviewer’s comment: Per the reviewer’s request, we have now performed a 
validation of these IHC biomarkers on an independent set of 176 breast cancer cases with similar 
clinicopathological characteristics to the 08-13 cohort. Our analysis confirmed that high 
expression of HLA-DQA1 as a single biomarker had a significantly better survival (log-rank 
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p=0.02) and a similar trend was seen with high TAP1 as a single biomarker (log-rank p=0.09). 
The findings further confirmed that tumors with IHC expression for both TAP1 and HLA-DQA1 
showed the most favorable survival, while the subgroup with low expression for both had the 
worst RFS (log-rank p=0.05) (Supplementary Fig. S8).  
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The results section page #13 has been updated with this information: 
“We subsequently confirmed our observations on an independent, clinically similar set of 

176 breast cancer cases and showed that high expression of HLA-DQA1 as a single biomarker 
had a significantly better survival (log-rank p=0.02) and a trend was seen for high TAP1 as a 
single biomarker (log-rank p=0.09). These data also confirmed that tumors with high IHC 
expression for both TAP1 and HLA-DQA1 showed the most favorable survival, while the 
subgroup with low expression for both had the worst RFS (log-rank p=0.05) (Supplementary 
Table 3; Supplementary Fig. S8).  
 
The Supplementary methods in the Supplementary Information file page #25 and Supplementary 
Table 3 include information on the characteristics of this IHC validation cohort: 
“IHC validation cohort: A tissue microarray for an independent set of 176 breast cancer cases 
was used to validate observations on the 08-13 cohort for the key protein IHC biomarkers. This 
validation cohort had clinicopathological characteristics similar to the 08-13 cohort and was 
analyzed for IHC biomarker association with clinical outcomes. The median follow-up for the 
IHC validation cohort was 10 years and cases were treated in accordance with contemporary 
guidelines”. Characteristics of this cohort appear in the new updated Supplementary Table 3. 
 
Supplementary Table 3 
 

Characteristic IHC Validation cohort  
 (n=176) 

Age at diagnosis (median) 53 years 
Tumor size (median) 2 cm 
Tumor grade  
1, 2 44 (25%) 
3 127 (72%) 
Missing 5 (3%) 
Nodal status  
Negative 105 (60%) 
Positive 66 (37%) 
Missing 5 (3%) 
IHC subtype   
Luminal ([ER+ or PR+]) 69 (39%) 
ER-, PR-, HER2+ 32 (18%) 
ER-, PR-, HER2-  71 (40%) 
Missing 4 (3%) 
Disease specific death   
No  134 (76%) 
Yes 35 (20%) 
Missing 7 (4%) 
CD8 iTILs  
<1% 42 (24%) 
≥1% 129 (73%) 
Missing 5 (3%) 
TAP1/HLA-DQA1 IHC 
groups 

 

TAP1 high /HLA-DQA1 high 35 (20%) 
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TAP1 low /HLA-DQA1 high 22 (13%) 
TAP1 high /HLA-DQA1 low 50 (28%) 
TAP1 low /HLA-DQA1 low 65 (37%) 
Missing 4 (2%) 

 
Second part of the reviewer’s comment: The Spearman correlation between the MS data and 
the H score for the IHC validated markers was found to be 0.51 for TAP1 and S100A8, 0.31 for 
HLA-DQA1, and 0.11 for IFIT2 as shown in the figure below. Of note, the assessment of the 
validated markers by IHC was performed on the carcinoma cells.  
 

 
 
Third part of the reviewer’s comment: The selection of the biomarkers for IHC validation was 
based on biology rather than clinical outcomes. In response to the reviewer’s comment, we 
performed a Cox proportional-hazards analysis on the protein abundance (in MS data) and 
recurrence free survival for the protein candidates we assessed by IHC. MS protein levels are 
significantly correlated with improved outcome for TAP1 and IFIT2, while a trend is shown for 
HLA-DQA1 and S100A8 as follows: 

Protein 
 

Survival analysis for RFS 
 HR (95% CI), P-value 
 

Adjusted P-value 

TAP1 0.34 (0.18-0.65), 0.001 0.04 
HLA-DQA1 0.87 (0.69-1.10), 0.24 0.71 
S100A8 0.87 (0.73-1.06), 0.16 0.62 
IFIT2 0.38 (0.18-0.80), 0.01 0.19 

 
Additional comments: 
 
9. From introduction: “This method can query large FFPE material cohorts linked to outcome 
data, enabling comprehensive quantification of protein expression from lower input quantities of 
routinely-available patient specimens, and employs a more highly efficient workflow than other 
MS-based methods for protein profiling of clinical FFPE tissues21,22. “ 
Based on the data, the MS workflow seems efficient, but there is really no data to comparing all 
other methods to support your claim of “more highly efficient workflow than other MS-based 
methods….”? Many of the large MS proteomics groups have published their versions of FFPE 
sample preparation methods. See for example Coscia 2020 Modern Pathology, Griesser 2020 
MCP, Marchione 2020 JPR, Zhu 2019 Molecular Oncology. 
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We thank the reviewer for this comment. We have updated this sentence in the introduction page 
#5 accordingly:  
“This method can be used to query large FFPE material cohorts linked to outcome data, 
enabling comprehensive quantification of protein expression from lower input quantities of 
routinely-available patient specimens, and employings a more highly efficient workflow than 
other MS-based methods for protein profiling of clinical FFPE tissues21,22.  
 
10. In the abstract and in figure one, 300 samples are mentioned as included in the study. The 
number is correct but it is bit misleading since it’s divided up in 2 cohorts. The overview in 
Figure 1A is not useful since this collection of samples are not used together later on in the 
paper. The overview presented in fig S1A are much more useful since it gives an overview of the 
samples used together in each of the later analyses. Also the number of samples drop after QC 
and removal of replicates. To make it clearer for the reader I suggest you make a combination 
figure of fig S1A and S2H with the tumor characteristics and the numbers that make up each 
cohort used in the downstream analysis. Also include the info of how the TNBC cohort was 
made. This took time to figure out and with a figure outlining the 2 cohorts, it would be much 
clearer from the beginning for the readability of the entire paper. To make it even clearer one 
could add what type of analysis / aim you have with each 
cohort. There is also normal samples for which it is unclear of their purpose/how they are used. 
Did not find any comparison to the normal samples in the text? 
 
Per the reviewer’s recommendation we have moved the original Figures S1A and S2H to Figure 
1. Now they appear as Fig. 1b and Fig. 1c. 
Given that normals were sourced from independent reduction mammoplasties, they are very 
biologically different from tumors and thus they are not helpful in the subtyping or performing 
direct comparisons with tumor samples. The normals were included in the UMAP plots where 
they form a clearly separated cluster from tumors, added to the heatmaps (Figures 2c and 5a) as a 
reference to illustrate that proteins and pathways of interest for the proteome clusters were not 
high in normals, and as a visual comparator for the expression of key breast cancer associated 
proteins in Supplementary Figure S6d.  

In addition, when we picked specific proteins of interest for validation in IHC, we used 
candidates that were not highly expressed in normals. We updated the text to include this specific 
information in page #12. 
“We selected four that were among the top differentially-expressed proteins between the immune 
hot cluster vs. others (Supplementary Data S2c), had available antibodies applicable to FFPE, 
and had a practical scoring methodology on carcinoma cells: TAP1 (MHC class I), HLA-DQA1 
(MHC class II), IFIT2 (type I interferon signaling) and S100A8 by IHC (Figs. 4b-4c). In 
addition, these proteins were not highly expressed in the normal reduction mammoplasty 
samples”. 
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11. PAM50 is defined both by RNA and by surrogate IHC markers in the manuscript. However, 
it is unclear when each definition is used in the manuscript, which makes it confusing to read at 
times.  
 
PAM50 per definition only refers to RNA not IHC as PAM50 is a RNA-based assay. There is no 
definition of PAM50 by IHC in the manuscript. We have however now added the word “RNA-
based” before the word PAM50 in the section that included IHC data for further clarity. 
page #15: “We analyzed 88 IHC defined TNBC cases (profiled by RNA-based PAM50 as: 61 
basal-like, 22 Her2-Enriched, and 5 luminal B), all in the 08-13 cohort (Fig. 1b)  
 
12. The authors use a new method denoted isodoping, with the aim to increase the overlap of 
identifications between TMT sets. The dynamic range in the orbitrap is max 3 orders of 
magnitude and the practical with TMT is closer to 2 orders of magnitude. To the pool of 
samples, 4.26 pmol of each peptide is added as isodoping. What is the evidence that you have not 
added 2 orders of magnitude of your spike in peptide compared to the endogenous levels? 
Adding spike in peptide amounts in excess of 2 orders of magnitude would make the other TMT 
channels hover around background and lose quantitative accuracy. How is it checked that this 
don’t affect the quantification used? Could the same scenario happen for the SuperMix channel?  
 
The reviewers make an astute point that issues with the dynamic quantification range can arise 
when implementing TMT. As shown in Supplementary Fig. S2f, when we compared the average 
S/N ratio, before normalization, across different sample types we detected an average difference 
of 3.7x between SuperMix and tumor samples, with all SuperMix samples showing an average 
S/N comparable to the tumor samples with higher signal. 

In Supplementary Fig. S2g, it is displayed that there is only a 3.2x difference between the 
average abundance of isoDoped peptides and endogenous peptides for isodoped proteins in the 
PIS+isoDoping channel. When comparing the average S/N of the isoDoping peptides in the 
tumor samples and the spiked in channel we detected an 8.6x difference, below the suggested 
limit of 20x (Cheung TK et al. “Defining the carrier proteome limit for single-cell proteomics” 
Nature Methods, 2021). 
 
13. The isodoping is presented in fig1. This to me indicates that it is one of the main concepts in 
the paper since if it comes in the first main figure. However, this is a technicality which the 
authors say that they are preparing a manuscript for and could be moved to supplementary.  
 
Per the reviewer’s recommendation we have moved the isodoping performance to 
Supplementary Figure S2. 
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14. It is also unclear how the isodoping peptides were selected. Usually peptides are selected due 
to their good ionization capabilities which could explain much of the results in fig 1b? 
Figure 1C is unclear to me. How do you reach 74 isodoping dependent proteins? Can you update 
the figure legend or make a new clearer figure? 
 
As elaborated on in the methods section, the set of synthetic peptides was selected to fulfill the 
following criteria: (i) include unique peptides for the protein, and (ii) peptides should be between 
6 and 20 amino acids long and/or (iii) have physiochemical properties amenable to MS detection. 
Our isoDoping methodology has been updated and improved in following subsequent 
experiments for which we have a manuscript under review and can be made available upon 
request once it is in pre-print. We have also removed Figure 1C from the manuscript. 
 
15. From results: “The cases in the 08-13 cohort were treated in accordance with contemporary 
guidelines and contained cases from all four PAM50 subtypes, including all 75 basal-like cases 
(Supplementary Figs. S1a, S2h, Supplementary Data S1d).” 
Which contemporary guidelines are you referring to? 
 
The contemporary guidelines refer to the updated recent guidelines recommended to treat breast 
cancer commonly used in practice. A reference (Cardoso F et al. Early breast cancer: ESMO 
Clinical Practice Guidelines for diagnosis, treatment and follow-up. Annals of Oncology 2019) 
has now been added to support this statement. 
 
16. LVI, lymphovascular invasion is mentioned. Don’t find it in materials & methods. 
 
Lymphovascular invasion is found in the methods as part of the survival analysis section. The 
acronym (LVI) has been added to page #34 as well. 
 
17. When the tumor groups are defined they are given numbers. However, when they are first 
introduced in figures (for example 2b & c, 5a, 7a) they are not in numerical order. It would 
maybe be much easier to follow if the clusters are renumbered in numerical order in the first 
figure where they appear.  
 
The assignment of numbers of the clusters in figures 2b,2c, 5a and 7a is not random and were not 
manually chosen, but derived from the consensus clustering algorithm we used. The numbers 
assigned for each cluster are based on the consensus clustering algorithm output and determined 
in an unsupervised manner by the ConsensusClusterPlus function. If we were to manually 
change the numbers in figure 2b to be in a numerical order, we would need to force changing the 
figure itself to follow that order. This will consequently result in changing the numerical order of 
the clusters in figure 2c again and the reader would not be able to match the cluster names with 
the consensus matrices plots present in Supplementary figures S5, S10 and S12. This is described 
in the consensus clustering algorithm of the ConsensusClusterPlus package where it makes 
cluster number decisions based on the purity of members in the clusters {Wilkerson MD; 
ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking. 
Bioinformatics 2010}. 
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18. The identification and quantification of 4214 proteins across all samples is a good result for 
MS analysis of FFPE samples. But could some of the results be explained by not reaching deep 
enough into the proteome, considering that there should be around 14000 proteins in a tissue 
according to ProteinAtlas. Could this be a reason for the grouping of Luminal A tumors with 
Her2 in fig 2b? In the Krug et al Cell 2020 paper their tumor grouping almost exclusively only 
mix luminal A and Bs. No HER2 based on 7679 proteins quantified across all 122 samples. Can 
the lum A mixing with Her2 be reproduced with the same proteins? Or is this an effect of FFPE? 
 
The composition of our 08-13 cohort is different from CPTAC as our cohort included only 11 
luminal A cases compared to 73 basal-like, 62 Her2-Enriched, and 28 luminal B. The 4 clusters 
displayed in Fig 2b were the best to segregate this cohort by consensus clustering and thus with 
only 11 cases, luminal A tumors were not found as a unique cluster, but grouped with clusters 1 
and 4 that included luminal B and Her2-Enriched in Fig 2b. In these clusters 1 and 4, luminal B 
and Her2-Enriched were often intermixed which is a commonly known phenomenon in breast 
cancer subtyping {Prat, A. et al. Molecular features and survival outcomes of the intrinsic 
subtypes within HER2-positive breast cancer. JNCI 2014} and is consistent with the proteomics 
breast cancer data in {Johansson et al. Nat Comm 2019}.  
The cluster membership of our cohort compared to the CPTAC breast cancer cohort was 
dependent on a different combination of cases and in turn our analysis of the 86-92 with more 
luminal A cases was more powered showing distinctions of two subgroups within the luminal A 
subtype including a unique luminal A “stromal enriched” cluster, and a cluster that was more a 
mix of luminal A and B. Thus, overall our results are driven by the biology and the composition 
of our 08-13 cohort rather than an artifact or a technical limitation. 
 
19. In fig S3a, you refer to biological replicates. How is biological replicates defined in clinical 
samples? For the technical replicates, it would have been better if they were spread out in 
different TMT sets.  
 
The biological replicates refer to different specimens taken from the same patients. We 
acknowledge that technical replicates were in the same TMT set. 
 
We have added the definition of biological replicates to the text on page #7-8: 
“High reproducibility was observed between the biological replicates (referring to different 
specimens taken from the same patient) (mean r=0.71) and the technical replicates (mean 
r=0.88) (Supplementary Figs. S4a-S4b)”.  
 
20. The PAM50 subtypes have got standard color code. See TCGA 2012 Nature or Krug et al 
Cell 2020. To avoid confusion I strongly recommended to use the same color code.  
 
As per the reviewers’ request to make it easier for a reader to compare our results with recent 
breast cancer ‘omic studies we changed the colors to match the color code used in Johansson et 
al and Krug et al.  
 
21. In general the authors make a good job in describing their findings. But to make it easier to 
follow I would suggest to add ER, PR and HER2 status to fig 2C. For example in the text it says: 
“Most cases in Cluster-2 and -3 were associated with ER, PR and Her2 negativity by IHC 
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clinical tests, high proliferation index (Ki67), and the “core basal” phenotype (defined as ER-, 
PR-, Her2- and [EGFR+ or CK5+])29 (Supplementary Table 1).” Adding the clinicopathological 
markers to the heatmap in fig 2c would make it easy to see this in addition to the table. But this is 
a matter of taste and you can ignore if you like.  
 
We thank the reviewer for this suggestion. Supplementary Table 1, Supplementary Table 2, 
Supplementary Data S1e and the “results” section describe and elaborate on the correlation 
between these clinicopathological variables and clusters. Figure 2c is already rich in information 
and different types of analysis and so we feel that the main emphasis for readers should be the 
PAM50 subtype membership in each proteome cluster.  
 
22. In fig 2c, 5a, there is a column called immune with 2 categories, Immune related and Other. 
How are they defined? Also, for the protein groups there are enrichments, how were the 
enrichments done? Specify in fig text how the terms were selected, representative/ cutoff? 
 
Immune related proteins were defined based on their protein function involvement in immune-
response biological processes. Proteins belonging to any of these gene ontology (GO) categories 
were labeled as Immune:  
"GO_DEFENSE_RESPONSE_TO_VIRUS", "GO_RESPONSE_TO_VIRUS", 
"GO_RESPONSE_TO_TYPE_I_INTERFERON", 
"GO_CELLULAR_RESPONSE_TO_INTERFERON_GAMMA", 
"GO_RESPONSE_TO_INTERFERON_GAMMA", 
"GO_REGULATION_OF_INNATE_IMMUNE_RESPONSE", 
"GO_CYTOKINE_MEDIATED_SIGNALING_PATHWAY", 
"GO_ANTIGEN_RECEPTOR_MEDIATED_SIGNALING_PATHWAY", 
"GO_IMMUNE_EFFECTOR_PROCESS", 
"GO_ACTIVATION_OF_INNATE_IMMUNE_RESPONSE", 
"GO_ANTIGEN_PROCESSING_AND_PRESENTATION_OF_PEPTIDE_ANTIGEN_VIA_M
HC_CLASS_I" 
"GO_FC_EPSILON_RECEPTOR_SIGNALING_PATHWAY", 
"GO_POSITIVE_REGULATION_OF_INNATE_IMMUNE_RESPONSE" 
 
For each protein cluster, the most representative terms were selected based on gprofiler 
enrichment analysis with the following parameters:  organism = "hsapiens" ,ordered_query = 
FALSE, multi_query = FALSE, significant = TRUE, exclude_iea = 
TRUE,  measure_underrepresentation = FALSE, evcodes = TRUE, user_threshold = 0.05, 
correction_method = "g_SCS", domain_scope = "annotated", custom_bg = NULL, numeric_ns = 
"", sources = NULL, term_size<150 and source in GO:MF , GO:BP or REACTOME'  
 
Raudvere, U., Kolberg, L., Kuzmin, I., Arak, T., Adler, P., Peterson, H., & Vilo, J. (2019). 
Reference: g:Profiler: a web server for functional enrichment analysis and conversions of gene 
lists (2019 update). Nucleic Acids Research, 47(W1), W191–W198. 
https://doi.org/10.1093/nar/gkz369. 
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The legends of figures 2c and 5a were updated to include this information.  
 
“Immune related is defined based on the protein function as involved in immune-response 
biological process and for each protein cluster, the most representative terms displayed on the 
heatmap were selected based on g:profiler4 enrichment analysis”. 
 
The methods section page #31 was updated to include information on the terms selected from the 
enrichment analysis.  
 
For each protein cluster, the most representative terms were selected and presented on heatmaps 
based on g:profiler77 enrichment analysis with the following parameters:  organism = 
"hsapiens" ,ordered_query = FALSE, multi_query = FALSE, significant = TRUE, exclude_iea = 
TRUE, measure_underrepresentation = FALSE, evcodes = TRUE, user_threshold = 0.05, 
correction_method = "g_SCS", domain_scope = "annotated", custom_bg = NULL, numeric_ns 
= "", sources = NULL, term_size<150 and source in GO:MF , GO:BP or REACTOME'. 
 
23. Fig 2a, is this using all or the most varying proteins? In 2b it does not say that the grouping is 
based on consensus clustering.  
 
UMAP in Fig 2a is based on using all proteins quantified in every sample (4214). The figure 
legend has been updated accordingly. 
The legend of Fig. 2b has been updated to show that the grouping of the different clusters is 
based on consensus clustering. 
 
(a)   Uniform Manifold Approximation and Projection of the 08-13 cohort for the basal-like, 
luminal A, luminal B, and Her2-Enriched PAM50 subtypes based on all proteins quantified in 
every samples (4214). 
(b)  Alluvial plot shows the relationship between PAM50 subtypes and the four proteomic 
consensus clusters in the 08-13 cohort. 
 
24. In figure S2b-c, the authors show number of peptides per protein. Bit unclear to what it refers 
to when mentioning peptide? Is that unique peptides? Nr of peptides per protein, is that the per 
set or total across all TMT sets or mean/median?  
 
It refers to the total number of peptides identified per protein across all TMT sets. The legends 
for these figures have been updated accordingly. 
 
(a) Percentage of the total number of proteins detected in different number of samples. 
(b and c) Number and percentages of proteins identified according to total number of peptides 
per protein. Yellow bars in the histogram show the number of proteins identified by different 
numbers of peptides per protein. Blue dots show the percentage of total proteins identified per 
minimal number of peptides per protein. 
 
25. The number of unique peptides per protein, nr of psm per protein and nr of psms/protein for 
TMT quantification is missing from the supplementary table with all MS data. Please add this, 
since it is important when it comes to judging the quantitative robustness. Having said that, must 
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give all the credits for clear clinical information and that the authors include it in the same 
document so it is easy to access! 
 
We thank the reviewer for this point. As also requested in the reviewer’s comment #1, we have 
added the total number of peptides for each protein, number of unique peptides per protein and 
number of PSMs used for quantification per protein to the Supplementary Data S1c.  
 
26. In figure 3e, the y-axis says abundance. Is this log2 ratio to the pool of samples? ESR1 is 
high in cluster 2 which is one of the basal enriched clusters, which is surprising. Could this be 
due to isodoping or poor quantification? KRT18 and FOXA1 on the other hand behave as 
expected.  
 
Protein abundance shown is based on a log2 ratio for PSM abundances divided by the relative 
PIS value in each TMT plex. Then for each protein, the median ratio of the 5 most abundant 
PSMs was used as relative abundance. This is explained in the methods section page #30 and has 
been added to the legend of Fig. 3e.  
 
“Protein abundance values are based on log2 ratio for PSMs abundances divided by the relative 
PIS value in each TMT plex. For each protein, the median ratio of the 5 most abundant PSMs 
was used as relative abundance”.  
 
The abundance for ESR1 was significantly lower in Cluster-3 than the mean against “all” while 
ESR1 was non-significantly high in Cluster-2. This could be due to challenges in quantifying 
ESR1 as endogenous peptides for this protein were only detected in less than 10% of the 
samples. Using isoDoping, 3 isoDoping peptides for ESR1 were detected in the majority of 
samples and thus challenges in ESR1 quantification might explain the non-significantly higher 
levels observed for Cluster-2.  
 
27. PECA is used for calculating p-values. Wonder if that inflates the p-values and makes them 
smaller just because you have a lot of peptides per protein? 
https://pubs.acs.org/doi/10.1021/acs.jproteome.5b00363 
 
PECA method leverages the number of peptides per protein to assign higher confidence to 
proteins with higher peptide coverage. While we agree that this method tends to drive the p-value 
of certain proteins with a particularly high number of peptides, we find it useful to separate 
proteins with a small number of peptides since these are the ones with lower confidence in 
quantification levels. We directly compared PECA performance to another differential 
expression algorithm (DEqMS, Zhu, Y., Orre, L. M., Zhou Tran, Y., Mermelekas, G., Johansson, 
H. J., Malyutina, A., Anders, S., & Lehtiö, J. (2020). DEqMS: A Method for Accurate Variance 
Estimation in Differential Protein Expression Analysis. Molecular & Cellular Proteomics, 19(6), 
1047–1057. https://doi.org/10.1074/mcp.tir119.001646) on the first differential expression 
contrast (Cluster1 vs Cluster2-3-4). We found that the two methods give comparable results in 
terms of calling differentially expressed (DE) proteins (adjusted p-value < 0.05). We found an 
overall agreement by DE status on 86% of the proteins: 6% of the proteins differentially 
expressed in PECA and not in DEqMS, 9% of proteins differentially expressed in DEqMS and 
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not PECA, 11% consistently identified as DE in both methods, and 75% consistently identified 
as not differentially expressed.  
 While several differential expression analysis methods are routinely used in the proteomics 
field and their evaluation over multiple types of data and experiments would be of great interest, 
we believe that a technical evaluation of PECA and/or comparison with other methods are 
beyond the scope of this paper. 
 
28. Full credit for uploading the immunohistochemistry slides to http://www.gpec.ubc.ca/prot. 
But why limit to representative images. For the dataset to be useful, all images needs to be 
available. In addition, there should be an easy way to download all data for image analysis.  
 
Our IT team at the Genetic Pathology Evaluation Centre has diligently uploaded all images to 
http://www.gpec.ubc.ca/prot. This information has been updated under the section of “Data 
availability”, page #34, in the methods. 
 
“Images from immunohistochemistry slides of tissue microarrays used in the study coded as 
“11-012” and “14-004” are available for public access via the website of Genetic Pathology 
Evaluation Center (http://www.gpec.ubc.ca/prot). 
Data image analysis and clinical outcome data for the cases used in this study can be made 
available through the Genetic Pathology Evaluation Centre and Breast Cancer Outcomes Unit 
of BC Cancer Centre, upon completion of a Data Transfer Agreement and confirmation of 
ethical approval for qualified researchers”. 
 
29. To make the data analysis part transparent and reproducible, analysis code should be 
uploaded to Github or similar repository.  
 
“Code Availability” section has been added to the methods after the “Data Availability” section 
as requested. Code used for proteomics data analysis is available at GitHub 
https://github.com/glnegri/brca. 
 
30. Orbitrap MS2 data was matched with 0.5 Daltons tolerance. This is a very large window that 
is usually used for iontrap data. For orbitrap MS2, the tolerance should be around 0.02 Dalton to 
reduce the risk of miss assigning transitions. Since you are also using methylation of lysine as a 
variable modification, this in combination with a large tolerance will increase your FDR. You 
should research at least parts of the data and compare the results to your present results to 
determine if all data needs to be researched. In relation to this, what is the protein FDR of the 
dataset, q-value, pep value for each protein? 
 
We thank the reviewer for this point. This was actually a typographical error in the text; the data 
were in fact searched with 0.05 Da tolerance. We have updated the “methods” page #29 
accordingly. The full parameters used for the Proteome Discoverer search, together with the 
results output are available at the PRIDE repository with the dataset identifier PXD024322. 
 
31. From results: FFPE samples were macro-dissected from 3-6 sections to obtain >80% tumor 
content and analyzed using the SP3-CTP multiplex MS proteomics protocol24 (Supplementary 
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Fig. S1b).  
Should it not be ref 19 instead of 24? 
 
Reference #24 {Hughes, C.S., et al. Single-pot, solid-phase-enhanced sample preparation for 
proteomics experiments. Nat Protoc 14, 68-85 (2019)} is a more detailed and up-to-date protocol 
for the methods used in this study when compared to Reference #19 {Hughes, C.S., et al. 
Quantitative Profiling of Single Formalin Fixed Tumour Sections: proteomics for translational 
research. Sci Rep 6, 34949 (2016)}. Given that Reference #19 included work done on FFPE (in 
ovarian cancer) we now include both references #19 and #24 to support our statement. 
 
Reviewer #2, expert in bioinformatics and subtype classification (Remarks to the Author): 
 
In this study, the authors carry out mass-spec proteomic profiling of 300 FFPE breast cancer 
surgical specimens. The specimens are separated into two cohorts based on batch effects. The 
08-13 cohort included 75 basal-like, 62 Her2-Enriched, 30 luminal B, and 11 luminal A PAM50 
defined cases. The 86-92 cohort provided the long-term outcome data required for luminal cases 
and included 64 luminal A, 45 luminal B, and 13 Her2-Enriched PAM50 cases. The 08-13 cohort 
was used for subtype discovery, both across all tumors and within the TNBC subset. ER+ 
subtypes examined in the 08-13 cohort were examined in the 86-92 cohort. 
 
Specific comments: 
1. Batch effects were found between the 08-13 and 86-92 cohorts, likely due to differences in 
collection techniques, pre-analytical handling, and fixation procedures. Could the authors try to 
harmonize the two datasets using Combat (https://rdrr.io/bioc/sva/man/ComBat.html)? In 
practice, Combat is very good at removing batch effect differences. Data from different 
platforms (RPPA, RNA-seq, DNA methylation) have been successfully processed with Combat, 
and the method is independent of nature of the batch effect. The PAM50 subtype could be used 
as the experimental group. There would be advantages in having one harmonized dataset of 300 
samples. It seems worth a try. As currently written, the Abstract suggests that there is one dataset 
that was analyzed, rather than two separate cohorts.  
 
As has been shown before, ComBat can lead to overestimating ratios and many in the field 
believe should be avoided. (Methods that remove batch effects while retaining group differences 
may lead to exaggerated confidence in downstream analyses 
https://academic.oup.com/biostatistics/article/17/1/29/1744261), especially considering that the 
batch effect observed in our study is mostly driven by missed identification of peptides cleaved 
at lysines and not by artifacts on quantification, as shown in figures S3c and S3d. Furthermore, 
some of the subtypes are completely (basal-like) or almost completely (luminal A) confounded 
with the ‘cohort’ batch effect. While Combat will always transform the data to minimize batch 
differences, we believe that for the reasons above, its application in this dataset would lead to 
serious artifacts in the data.  
 We would also like to note that the decision to include cases from the 86-92 cohort in our 
study design was based on clinical and translational considerations. In order for analysis to be 
meaningful for luminal cases, a long enough follow-up was necessary to obtain sufficient events 
for outcome analyses. Thus, the majority of luminal PAM50 cases were derived from patients 
diagnosed with invasive breast cancer in the period January 1986 to September 1992. Forcing the 
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two cohorts to be lumped together for subtyping does not allow obtaining clinically-relevant 
results for the subtypes found, and could compromise any clinical relevant observations.  
 
We have updated the abstract to highlight that for the 300 cases included there were 2 datasets 
analyzed rather than one.  
“We performed comprehensive proteomic profiling of 300 FFPE breast cancer surgical 
specimens, 75 of each PAM50 subtype, from patients diagnosed in 2008-2013 (n=178) and 
1986-1992 (n=122) with linked clinical outcomes”.  
 
2. Page 8: "Cluster-1 (n=34) consisted mostly of luminal B and Her2-Enriched PAM50 cases. 
Clusters-2 (n=50) was enriched for basal-like subtype, included few Her2-Enriched, but had no 
luminal cases. Cluster-3 (n=47) was primarily basal-like cases but included Her2-Enriched cases. 
Cluster-4 (n=43) was mostly Her2-Enriched but included luminal A and luminal B cases." It 
seems that actual numbers to reflect the noted associations would be helpful here, e.g. exactly 
how many basal-like cases and Her2 cases were in Cluster-3, and was Cluster-2 
SIGNIFICANTLY enriched for basal-like.  
 
Cluster-2 is enriched for basal-like (pval<1.16e-11, Fisher’s test), Cluster-3 is enriched for basal-
like (pval<1.3e-4, Fisher’s test), Cluster-4 is enriched for Her2-Enriched (pval<1.9e-4, Fisher’s 
test). 
The numbers reflecting the breakdown for each PAM50 subtype within each proteome cluster as 
they appear in Fig. 2b have also been added to the text, page #9. 
 
“Cluster-1 (n=34) consisted mostly of luminal B (n=18) and Her2-Enriched (n=13) PAM50 
cases. Clusters-2 (n=50) was significantly enriched for basal-like subtype (n=41), included few 
Her2-Enriched, but had no luminal cases (p-value<1.16e-11, Fisher’s test). Cluster-3 (n=47) 
was primarily basal-like cases (n=31) but included Her2-Enriched cases (n=14) (p-value<1.3e-
4, Fisher’s test). Cluster-4 (n=43) was mostly Her2-Enriched (n=26) but included luminal A 
(n=8) and luminal B (n=8) cases (p-value<1.9e-4, Fisher’s test)”.  
 
3. In general, where the word "significantly" appears in the main text, it would be good to 
include a p-value and associated test to support the claim. The figures referred to likely include 
the test, but reflecting this in the main text as well would be helpful to the reader. For example, 
page 11: "The immune hot cluster also had significantly higher CD8+ TILs in the intratumoral 
compartment compared to other clusters (Fig. 4a)." by what p-value and test? 
 
The p-values and tests are now updated across the text where the word “significantly” appears. 
 
4. Wherever a p-value appears in the main text, the test used to derive that p-value should also be 
indicated. For example, page 12: "The subgroups with a high expression for only one of these 
biomarkers were characterized with intermediate RFS (Supplementary Fig. S5b). 70% (21/30) of 
the cases classified as (TAP1 high/HLA-DQA1 high) were in Cluster-3, while 90% (76/84) of 
(TAP1 low/HLA-DQA1 low) cases were in other clusters (p-value<0.00001) (Supplementary 
Table 1)." What test was used here (we can save the reader from having to go the Table for the 
answer)? 
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The test used was the Chi-square test. The text in page #13 has been updated to include this 
information. 
“70% (21/30) of the cases classified as (TAP1 high/HLA-DQA1 high) were in Cluster-3, while 
90% (76/84) of (TAP1 low/HLA-DQA1 low) cases were in other clusters (Chi-square p-
value<0.00001) (Supplementary Table 1)”. 
 
5. Page 15: "Multiple correction testing identified fatty acid-binding protein-7 (FABP7) as a 
candidate biomarker most significantly associated with >10-year RFS on tamoxifen treatment..." 
Was this the only protein that was significant? Were other proteins significant and using what 
statistical test and cutoff? 
 
The association between the continuous increase in each individual protein identified in the 
cohort 86-92 and the endpoint of 10-years RFS was tested using a Cox regression model and 
stratified log-rank test. This analysis is displayed in Supplementary Data S4f. Only protein 
biomarkers that had a significant log-rank p-value <0.05 when adjusted for multiplicity testing 
by the Benjamini-Hochberg test were selected. Only FABP7 protein was found to meet these 
criteria as displayed in Supplementary Data S4f.  
The relevant text for the 86-92 analysis page #18 has been updated to include this information. 
“Multiple correction testing identified fatty acid-binding protein-7 (FABP7) as the only 
candidate biomarker associated with >10-year RFS on tamoxifen treatment (log-rank BHadj 
p=0.00004) (Supplementary Data S4f, Supplementary Fig. S12e)”. 
 
6. Discussion, page 16. Many journals are uncomfortable with the phrase "(manuscript in 
preparation)." It seems that the method indicated should be described in sufficient detail in the 
Methods, if it isn't already.  
 
We believe that the methods regarding the isoDoping methodology are now described in 
sufficient detail in the methods section of this manuscript for the reader to be able to reproduce 
the experiment as was intended. While we are currently preparing an even more detailed and 
comprehensive description of the general isoDoping strategy for a separate primary 
methodology-oriented publication, to avoid confusion we have deleted the mention of a 
“manuscript in preparation.” From pages #6 and #18.  
 
7. In addition to making the raw data available on ProteomeXchange, it would be most helpful to 
include the processed proteinXsample tables as Supplementary Data with the published paper. 
CPTAC has done a similar thing with their past publications. 
 
The proteinXsample data are included in the original Supplementary Data S1c. As requested by 
reviewer #1, we have also added the peptides identified across the cohort to the Supplementary 
data S1 along with the total number of unique peptides per protein and number of PSMs used in 
quantification per protein (Supplementary Data S1c-S1d).  
 
8. For boxplots in the figures, please define the ranges involved. 
 
Boxplot whiskers range extends to the most extreme data point which is no more than 1.5 times 
the interquartile range from the box. This definition has been added to the legends of Fig. 3e and 
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Fig. 7b. 
 
Reviewer #3, expert in breast cancer subtypes (Remarks to the Author): 
 
1. The authors present their previously described highly sensitive MS-based methodology termed 
“Single-Pot, Solid-Phase enhanced, Sample Preparation”-Clinical Tissue Proteomics (SP3-CTP). 
This technology has been shown to capture known and novel features in FFPE tumor samples. 
The authors have previously shown that this method can be applied on large FFPE material 
cohorts linked to outcome data. Comprehensive quantification of protein expression can be 
achieved even from lower input quantities of patient specimens such as small biopsies. Here is 
would have been useful to know how small? 
 
This is described in the methods section and supplementary Figure S1a. One to six unstained 
10µm tissue sections were cut for each sample to obtain an aggregate total area of ~=1cm x 1cm 
x 10µm, with >80% tumor content. 
 
2. In this paper they have applied the method to 300 well-characterized archival FFPE breast 
cancer specimens in terms of clinical outcome, IHC, and PAM50 RNA-based intrinsic subtypes. 
The authors demonstrate that at the protein level one can identify groups characterized by high 
expression of immune-response proteins and favorable clinical outcomes. 
Doe this paper bring a sufficient novelty? While it is true that “classifications do not always 
guide therapeutic choices, due to the extensive heterogeneity that still characterizes breast 
cancers” can this be solved by adding one more, at the level of proteomics? 
 
As described in the introduction, we performed the current study because genomic classifications 
of breast cancer are inherently limited as clinical decisions are generally based on the protein 
level. The underlying technology’s application to FFPE breast cancer material is novel. To the 
extent that some of the findings overlap with genomic classifications, our study still provides an 
important verification at the protein level, where most drugs act.  
 
Q1. How do this extension to 300 cases add to what we know from Johansson at al Nat Comm, 
2019? 
 
As highlighted in the introduction, Johansson et al. Nat Comm 2019 only profiled 9 tumor 
samples from each of the four main breast cancer PAM50 subtypes, a set which also lacked 
clinical outcome associations and was insufficient to characterize the biological heterogeneity of 
breast cancers in relation to clinical behavior and treatment response. In addition, their work 
required fresh-frozen tissues that are not routinely available from patients, unlike the FFPE 
clinical specimens we were able to use that can be accessed in larger numbers allowing 
meaningfully powered linkages to clinical outcomes.   
 
Q2. How does the heterogeneity described here match what is known from RNA based 
classification (basal also divided in several immune clusters) 
 
The PAM50 subtypes used in this study are an RNA-based classification and the associations of 
each proteome cluster membership with each PAM50 subtype are described in detail in the 
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manuscript. Within the basal-like RNA-based subtype, there are two distinct proteomic groups 
that differ in immune response. In the results section, we describe how the heterogeneity of triple 
negative breast cancer relates to what is known from RNA-based classifications by comparing 
our findings with those by Burstein M et al. CCR 2015, showing that our triple negative clusters 
were highly correlated with their corresponding RNA subtypes of ‘luminal-androgen receptor’, 
‘mesenchymal’, ‘basal-immune suppressed’ and ‘basal-immune activated’.  
 
Q3. If the authors were to make biomarkers based on protein as they suggest, which ones would 
they chose? 
 
TAP1 and HLA-DQA1, as described in detail in the results and discussion sections. These 
choices are further supported by the supplementary validation work done in response to reviewer 
#1, comment #8 as described above (based on the data shown in Supplementary Figures S7 and 
the new figure S8). We do note that TAP1 and HLA-DQA1 were chosen, in part, because of the 
availability of quality IHC grade antibodies; it remains possible that other proteins may perform 
better on IHC-based tests when quality antibodies are available. Indeed, this is one of the prime 
utilities of our results for the breast cancer community, to spur additional biomarker research 
using our data. 

The discussion page #21 has been updated with this information. 
“Other proteins elevated in the immune hot cluster with available quality antibodies could also 
be used and developed as candidate biomarkers”. 
 
Q4. An introduction of 5 pages and large number of references (81) makes it into a difficult read. 
This paper as rigorously performed and described, would benefit from some clarity and 
simplification, just highlighting the results that move the field forward. 
 
The original work was written in a way that fits the requirements of Nature Communications. 
The introduction here is 2.5 pages double spaced rather than 5 pages as pointed out by the 
reviewer and the authors hold that this is adequate to succinctly review the pertinent literature, 
making it hard to remove any essential information from the introduction. As this research sits at 
a crossroads of breast cancer, bioinformatics, and analytical chemistry the authors believe it is 
important to provide key background information for scientists from a breadth of related and 
interested fields to fully appreciate the work. 84 references are merely supporting information for 
the interested reader to pursue, a number that complies with the Nature Communications 
guidelines (and we are aware of several detailed and comprehensive publications in Nature 
Communications that have a similar or even higher number of references used to properly cover 
the scientific data presented). 
 



Reviewers' Comments: 

 

Reviewer #1: 

See attached 
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RESPONSE TO REVIEWER COMMENTS 
 
Reviewer #1, expert in proteomics (Remarks to the Author): 
 
Asleh et al have performed quantitative proteomics of 300 breast tumors from formalin fixed 
paraffin embedded (FFPE) material. The general idea and its potential value to the community of 
this work is great.  
The main Merits of the paper are: 1) the acquisition of proteomics data from FFPE samples 
across a large number of breast cancer samples with clinical follow up that can serve as a 
resource, 2) directly linking protein based sample groups with immune infiltration to improved 
outcome, 3) suggestion of potential biomarkers for tumor groups 4) identification of 4 TNBC 
groups as previously suggested at the RNA level and linking the immune infiltrated subgroup to 
good outcome, 5) identification of 3 ER positive tumor groups with a stromal enriched group.  
 
We appreciate the reviewer’s view that the work will provide important value to both the fields 
of breast cancer and of proteomic analysis of patient samples in general.  
 
Limitations regarding merits above: 
1. To function as a resource the data needs to be judged as robust.  
To evaluate protein quantitative robustness, the number of peptides used for quantification per 
protein needs to be available and visualized. Now it is lacking from the supplementary data table 
with all ratios. A panel can also be added to figure 2 to show nr of psms/protein used for 
quantification.  
 
We thank the reviewer for this point. We have added the total number of peptides for each 
protein, number of unique peptides per protein and number of PSMs used in quantification per 
protein to the Supplementary Data S1c. We have also added the data on the peptide abundance 
per protein (now appears as new Supplementary Data S1d) and PSMs per protein in 
Supplementary Figure S2d. 
 
Good! However, you need to fix the x-axis. Now it reads:   
Fig text: Average number of quantified PSMs per protein, across the full cohort – is that for the 
subset with quantification across all or including all proteins? 
 
In suppl data S1C the column header says: set_1_number_PSMs – that is nr of psms used for 
quantification I presume? When you add this information, it would also be informative to add the 
nr of uniqeue peptides/protein per set. Also, protein scores and q-values are missing from the 
table. Add a column to easily select the proteins that you have used in your data analysis.  
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2. The supermix is present in all TMT sets and should represent how well quantifications can be 
reproduced between TMT sets. Can the supermix data be use for robustness evaluation between 
the sets? For example a heatmap for overview, variation of supermix in relation to the breast 
samples and particular sets with deviation on supermix-sample.  
 
We thank the reviewer for this point. The 38 SuperMix replicates included in our experiment 
showed a high correlation across the 38 plexes. Unsupervised clustering of our data for all 
samples including breast tumors, normals, and SuperMix show the SuperMix samples clustered 
together and are clearly separated from the breast tumor and normal samples. The correlation 
between the SuperMix samples was the highest when compared to the breast tumor and normal 
samples, supporting the robustness of the evaluation of SuperMix samples across the sets 
(appears as new Supplementary Fig. S4c). Pairwise correlation between the 38 SuperMix 
replicates (ranged between 0.68-0.81, median 0.75) was significantly higher than the pairwise 
correlation across the 38 normals (ranged between 0.53- 0.85, median 0.71). These findings are 
shown in new Supplementary Fig. S4d.  
 
The following information has been added to the results section page #8: 
“An overview clustering of all the samples included in our study showed that the 38 SuperMix 
replicates had the highest correlation across the 38 plexes (range 0.68-0.81) when compared to 
the breast tumors and normal samples, supporting the robust quantification of SuperMix samples 
across the different sets (Supplementary Figs. S4c-S4d).  
 
The small difference in correlation between the Supermix, that should be exactly the same 
sample in all TMT sets, and the normal samples, which are biologically different are surprising. 
The supermix should represent technical variation and in this case are very close to the biological 
variation. The large number of proteins used in the sample to sample correlation analysis will 
provide a relatively high correlation, which limits this analysis. 
To be able to support the claim of the dataset as resource, the reader needs to be able to better 
understand the technical variation in the dataset. For example, you could calculate coefficient of 
variation for each protein based on the supermix and plot that. 
Also, you have IHC data for some proteins as ESR1, PGR etc, how these measurements correlate 
to the proteome data would be useful for judging the qualtity of the data. 
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3. An overview clustering of the 2 cohorts with replicates would also be useful to judge how the 
whole dataset behaves. Does the technical replicates cluster together? 
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Per the reviewer’s request, we generated a heatmap showing the overview clustering for all the 
samples, as also requested in the previous comment. As now shown in Supplementary Fig. S4c, 
the three technical replicates indeed have clustered adjacent to each other (T_rep 5, T_rep 6, 
T_rep 7). Regarding the biological replicates, 2 of 3 replicates clustered adjacent to each other 
while the 3rd biological replicates clustered very closely together, a variance in line with 
expectations for intratumoral regional sampling. The normal samples clearly separated from 
tumor samples and showed an overall correlation of 0.70. An overall correlation of 0.5-0.6 was 
observed for the different breast tumor clusters and these included a mix of samples from both 
08-13 and 86-92 cohorts. 
 
This information has been added to the results section page #8: 
“All the technical replicates and 2 out of 3 biological replicates clustered adjacent to each other, 
while the 3rd biological replicates clustered very closely together, a variance in line with 
expectations for intra-tumoral regional sampling (Supplementary Fig. S4c).  
 
Ok 
 
 
 
4. The data should also confirm with previous knowledge, as ER, PR, HER2, MKI67 levels in 
different PAM50 subtypes, and this would be good to show in a supplementary figure.  
 
HER2 (ERBB2) and MKI67 expression levels across the different PAM50 subtypes are found in 
Supplementary Fig. S6d. ER (ESR1) and PR (PGR) expression levels across the different 
PAM50 subtypes are now also included in Supplementary Fig. S6d.  
Ok, see my comment to question 2.  
 
5. Proteomics have previously identified immune infiltration in breast cancer subgroups without 
directly linking them to outcome (Krug 2020 Cell, Johansson et al 2019 Nat Comm). Tumor-
infiltrating lymphocytes (TILs) have also been linked to better outcome in breast cancer subtypes 
(Dieci 2021 Cells). The strength of this study is the direct link between proteomics data with 
“immune hot” tumors and outcome.  
Relation to published data 
In general, anchoring the novel findings further, e.g. by validation of findings in other breast 
proteomics data sets would be valuable to show the usefulness of the data as a resource and 
strengthen the findings. There is several decent datasets published now on breast cancer 
proteome so this should be done. 
 
Per the reviewer’s request, we performed a validation of our findings on previous proteomic 
datasets published by Krug et al. Cell 2020 (CPTAC) and Johansson et al. Nat.Commun 2019 
(OSLO2). 
 
Validation using the Krug et al. 2020 CPTAC breast tumor cohort: In order to compare our 
results with available published datasets, we performed consensus clustering with the same 
parameters used in our cohort on the CPTAC Cell 2020 cohort, using 939 proteins from the 
CPTAC data that overlap with the 1054 mostly highly-variant proteins of the 08-13 cohort. This 
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analysis identified four main proteome clusters that highly resembled the original CPTAC NMF 
clusters of “LumA-I”, “LumB-I”, “Basal-I”, “HER2-I”. Two of these were almost entirely 
similar to the original NMF clusters of “Basal-I”, and “LumA-I”. Another cluster highly 
resembled NMF “LumB-I” and consistent with Krug et al consisted of 54% luminal A cases 
(compared to 55% luminal A cases assigned as “LumB-I” in the original NMF CPTAC clusters 
by Krug et al). Similar to the original NMF CPTAC clustering composition, the NMF CPTAC 
“HER2-I” cluster identified had a mix of Her2-Enriched, luminal A and luminal B breast 
cancers. Of note, the original Krug et al 2020 study of 122 breast tumors included a majority of 
luminal A PAM50 subtype (n=57, 47%), followed by basal-like (n=29, 24%), luminal B (n=17, 
14%) and Her2-Enriched (n=13, 11%) when compared to the composition of our 08-13 cohort 
consisting of a higher number of basal-like (n=73, 42%) and Her2-Enriched (n=62, 36%) cases, 
but few luminal A (n=11, 6%). Despite this, our analysis further reproduced the existence of 
subsets enriched for immune response pathways at the proteome level within the basal-like and 
Her2-Enriched subtypes not captured by CPTAC analysis. Consistent with our analysis on the 
08-13 cohort, stromal pathways were enriched in luminal A tumors and lipid metabolism was 
enriched within luminal B and Her2-Enriched tumors. A description of these findings is 
displayed in Supplementary Fig. S9a.  
 
In the results section you write: Our analysis reproduced the existence of subsets enriched for 
immune response pathways at the…. These subsets are within your clusters. They don’t come 
out as defined clusters. You need to make that clear. It looks though as it should be possible to 
separate out immune enriched samples.   
 
Validation using the Johansson et al 2019 “OSLO2 breast cancer landscape cohort”: 
Validating our findings on the 36 cases of the 4 main subtypes (9 for each PAM50 type) on 
“OSLO2 landscape cohort”, we performed consensus clustering with the same parameters used 
in our analysis, using 775 proteins from the OSLO2 data that overlap with the 1054 mostly 
highly-variant proteins of the 08-13 cohort. This analysis identified 4 clusters that highly 
resembled the main consensus core tumor clusters (CoTCs) and their biological functions as 
reported in Johansson et al. These clusters consisted of CoTC1 (basal-like immune cold), CoTC2 
(basal-like immune hot), CoTC3 with few CoTC6 cases (luminal A-enriched) and CoTC6 
(luminal B and Her2-Enriched). Importantly, the immune distinctions within the basal-like 
subtype were entirely reproduced using our highly variant proteins showing that the two basal-
like samples of OSL.3EB and OSL.449 (CoTC2) were consistently classified as “basal immune 
hot cluster” when compared to other basal cases characterized as “basal immune cold”. These 
findings are displayed in Supplementary Fig. S9b.  
 
The results section page #14 has been updated to include our comparison analysis using the Krug 
et al 2020 and Johansson et al 2019 proteomics datasets, as a new section entitled “Comparison 
with previous breast cancer proteomics studies”. 
 
The number of immune hot samples are a little bite low, but in the other hand supports your 
findings. 
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6. The 4 TNBC groups are correlating to their suggested RNA based groups. To strengthen the 
finding of 4 TNBC subtypes, can they be identified also at the protein level, for example in Krug 
2020 Cell data? 
 
We validated our TNBC proteome clusters using the 935 proteins that overlap with the 1055 
mostly highly-variant proteins in our 08-13 TNBC (n=88) subset on a set of 28 TNBC cases 
included in the CPTAC breast cancer cohort by Krug et al. Our analysis reproduced the existence 
of the four main proteome TNBC subgroups and the biological features of ‘luminal-androgen 
receptor’, ‘mesenchymal’, ‘basal-immune suppressed’, and ‘basal-immune activated’ as now 
shown in Supplementary Fig. S11.  
The results section page #16 has been updated to include this information: 
“The existence of these TNBC proteome clusters and their biological features were validated 
when applying consensus clustering, with identical parameters, on 935 proteins overlapping 
with the 1055 mostly highly-variant proteins of the 08-13 TNBC subset on the proteomic data for 
a set of 28 TNBC cases included in the CPTAC breast cancer cohort by Krug et al1 
(Supplementary Fig. S11).  
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Ok, good! 
 
 
7. How generalizable are the 3 ER positive tumor subgroups identified in the manuscript? The 
authors cite Krug 2020 Cell in the discussion as consistent with the stromal-enriched subtype. 
But to my knowledge, the data in the Krug paper don’t show a separate luminal A subgroup 
enriched for stroma. Dennison 2016 CCR, however show a stromal subtype of ER positive 
tumors that are or mixed subtype but enriched in Luminal A with a favorable clinical outcome. 
Are the same proteins (in RPPA and your MS data) deterministic of the stromal subgroup? 
 
We agree with the reviewer that Krug 2020 Cell did not identify a separate stromal enriched 
subtype as a unique cluster by mass spectrometry, but described a subset of luminal A tumors as 
stromal-enriched since these tumors were classified originally in TCGA 2012 based on RPPA 
data as “reactive”. In the subsequent Nature 2016 CPTAC proteomics profiling breast cancer 
publication, the proteomic cluster that was highly correlated with the “reactive” RPPA cluster 
was referred to as stromal-enriched.  
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The Dennison 2016 CCR basically tried to characterize the biological and clinical features of the 
stromal enriched tumors as a whole (i.e. reactive tumors) identified in the TCGA based on RPPA 
data. The majority of these tumors were found to be classified as luminal A by PAM50, and 
among the luminal A as a group those that had high stromal protein expression displayed 
favorable clinical outcomes.  
Comparing the proteins in our MS data that are in common with the RPPA proteins (n=30) used 
to classify the “stromal-enriched” vs. the “ER positive cancer derived” subtypes in Dennison 
2016 CCR, we found 5 proteins in the RPPA “stromal-enriched” Dennison 2016 CCR that were 
also characteristic for our luminal A stromal enriched proteomics cluster (log2FC>0.20, adjusted 
p-value<0.05). These were fibronectin, annexin, collagen VI, caveolin, and MYH11.  
While our data correlate with those results, the RPPA data only cover a small percentage of the 
proteome that was quantified in our experiment; thus, our data characterize the luminal A 
stromal enriched cluster in a more comprehensive manner and identify protein candidates that 
are beyond those captured by the restricted number of proteins in the antibody-based RPPA 
assay.  
 
The discussion page #22 has been updated to highlight this information.  
“Our analysis of ER+ cases with mature clinical data identified a stromal-enriched subset 
(86-92-Cluster-2) consistent with previous reports56,62, which could help sub-classify luminal 
breast cancer. However, our data characterize the luminal A stromal enriched cluster in a more 
comprehensive manner and identify protein candidates that are beyond those captured by the 
restricted number of proteins in the antibody-based RPPA assay”.  
OK 
 
 
8. IHC validation of S100A8, TAP1, IFIT2, HLA-DQA1 and CD8 as suggested biomarkers of 
immune infiltration and better outcome are done on the same cohort as the proteomics. To 
consolidate the findings, validation in an independent cohort would be valuable. Also, what is 
correlation between the MS data and the IHC validated markers? Are the MS protein levels also 
related to outcome? 
 
First part of the reviewer’s comment: Per the reviewer’s request, we have now performed a 
validation of these IHC biomarkers on an independent set of 176 breast cancer cases with similar 
clinicopathological characteristics to the 08-13 cohort. Our analysis confirmed that high 
expression of HLA-DQA1 as a single biomarker had a significantly better survival (log-rank 
p=0.02) and a similar trend was seen with high TAP1 as a single biomarker (log-rank p=0.09). 
The findings further confirmed that tumors with IHC expression for both TAP1 and HLA-DQA1 
showed the most favorable survival, while the subgroup with low expression for both had the 
worst RFS (log-rank p=0.05) (Supplementary Fig. S8).  
 



NCOMMS-21-10792, Response to reviews 

 11

 
 
The results section page #13 has been updated with this information: 

“We subsequently confirmed our observations on an independent, clinically similar set of 
176 breast cancer cases and showed that high expression of HLA-DQA1 as a single biomarker 
had a significantly better survival (log-rank p=0.02) and a trend was seen for high TAP1 as a 
single biomarker (log-rank p=0.09). These data also confirmed that tumors with high IHC 
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expression for both TAP1 and HLA-DQA1 showed the most favorable survival, while the 
subgroup with low expression for both had the worst RFS (log-rank p=0.05) (Supplementary 
Table 3; Supplementary Fig. S8).  
 
The Supplementary methods in the Supplementary Information file page #25 and Supplementary 
Table 3 include information on the characteristics of this IHC validation cohort: 
“IHC validation cohort: A tissue microarray for an independent set of 176 breast cancer cases 
was used to validate observations on the 08-13 cohort for the key protein IHC biomarkers. This 
validation cohort had clinicopathological characteristics similar to the 08-13 cohort and was 
analyzed for IHC biomarker association with clinical outcomes. The median follow-up for the 
IHC validation cohort was 10 years and cases were treated in accordance with contemporary 
guidelines”. Characteristics of this cohort appear in the new updated Supplementary Table 3. 
 
Supplementary Table 3 
 
Characteristic IHC Validation cohort 

 (n=176) 
Age at diagnosis (median) 53 years 
Tumor size (median) 2 cm 
Tumor grade  
1, 2 44 (25%) 
3 127 (72%) 
Missing 5 (3%) 
Nodal status  
Negative 105 (60%) 
Positive 66 (37%) 
Missing 5 (3%) 
IHC subtype   
Luminal ([ER+ or PR+]) 69 (39%) 
ER-, PR-, HER2+ 32 (18%) 
ER-, PR-, HER2-  71 (40%) 
Missing 4 (3%) 
Disease specific death   
No  134 (76%) 
Yes 35 (20%) 
Missing 7 (4%) 
CD8 iTILs  
<1% 42 (24%) 
≥1% 129 (73%) 
Missing 5 (3%) 
TAP1/HLA-DQA1 IHC 
groups 

 

TAP1 high /HLA-DQA1 high 35 (20%) 
TAP1 low /HLA-DQA1 high 22 (13%) 
TAP1 high /HLA-DQA1 low 50 (28%) 
TAP1 low /HLA-DQA1 low 65 (37%) 
Missing 4 (2%) 
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Good! 
 
 
Second part of the reviewer’s comment: The Spearman correlation between the MS data and 
the H score for the IHC validated markers was found to be 0.51 for TAP1 and S100A8, 0.31 for 
HLA-DQA1, and 0.11 for IFIT2 as shown in the figure below. Of note, the assessment of the 
validated markers by IHC was performed on the carcinoma cells.  
 

 
This data should also be in the paper together with the same kind of analysis for ESR1 and PGR. 
Why do you think the correlations are weak? For TAP1 and HLA-DQA1 that performs well 
together, what is the difference in signal that is picked up by IHC and MS? Both are prognostic 
but show weak correlations indicating different signal/information that they pick up.  
 
 
Third part of the reviewer’s comment: The selection of the biomarkers for IHC validation was 
based on biology rather than clinical outcomes. In response to the reviewer’s comment, we 
performed a Cox proportional-hazards analysis on the protein abundance (in MS data) and 
recurrence free survival for the protein candidates we assessed by IHC. MS protein levels are 
significantly correlated with improved outcome for TAP1 and IFIT2, while a trend is shown for 
HLA-DQA1 and S100A8 as follows: 

Protein 
 

Survival analysis for RFS
 HR (95% CI), P-value 
 

Adjusted P-value 

TAP1 0.34 (0.18-0.65), 0.001 0.04 
HLA-DQA1 0.87 (0.69-1.10), 0.24 0.71 
S100A8 0.87 (0.73-1.06), 0.16 0.62 
IFIT2 0.38 (0.18-0.80), 0.01 0.19 

 
Additional comments: 
 
9. From introduction: “This method can query large FFPE material cohorts linked to outcome 
data, enabling comprehensive quantification of protein expression from lower input quantities of 
routinely-available patient specimens, and employs a more highly efficient workflow than other 
MS-based methods for protein profiling of clinical FFPE tissues21,22. “ 
Based on the data, the MS workflow seems efficient, but there is really no data to comparing all 
other methods to support your claim of “more highly efficient workflow than other MS-based 
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methods….”? Many of the large MS proteomics groups have published their versions of FFPE 
sample preparation methods. See for example Coscia 2020 Modern Pathology, Griesser 2020 
MCP, Marchione 2020 JPR, Zhu 2019 Molecular Oncology. 
 
We thank the reviewer for this comment. We have updated this sentence in the introduction page 
#5 accordingly:  
“This method can be used to query large FFPE material cohorts linked to outcome data, 
enabling comprehensive quantification of protein expression from lower input quantities of 
routinely-available patient specimens, and employings a more highly efficient workflow than 
other MS-based methods for protein profiling of clinical FFPE tissues21,22.  
Ok 
 
 
10. In the abstract and in figure one, 300 samples are mentioned as included in the study. The 
number is correct but it is bit misleading since it’s divided up in 2 cohorts. The overview in 
Figure 1A is not useful since this collection of samples are not used together later on in the 
paper. The overview presented in fig S1A are much more useful since it gives an overview of the 
samples used together in each of the later analyses. Also the number of samples drop after QC 
and removal of replicates. To make it clearer for the reader I suggest you make a combination 
figure of fig S1A and S2H with the tumor characteristics and the numbers that make up each 
cohort used in the downstream analysis. Also include the info of how the TNBC cohort was 
made. This took time to figure out and with a figure outlining the 2 cohorts, it would be much 
clearer from the beginning for the readability of the entire paper. To make it even clearer one 
could add what type of analysis / aim you have with each 
cohort. There is also normal samples for which it is unclear of their purpose/how they are used. 
Did not find any comparison to the normal samples in the text? 
 
Per the reviewer’s recommendation we have moved the original Figures S1A and S2H to Figure 
1. Now they appear as Fig. 1b and Fig. 1c. 
Given that normals were sourced from independent reduction mammoplasties, they are very 
biologically different from tumors and thus they are not helpful in the subtyping or performing 
direct comparisons with tumor samples. The normals were included in the UMAP plots where 
they form a clearly separated cluster from tumors, added to the heatmaps (Figures 2c and 5a) as a 
reference to illustrate that proteins and pathways of interest for the proteome clusters were not 
high in normals, and as a visual comparator for the expression of key breast cancer associated 
proteins in Supplementary Figure S6d.  

In addition, when we picked specific proteins of interest for validation in IHC, we used 
candidates that were not highly expressed in normals. We updated the text to include this specific 
information in page #12. 
“We selected four that were among the top differentially-expressed proteins between the immune 
hot cluster vs. others (Supplementary Data S2c), had available antibodies applicable to FFPE, 
and had a practical scoring methodology on carcinoma cells: TAP1 (MHC class I), HLA-DQA1 
(MHC class II), IFIT2 (type I interferon signaling) and S100A8 by IHC (Figs. 4b-4c). In 
addition, these proteins were not highly expressed in the normal reduction mammoplasty 
samples”. 
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The authors have gone some way to make the paper clearer when it comes to the patient cohorts. 
However, the results section starts with: A cohort of 300 archival FFPE breast tumor primary 
tissues,…. All the samples are never used together as a cohort. So this sentence and fig 1A, B are 
misleading and need to be changed. You need to make it clear in the figure texts and abstract that 
you are analyzing 2 different cohorts, not one with 300 samples.  
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11. PAM50 is defined both by RNA and by surrogate IHC markers in the manuscript. However, 
it is unclear when each definition is used in the manuscript, which makes it confusing to read at 
times.  
 
PAM50 per definition only refers to RNA not IHC as PAM50 is a RNA-based assay. There is no 
definition of PAM50 by IHC in the manuscript. We have however now added the word “RNA-
based” before the word PAM50 in the section that included IHC data for further clarity. 
page #15: “We analyzed 88 IHC defined TNBC cases (profiled by RNA-based PAM50 as: 61 
basal-like, 22 Her2-Enriched, and 5 luminal B), all in the 08-13 cohort (Fig. 1b)  
 
ok 
 
12. The authors use a new method denoted isodoping, with the aim to increase the overlap of 
identifications between TMT sets. The dynamic range in the orbitrap is max 3 orders of 
magnitude and the practical with TMT is closer to 2 orders of magnitude. To the pool of 
samples, 4.26 pmol of each peptide is added as isodoping. What is the evidence that you have not 
added 2 orders of magnitude of your spike in peptide compared to the endogenous levels? 
Adding spike in peptide amounts in excess of 2 orders of magnitude would make the other TMT 
channels hover around background and lose quantitative accuracy. How is it checked that this 
don’t affect the quantification used? Could the same scenario happen for the SuperMix channel?  
 
The reviewers make an astute point that issues with the dynamic quantification range can arise 
when implementing TMT. As shown in Supplementary Fig. S2f, when we compared the average 
S/N ratio, before normalization, across different sample types we detected an average difference 
of 3.7x between SuperMix and tumor samples, with all SuperMix samples showing an average 
S/N comparable to the tumor samples with higher signal. 

In Supplementary Fig. S2g, it is displayed that there is only a 3.2x difference between the 
average abundance of isoDoped peptides and endogenous peptides for isodoped proteins in the 
PIS+isoDoping channel. When comparing the average S/N of the isoDoping peptides in the 
tumor samples and the spiked in channel we detected an 8.6x difference, below the suggested 
limit of 20x (Cheung TK et al. “Defining the carrier proteome limit for single-cell proteomics” 
Nature Methods, 2021). 
Ok, I would be curries to see how the TMT profiles compare between isodoped and not isodoped 
peptides from the same protein.  
 
13. The isodoping is presented in fig1. This to me indicates that it is one of the main concepts in 
the paper since if it comes in the first main figure. However, this is a technicality which the 
authors say that they are preparing a manuscript for and could be moved to supplementary.  
 
Per the reviewer’s recommendation we have moved the isodoping performance to 
Supplementary Figure S2. 
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14. It is also unclear how the isodoping peptides were selected. Usually peptides are selected due 
to their good ionization capabilities which could explain much of the results in fig 1b? 
Figure 1C is unclear to me. How do you reach 74 isodoping dependent proteins? Can you update 
the figure legend or make a new clearer figure? 
 
As elaborated on in the methods section, the set of synthetic peptides was selected to fulfill the 
following criteria: (i) include unique peptides for the protein, and (ii) peptides should be between 
6 and 20 amino acids long and/or (iii) have physiochemical properties amenable to MS detection. 
Our isoDoping methodology has been updated and improved in following subsequent 
experiments for which we have a manuscript under review and can be made available upon 
request once it is in pre-print. We have also removed Figure 1C from the manuscript. 
Ok 
 
 
15. From results: “The cases in the 08-13 cohort were treated in accordance with contemporary 
guidelines and contained cases from all four PAM50 subtypes, including all 75 basal-like cases 
(Supplementary Figs. S1a, S2h, Supplementary Data S1d).” 
Which contemporary guidelines are you referring to? 
 
The contemporary guidelines refer to the updated recent guidelines recommended to treat breast 
cancer commonly used in practice. A reference (Cardoso F et al. Early breast cancer: ESMO 
Clinical Practice Guidelines for diagnosis, treatment and follow-up. Annals of Oncology 2019) 
has now been added to support this statement. 
Good 
 
16. LVI, lymphovascular invasion is mentioned. Don’t find it in materials & methods. 
 
Lymphovascular invasion is found in the methods as part of the survival analysis section. The 
acronym (LVI) has been added to page #34 as well. 
Ok 
 
 
17. When the tumor groups are defined they are given numbers. However, when they are first 
introduced in figures (for example 2b & c, 5a, 7a) they are not in numerical order. It would 
maybe be much easier to follow if the clusters are renumbered in numerical order in the first 
figure where they appear.  
 
The assignment of numbers of the clusters in figures 2b,2c, 5a and 7a is not random and were not 
manually chosen, but derived from the consensus clustering algorithm we used. The numbers 
assigned for each cluster are based on the consensus clustering algorithm output and determined 
in an unsupervised manner by the ConsensusClusterPlus function. If we were to manually 
change the numbers in figure 2b to be in a numerical order, we would need to force changing the 
figure itself to follow that order. This will consequently result in changing the numerical order of 
the clusters in figure 2c again and the reader would not be able to match the cluster names with 
the consensus matrices plots present in Supplementary figures S5, S10 and S12. This is described 
in the consensus clustering algorithm of the ConsensusClusterPlus package where it makes 
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cluster number decisions based on the purity of members in the clusters {Wilkerson MD; 
ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking. 
Bioinformatics 2010}. 
The lack of numerical order in multiple figures of clustering is confusing and makes the paper 
more difficult to read and understand. This will translate into fewer people understanding the 
paper and thus fewer citations etc..  
If you want to make it easier for the reader, you can change the order of the clusters manually 
and just transfer that order between figures. It can all be done easily by a bioinformatician in the 
R-code.  
 
 
18. The identification and quantification of 4214 proteins across all samples is a good result for 
MS analysis of FFPE samples. But could some of the results be explained by not reaching deep 
enough into the proteome, considering that there should be around 14000 proteins in a tissue 
according to ProteinAtlas. Could this be a reason for the grouping of Luminal A tumors with 
Her2 in fig 2b? In the Krug et al Cell 2020 paper their tumor grouping almost exclusively only 
mix luminal A and Bs. No HER2 based on 7679 proteins quantified across all 122 samples. Can 
the lum A mixing with Her2 be reproduced with the same proteins? Or is this an effect of FFPE? 
 
The composition of our 08-13 cohort is different from CPTAC as our cohort included only 11 
luminal A cases compared to 73 basal-like, 62 Her2-Enriched, and 28 luminal B. The 4 clusters 
displayed in Fig 2b were the best to segregate this cohort by consensus clustering and thus with 
only 11 cases, luminal A tumors were not found as a unique cluster, but grouped with clusters 1 
and 4 that included luminal B and Her2-Enriched in Fig 2b. In these clusters 1 and 4, luminal B 
and Her2-Enriched were often intermixed which is a commonly known phenomenon in breast 
cancer subtyping {Prat, A. et al. Molecular features and survival outcomes of the intrinsic 
subtypes within HER2-positive breast cancer. JNCI 2014} and is consistent with the proteomics 
breast cancer data in {Johansson et al. Nat Comm 2019}.  
The cluster membership of our cohort compared to the CPTAC breast cancer cohort was 
dependent on a different combination of cases and in turn our analysis of the 86-92 with more 
luminal A cases was more powered showing distinctions of two subgroups within the luminal A 
subtype including a unique luminal A “stromal enriched” cluster, and a cluster that was more a 
mix of luminal A and B. Thus, overall our results are driven by the biology and the composition 
of our 08-13 cohort rather than an artifact or a technical limitation. 
Ok 
 
 
19. In fig S3a, you refer to biological replicates. How is biological replicates defined in clinical 
samples? For the technical replicates, it would have been better if they were spread out in 
different TMT sets.  
 
The biological replicates refer to different specimens taken from the same patients. We 
acknowledge that technical replicates were in the same TMT set. 
 
We have added the definition of biological replicates to the text on page #7-8: 
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“High reproducibility was observed between the biological replicates (referring to different 
specimens taken from the same patient) (mean r=0.71) and the technical replicates (mean 
r=0.88) (Supplementary Figs. S4a-S4b)”.  
Ok 
 
20. The PAM50 subtypes have got standard color code. See TCGA 2012 Nature or Krug et al 
Cell 2020. To avoid confusion I strongly recommended to use the same color code.  
 
As per the reviewers’ request to make it easier for a reader to compare our results with recent 
breast cancer ‘omic studies we changed the colors to match the color code used in Johansson et 
al and Krug et al.  
 
21. In general the authors make a good job in describing their findings. But to make it easier to 
follow I would suggest to add ER, PR and HER2 status to fig 2C. For example in the text it says: 
“Most cases in Cluster-2 and -3 were associated with ER, PR and Her2 negativity by IHC 
clinical tests, high proliferation index (Ki67), and the “core basal” phenotype (defined as ER-, 
PR-, Her2- and [EGFR+ or CK5+])29 (Supplementary Table 1).” Adding the clinicopathological 
markers to the heatmap in fig 2c would make it easy to see this in addition to the table. But this is 
a matter of taste and you can ignore if you like.  
 
We thank the reviewer for this suggestion. Supplementary Table 1, Supplementary Table 2, 
Supplementary Data S1e and the “results” section describe and elaborate on the correlation 
between these clinicopathological variables and clusters. Figure 2c is already rich in information 
and different types of analysis and so we feel that the main emphasis for readers should be the 
PAM50 subtype membership in each proteome cluster.  
 
22. In fig 2c, 5a, there is a column called immune with 2 categories, Immune related and Other. 
How are they defined? Also, for the protein groups there are enrichments, how were the 
enrichments done? Specify in fig text how the terms were selected, representative/ cutoff? 
 
Immune related proteins were defined based on their protein function involvement in immune-
response biological processes. Proteins belonging to any of these gene ontology (GO) categories 
were labeled as Immune:  
"GO_DEFENSE_RESPONSE_TO_VIRUS", "GO_RESPONSE_TO_VIRUS", 
"GO_RESPONSE_TO_TYPE_I_INTERFERON", 
"GO_CELLULAR_RESPONSE_TO_INTERFERON_GAMMA", 
"GO_RESPONSE_TO_INTERFERON_GAMMA", 
"GO_REGULATION_OF_INNATE_IMMUNE_RESPONSE", 
"GO_CYTOKINE_MEDIATED_SIGNALING_PATHWAY", 
"GO_ANTIGEN_RECEPTOR_MEDIATED_SIGNALING_PATHWAY", 
"GO_IMMUNE_EFFECTOR_PROCESS", 
"GO_ACTIVATION_OF_INNATE_IMMUNE_RESPONSE", 
"GO_ANTIGEN_PROCESSING_AND_PRESENTATION_OF_PEPTIDE_ANTIGEN_VIA_M
HC_CLASS_I" 
"GO_FC_EPSILON_RECEPTOR_SIGNALING_PATHWAY", 
"GO_POSITIVE_REGULATION_OF_INNATE_IMMUNE_RESPONSE" 
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For each protein cluster, the most representative terms were selected based on gprofiler 
enrichment analysis with the following parameters:  organism = "hsapiens" ,ordered_query = 
FALSE, multi_query = FALSE, significant = TRUE, exclude_iea = 
TRUE,  measure_underrepresentation = FALSE, evcodes = TRUE, user_threshold = 0.05, 
correction_method = "g_SCS", domain_scope = "annotated", custom_bg = NULL, numeric_ns = 
"", sources = NULL, term_size<150 and source in GO:MF , GO:BP or REACTOME'  
 
Raudvere, U., Kolberg, L., Kuzmin, I., Arak, T., Adler, P., Peterson, H., & Vilo, J. (2019). 
Reference: g:Profiler: a web server for functional enrichment analysis and conversions of gene 
lists (2019 update). Nucleic Acids Research, 47(W1), W191–W198. 
https://doi.org/10.1093/nar/gkz369. 
 
 
 
The legends of figures 2c and 5a were updated to include this information.  
 
“Immune related is defined based on the protein function as involved in immune-response 
biological process and for each protein cluster, the most representative terms displayed on the 
heatmap were selected based on g:profiler4 enrichment analysis”. 
 
The methods section page #31 was updated to include information on the terms selected from the 
enrichment analysis.  
 
For each protein cluster, the most representative terms were selected and presented on heatmaps 
based on g:profiler77 enrichment analysis with the following parameters:  organism = 
"hsapiens" ,ordered_query = FALSE, multi_query = FALSE, significant = TRUE, exclude_iea = 
TRUE, measure_underrepresentation = FALSE, evcodes = TRUE, user_threshold = 0.05, 
correction_method = "g_SCS", domain_scope = "annotated", custom_bg = NULL, numeric_ns 
= "", sources = NULL, term_size<150 and source in GO:MF , GO:BP or REACTOME'. 
Ok, good 
 
23. Fig 2a, is this using all or the most varying proteins? In 2b it does not say that the grouping is 
based on consensus clustering.  
 
UMAP in Fig 2a is based on using all proteins quantified in every sample (4214). The figure 
legend has been updated accordingly. 
The legend of Fig. 2b has been updated to show that the grouping of the different clusters is 
based on consensus clustering. 
 
(a)   Uniform Manifold Approximation and Projection of the 08-13 cohort for the basal-like, 
luminal A, luminal B, and Her2-Enriched PAM50 subtypes based on all proteins quantified in 
every samples (4214). 
(b)  Alluvial plot shows the relationship between PAM50 subtypes and the four proteomic 
consensus clusters in the 08-13 cohort. 
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24. In figure S2b-c, the authors show number of peptides per protein. Bit unclear to what it refers 
to when mentioning peptide? Is that unique peptides? Nr of peptides per protein, is that the per 
set or total across all TMT sets or mean/median?  
 
It refers to the total number of peptides identified per protein across all TMT sets. The legends 
for these figures have been updated accordingly. 
 
(a) Percentage of the total number of proteins detected in different number of samples. 
(b and c) Number and percentages of proteins identified according to total number of peptides 
per protein. Yellow bars in the histogram show the number of proteins identified by different 
numbers of peptides per protein. Blue dots show the percentage of total proteins identified per 
minimal number of peptides per protein. 
 
In my version of suppl info it reads: Number and percentages of proteins identified according to 
number of peptides per protein. Not total. Mean nr across TMT sets would be more informative, 
since some sets might have many peptides and some might have few peptides. 
 
 
25. The number of unique peptides per protein, nr of psm per protein and nr of psms/protein for 
TMT quantification is missing from the supplementary table with all MS data. Please add this, 
since it is important when it comes to judging the quantitative robustness. Having said that, must 
give all the credits for clear clinical information and that the authors include it in the same 
document so it is easy to access! 
 
We thank the reviewer for this point. As also requested in the reviewer’s comment #1, we have 
added the total number of peptides for each protein, number of unique peptides per protein and 
number of PSMs used for quantification per protein to the Supplementary Data S1c.  
 
 
26. In figure 3e, the y-axis says abundance. Is this log2 ratio to the pool of samples? ESR1 is 
high in cluster 2 which is one of the basal enriched clusters, which is surprising. Could this be 
due to isodoping or poor quantification? KRT18 and FOXA1 on the other hand behave as 
expected.  
 
Protein abundance shown is based on a log2 ratio for PSM abundances divided by the relative 
PIS value in each TMT plex. Then for each protein, the median ratio of the 5 most abundant 
PSMs was used as relative abundance. This is explained in the methods section page #30 and has 
been added to the legend of Fig. 3e.  
 
“Protein abundance values are based on log2 ratio for PSMs abundances divided by the relative 
PIS value in each TMT plex. For each protein, the median ratio of the 5 most abundant PSMs 
was used as relative abundance”.  
 
The abundance for ESR1 was significantly lower in Cluster-3 than the mean against “all” while 
ESR1 was non-significantly high in Cluster-2. This could be due to challenges in quantifying 
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ESR1 as endogenous peptides for this protein were only detected in less than 10% of the 
samples. Using isoDoping, 3 isoDoping peptides for ESR1 were detected in the majority of 
samples and thus challenges in ESR1 quantification might explain the non-significantly higher 
levels observed for Cluster-2.  
 
What is the justification for limiting ratio calculation to top 5 most abundant PSMs? Should you 
not obtain a more robust median with more values (if available)?  How is abundance in this case 
defined? 
 
The unexpected behavior of ESR1 and PGR are concerning. How does the IHC data correlate to 
the proteomics data? 
 
 
27. PECA is used for calculating p-values. Wonder if that inflates the p-values and makes them 
smaller just because you have a lot of peptides per protein? 
https://pubs.acs.org/doi/10.1021/acs.jproteome.5b00363 
 
PECA method leverages the number of peptides per protein to assign higher confidence to 
proteins with higher peptide coverage. While we agree that this method tends to drive the p-value 
of certain proteins with a particularly high number of peptides, we find it useful to separate 
proteins with a small number of peptides since these are the ones with lower confidence in 
quantification levels. We directly compared PECA performance to another differential 
expression algorithm (DEqMS, Zhu, Y., Orre, L. M., Zhou Tran, Y., Mermelekas, G., Johansson, 
H. J., Malyutina, A., Anders, S., & Lehtiö, J. (2020). DEqMS: A Method for Accurate Variance 
Estimation in Differential Protein Expression Analysis. Molecular & Cellular Proteomics, 19(6), 
1047–1057. https://doi.org/10.1074/mcp.tir119.001646) on the first differential expression 
contrast (Cluster1 vs Cluster2-3-4). We found that the two methods give comparable results in 
terms of calling differentially expressed (DE) proteins (adjusted p-value < 0.05). We found an 
overall agreement by DE status on 86% of the proteins: 6% of the proteins differentially 
expressed in PECA and not in DEqMS, 9% of proteins differentially expressed in DEqMS and 
not PECA, 11% consistently identified as DE in both methods, and 75% consistently identified 
as not differentially expressed.  
 While several differential expression analysis methods are routinely used in the proteomics 
field and their evaluation over multiple types of data and experiments would be of great interest, 
we believe that a technical evaluation of PECA and/or comparison with other methods are 
beyond the scope of this paper. 
Ok, this is a point that is good to include in the paper since the general breast cancer biologists 
reading the paper will not be aware of the inflated p-values and may draw wrong conclusions 
about the data.   
 
28. Full credit for uploading the immunohistochemistry slides to http://www.gpec.ubc.ca/prot. 
But why limit to representative images. For the dataset to be useful, all images needs to be 
available. In addition, there should be an easy way to download all data for image analysis.  
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Our IT team at the Genetic Pathology Evaluation Centre has diligently uploaded all images to 
http://www.gpec.ubc.ca/prot. This information has been updated under the section of “Data 
availability”, page #34, in the methods. 
 
“Images from immunohistochemistry slides of tissue microarrays used in the study coded as 
“11-012” and “14-004” are available for public access via the website of Genetic Pathology 
Evaluation Center (http://www.gpec.ubc.ca/prot). 
Data image analysis and clinical outcome data for the cases used in this study can be made 
available through the Genetic Pathology Evaluation Centre and Breast Cancer Outcomes Unit 
of BC Cancer Centre, upon completion of a Data Transfer Agreement and confirmation of 
ethical approval for qualified researchers”. 
Good 
 
29. To make the data analysis part transparent and reproducible, analysis code should be 
uploaded to Github or similar repository.  
 
“Code Availability” section has been added to the methods after the “Data Availability” section 
as requested. Code used for proteomics data analysis is available at GitHub 
https://github.com/glnegri/brca. 
Good, but the code seems to only cover basic functions and processing. You need to add the 
code for consensus clustering and the figures. Also, make sure that the input data is readily 
available/pointed to.  
 
30. Orbitrap MS2 data was matched with 0.5 Daltons tolerance. This is a very large window that 
is usually used for iontrap data. For orbitrap MS2, the tolerance should be around 0.02 Dalton to 
reduce the risk of miss assigning transitions. Since you are also using methylation of lysine as a 
variable modification, this in combination with a large tolerance will increase your FDR. You 
should research at least parts of the data and compare the results to your present results to 
determine if all data needs to be researched. In relation to this, what is the protein FDR of the 
dataset, q-value, pep value for each protein? 
 
We thank the reviewer for this point. This was actually a typographical error in the text; the data 
were in fact searched with 0.05 Da tolerance. We have updated the “methods” page #29 
accordingly. The full parameters used for the Proteome Discoverer search, together with the 
results output are available at the PRIDE repository with the dataset identifier PXD024322. 
ok 
 
 
31. From results: FFPE samples were macro-dissected from 3-6 sections to obtain >80% tumor 
content and analyzed using the SP3-CTP multiplex MS proteomics protocol24 (Supplementary 
Fig. S1b).  
Should it not be ref 19 instead of 24? 
 
Reference #24 {Hughes, C.S., et al. Single-pot, solid-phase-enhanced sample preparation for 
proteomics experiments. Nat Protoc 14, 68-85 (2019)} is a more detailed and up-to-date protocol 
for the methods used in this study when compared to Reference #19 {Hughes, C.S., et al. 
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Quantitative Profiling of Single Formalin Fixed Tumour Sections: proteomics for translational 
research. Sci Rep 6, 34949 (2016)}. Given that Reference #19 included work done on FFPE (in 
ovarian cancer) we now include both references #19 and #24 to support our statement. 
Ok 
 
New questions based on the updated manuscript 
 
32. In the discussion the authors write: Furthermore, the 9088 total proteins identified is 
comparable to that achieved using fresh frozen materials (10,107 proteins) by the CPTAC breast 
 cancer project15. The 4214 proteins quantified in every sample (n=342) across a large-scale 
breast cancer project using minimal tissue demonstrates the efficiency and high sensitivity of the 
SP3-CTP approach for FFPE cancer proteomics studies36-39. 
The total number of identifications are easily achievable in MS based proteomics. The 
difficulties are to achieve good overlap in quantification across samples. To make it a fair 
comparison you should also include the nr of overlapping proteins with quantification. You have 
also used Johansson et al dataset and should add that also in the comparison.  
 
 
33. In the discussion the authors write: Our result is consistent with a proteomic profiling study 
of 2 “basal immune hot” cases vs. 7 “basal immune cold” cases using >10mg of frozen tissue16. 
For max TMT labelling, 100 µg of peptides are used. This usually equates to 1-2 mg wet weight 
of tissue. Not >10 mg. where in paper 16 did you find this statement? 
 
 
34. Many of the supplementary figures are a bite blurry, which needs to be fixed.  
 
35. Check panel labeling in fig S5. The word robust is mentioned multiple times here and in the 
paper in general. What do the authors mean by robust? What is the criteria(s) that needs to be 
meet to be called robust? 
 
 
 
 
 
 
 
 
 
Reviewer #2, expert in bioinformatics and subtype classification (Remarks to the Author): 
 
In this study, the authors carry out mass-spec proteomic profiling of 300 FFPE breast cancer 
surgical specimens. The specimens are separated into two cohorts based on batch effects. The 
08-13 cohort included 75 basal-like, 62 Her2-Enriched, 30 luminal B, and 11 luminal A PAM50 
defined cases. The 86-92 cohort provided the long-term outcome data required for luminal cases 
and included 64 luminal A, 45 luminal B, and 13 Her2-Enriched PAM50 cases. The 08-13 cohort 
was used for subtype discovery, both across all tumors and within the TNBC subset. ER+ 
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subtypes examined in the 08-13 cohort were examined in the 86-92 cohort. 
 
Specific comments: 
1. Batch effects were found between the 08-13 and 86-92 cohorts, likely due to differences in 
collection techniques, pre-analytical handling, and fixation procedures. Could the authors try to 
harmonize the two datasets using Combat (https://rdrr.io/bioc/sva/man/ComBat.html)? In 
practice, Combat is very good at removing batch effect differences. Data from different 
platforms (RPPA, RNA-seq, DNA methylation) have been successfully processed with Combat, 
and the method is independent of nature of the batch effect. The PAM50 subtype could be used 
as the experimental group. There would be advantages in having one harmonized dataset of 300 
samples. It seems worth a try. As currently written, the Abstract suggests that there is one dataset 
that was analyzed, rather than two separate cohorts.  
 
As has been shown before, ComBat can lead to overestimating ratios and many in the field 
believe should be avoided. (Methods that remove batch effects while retaining group differences 
may lead to exaggerated confidence in downstream analyses 
https://academic.oup.com/biostatistics/article/17/1/29/1744261), especially considering that the 
batch effect observed in our study is mostly driven by missed identification of peptides cleaved 
at lysines and not by artifacts on quantification, as shown in figures S3c and S3d. Furthermore, 
some of the subtypes are completely (basal-like) or almost completely (luminal A) confounded 
with the ‘cohort’ batch effect. While Combat will always transform the data to minimize batch 
differences, we believe that for the reasons above, its application in this dataset would lead to 
serious artifacts in the data.  
 We would also like to note that the decision to include cases from the 86-92 cohort in our 
study design was based on clinical and translational considerations. In order for analysis to be 
meaningful for luminal cases, a long enough follow-up was necessary to obtain sufficient events 
for outcome analyses. Thus, the majority of luminal PAM50 cases were derived from patients 
diagnosed with invasive breast cancer in the period January 1986 to September 1992. Forcing the 
two cohorts to be lumped together for subtyping does not allow obtaining clinically-relevant 
results for the subtypes found, and could compromise any clinical relevant observations.  
 
We have updated the abstract to highlight that for the 300 cases included there were 2 datasets 
analyzed rather than one.  
“We performed comprehensive proteomic profiling of 300 FFPE breast cancer surgical 
specimens, 75 of each PAM50 subtype, from patients diagnosed in 2008-2013 (n=178) and 
1986-1992 (n=122) with linked clinical outcomes”.  
 
2. Page 8: "Cluster-1 (n=34) consisted mostly of luminal B and Her2-Enriched PAM50 cases. 
Clusters-2 (n=50) was enriched for basal-like subtype, included few Her2-Enriched, but had no 
luminal cases. Cluster-3 (n=47) was primarily basal-like cases but included Her2-Enriched cases. 
Cluster-4 (n=43) was mostly Her2-Enriched but included luminal A and luminal B cases." It 
seems that actual numbers to reflect the noted associations would be helpful here, e.g. exactly 
how many basal-like cases and Her2 cases were in Cluster-3, and was Cluster-2 
SIGNIFICANTLY enriched for basal-like.  
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Cluster-2 is enriched for basal-like (pval<1.16e-11, Fisher’s test), Cluster-3 is enriched for basal-
like (pval<1.3e-4, Fisher’s test), Cluster-4 is enriched for Her2-Enriched (pval<1.9e-4, Fisher’s 
test). 
The numbers reflecting the breakdown for each PAM50 subtype within each proteome cluster as 
they appear in Fig. 2b have also been added to the text, page #9. 
 
“Cluster-1 (n=34) consisted mostly of luminal B (n=18) and Her2-Enriched (n=13) PAM50 
cases. Clusters-2 (n=50) was significantly enriched for basal-like subtype (n=41), included few 
Her2-Enriched, but had no luminal cases (p-value<1.16e-11, Fisher’s test). Cluster-3 (n=47) 
was primarily basal-like cases (n=31) but included Her2-Enriched cases (n=14) (p-value<1.3e-
4, Fisher’s test). Cluster-4 (n=43) was mostly Her2-Enriched (n=26) but included luminal A 
(n=8) and luminal B (n=8) cases (p-value<1.9e-4, Fisher’s test)”.  
 
3. In general, where the word "significantly" appears in the main text, it would be good to 
include a p-value and associated test to support the claim. The figures referred to likely include 
the test, but reflecting this in the main text as well would be helpful to the reader. For example, 
page 11: "The immune hot cluster also had significantly higher CD8+ TILs in the intratumoral 
compartment compared to other clusters (Fig. 4a)." by what p-value and test? 
 
The p-values and tests are now updated across the text where the word “significantly” appears. 
 
4. Wherever a p-value appears in the main text, the test used to derive that p-value should also be 
indicated. For example, page 12: "The subgroups with a high expression for only one of these 
biomarkers were characterized with intermediate RFS (Supplementary Fig. S5b). 70% (21/30) of 
the cases classified as (TAP1 high/HLA-DQA1 high) were in Cluster-3, while 90% (76/84) of 
(TAP1 low/HLA-DQA1 low) cases were in other clusters (p-value<0.00001) (Supplementary 
Table 1)." What test was used here (we can save the reader from having to go the Table for the 
answer)? 
 
The test used was the Chi-square test. The text in page #13 has been updated to include this 
information. 
“70% (21/30) of the cases classified as (TAP1 high/HLA-DQA1 high) were in Cluster-3, while 
90% (76/84) of (TAP1 low/HLA-DQA1 low) cases were in other clusters (Chi-square p-
value<0.00001) (Supplementary Table 1)”. 
 
5. Page 15: "Multiple correction testing identified fatty acid-binding protein-7 (FABP7) as a 
candidate biomarker most significantly associated with >10-year RFS on tamoxifen treatment..." 
Was this the only protein that was significant? Were other proteins significant and using what 
statistical test and cutoff? 
 
The association between the continuous increase in each individual protein identified in the 
cohort 86-92 and the endpoint of 10-years RFS was tested using a Cox regression model and 
stratified log-rank test. This analysis is displayed in Supplementary Data S4f. Only protein 
biomarkers that had a significant log-rank p-value <0.05 when adjusted for multiplicity testing 
by the Benjamini-Hochberg test were selected. Only FABP7 protein was found to meet these 
criteria as displayed in Supplementary Data S4f.  
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The relevant text for the 86-92 analysis page #18 has been updated to include this information. 
“Multiple correction testing identified fatty acid-binding protein-7 (FABP7) as the only 
candidate biomarker associated with >10-year RFS on tamoxifen treatment (log-rank BHadj 
p=0.00004) (Supplementary Data S4f, Supplementary Fig. S12e)”. 
 
6. Discussion, page 16. Many journals are uncomfortable with the phrase "(manuscript in 
preparation)." It seems that the method indicated should be described in sufficient detail in the 
Methods, if it isn't already.  
 
We believe that the methods regarding the isoDoping methodology are now described in 
sufficient detail in the methods section of this manuscript for the reader to be able to reproduce 
the experiment as was intended. While we are currently preparing an even more detailed and 
comprehensive description of the general isoDoping strategy for a separate primary 
methodology-oriented publication, to avoid confusion we have deleted the mention of a 
“manuscript in preparation.” From pages #6 and #18.  
 
7. In addition to making the raw data available on ProteomeXchange, it would be most helpful to 
include the processed proteinXsample tables as Supplementary Data with the published paper. 
CPTAC has done a similar thing with their past publications. 
 
The proteinXsample data are included in the original Supplementary Data S1c. As requested by 
reviewer #1, we have also added the peptides identified across the cohort to the Supplementary 
data S1 along with the total number of unique peptides per protein and number of PSMs used in 
quantification per protein (Supplementary Data S1c-S1d).  
 
8. For boxplots in the figures, please define the ranges involved. 
 
Boxplot whiskers range extends to the most extreme data point which is no more than 1.5 times 
the interquartile range from the box. This definition has been added to the legends of Fig. 3e and 
Fig. 7b. 
 
Reviewer #3, expert in breast cancer subtypes (Remarks to the Author): 
 
1. The authors present their previously described highly sensitive MS-based methodology termed 
“Single-Pot, Solid-Phase enhanced, Sample Preparation”-Clinical Tissue Proteomics (SP3-CTP). 
This technology has been shown to capture known and novel features in FFPE tumor samples. 
The authors have previously shown that this method can be applied on large FFPE material 
cohorts linked to outcome data. Comprehensive quantification of protein expression can be 
achieved even from lower input quantities of patient specimens such as small biopsies. Here is 
would have been useful to know how small? 
 
This is described in the methods section and supplementary Figure S1a. One to six unstained 
10µm tissue sections were cut for each sample to obtain an aggregate total area of ~=1cm x 1cm 
x 10µm, with >80% tumor content. 
 
2. In this paper they have applied the method to 300 well-characterized archival FFPE breast 
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cancer specimens in terms of clinical outcome, IHC, and PAM50 RNA-based intrinsic subtypes. 
The authors demonstrate that at the protein level one can identify groups characterized by high 
expression of immune-response proteins and favorable clinical outcomes. 
Doe this paper bring a sufficient novelty? While it is true that “classifications do not always 
guide therapeutic choices, due to the extensive heterogeneity that still characterizes breast 
cancers” can this be solved by adding one more, at the level of proteomics? 
 
As described in the introduction, we performed the current study because genomic classifications 
of breast cancer are inherently limited as clinical decisions are generally based on the protein 
level. The underlying technology’s application to FFPE breast cancer material is novel. To the 
extent that some of the findings overlap with genomic classifications, our study still provides an 
important verification at the protein level, where most drugs act.  
 
Q1. How do this extension to 300 cases add to what we know from Johansson at al Nat Comm, 
2019? 
 

As highlighted in the introduction, Johansson et al. Nat Comm 2019 only profiled 9 tumor 
samples from each of the four main breast cancer PAM50 subtypes, a set which also lacked 
clinical outcome associations and was insufficient to characterize the biological heterogeneity of 
breast cancers in relation to clinical behavior and treatment response. In addition, their work 
required fresh-frozen tissues that are not routinely available from patients, unlike the FFPE 
clinical specimens we were able to use that can be accessed in larger numbers allowing 
meaningfully powered linkages to clinical outcomes.   

 
Q2. How does the heterogeneity described here match what is known from RNA based 
classification (basal also divided in several immune clusters) 

 
The PAM50 subtypes used in this study are an RNA-based classification and the associations of 
each proteome cluster membership with each PAM50 subtype are described in detail in the 
manuscript. Within the basal-like RNA-based subtype, there are two distinct proteomic groups 
that differ in immune response. In the results section, we describe how the heterogeneity of triple 
negative breast cancer relates to what is known from RNA-based classifications by comparing 
our findings with those by Burstein M et al. CCR 2015, showing that our triple negative clusters 
were highly correlated with their corresponding RNA subtypes of ‘luminal-androgen receptor’, 
‘mesenchymal’, ‘basal-immune suppressed’ and ‘basal-immune activated’.  
 
Q3. If the authors were to make biomarkers based on protein as they suggest, which ones would 
they chose? 
 
TAP1 and HLA-DQA1, as described in detail in the results and discussion sections. These 
choices are further supported by the supplementary validation work done in response to reviewer 
#1, comment #8 as described above (based on the data shown in Supplementary Figures S7 and 
the new figure S8). We do note that TAP1 and HLA-DQA1 were chosen, in part, because of the 
availability of quality IHC grade antibodies; it remains possible that other proteins may perform 
better on IHC-based tests when quality antibodies are available. Indeed, this is one of the prime 
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utilities of our results for the breast cancer community, to spur additional biomarker research 
using our data. 

The discussion page #21 has been updated with this information. 

“Other proteins elevated in the immune hot cluster with available quality antibodies could also 
be used and developed as candidate biomarkers”. 

 
Q4. An introduction of 5 pages and large number of references (81) makes it into a difficult read. 
This paper as rigorously performed and described, would benefit from some clarity and 
simplification, just highlighting the results that move the field forward. 
 

The original work was written in a way that fits the requirements of Nature Communications. 
The introduction here is 2.5 pages double spaced rather than 5 pages as pointed out by the 
reviewer and the authors hold that this is adequate to succinctly review the pertinent literature, 
making it hard to remove any essential information from the introduction. As this research sits at 
a crossroads of breast cancer, bioinformatics, and analytical chemistry the authors believe it is 
important to provide key background information for scientists from a breadth of related and 
interested fields to fully appreciate the work. 84 references are merely supporting information for 
the interested reader to pursue, a number that complies with the Nature Communications 
guidelines (and we are aware of several detailed and comprehensive publications in Nature 
Communications that have a similar or even higher number of references used to properly cover 
the scientific data presented). 
 



Reviewer #2: 

Remarks to the Author: 

My previous comments have been addressed with the manuscript revision. 
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RESPONSE TO REVIEWER COMMENTS 
Reviewer #1, expert in proteomics (Remarks to the Author): 
Asleh et al have performed quantitative proteomics of 300 breast tumors from formalin fixed 
paraffin embedded (FFPE) material. The general idea and its potential value to the community of 
this work is great. 
The main Merits of the paper are: 1) the acquisition of proteomics data from FFPE samples 
across a large number of breast cancer samples with clinical follow up that can serve as a 
resource, 2) directly linking protein based sample groups with immune infiltration to improved 
outcome, 3) suggestion of potential biomarkers for tumor groups 4) identification of 4 TNBC 
groups as previously suggested at the RNA level and linking the immune infiltrated subgroup to 
good outcome, 5) identification of 3 ER positive tumor groups with a stromal enriched group. 
We appreciate the reviewer‟s view that the work will provide important value to both the fields 
of breast cancer and of proteomic analysis of patient samples in general. 
 
Limitations regarding merits above:  
1. To function as a resource the data needs to be judged as robust. 
To evaluate protein quantitative robustness, the number of peptides used for quantification per 
protein needs to be available and visualized. Now it is lacking from the supplementary data table 
with all ratios. A panel can also be added to figure 2 to show nr of psms/protein used for 
quantification. 
We thank the reviewer for this point. We have added the total number of peptides for each 
protein, number of unique peptides per protein and number of PSMs used in quantification per 
protein to the Supplementary Data S1c. We have also added the data on the peptide abundance 
per protein (now appears as new Supplementary Data S1d) and PSMs per protein in 
Supplementary Figure S2d. 
 
Good! However, you need to fix the x-axis. Now it reads: 
Fig text: Average number of quantified PSMs per protein, across the full cohort – is that for the 
subset with quantification across all or including all proteins? 
In suppl data S1C the column header says: set_1_number_PSMs – that is nr of psms used for 
quantification I presume? When you add this information, it would also be informative to add the 
nr of uniqeue peptides/protein per set. Also, protein scores and q-values are missing from the 
table. Add a column to easily select the proteins that you have used in your data analysis. 
 
The x axis relates to the PSM data from the 4214 proteins quantified across all samples rather than all 9088 proteins 
quantified in total. We have updated the text of Figure S2d legends accordingly. 
“(d) Average number of quantified PSMs per protein, across the full cohort (corresponding to the 4214 quantified 
across all samples)”.  
  
Supplementary Data S1c shows the number of PSM per protein after filtering as described in the methods section, 
which were then used for quantification.  
Per the reviewer‟s request, we added additional columns to Supplementary Data S1c with the PSMs #/protein per 
set, protein scores per set and q-values per set. In addition, we added a column to quickly identify the proteins used 
in the analysis (TRUE vs. FALSE). 
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2. The supermix is present in all TMT sets and should represent how well quantifications can be 
reproduced between TMT sets. Can the supermix data be use for robustness evaluation between 
the sets? For example a heatmap for overview, variation of supermix in relation to the breast 
samples and particular sets with deviation on supermix-sample. 
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We thank the reviewer for this point. The 38 SuperMix replicates included in our experiment showed a high 
high correlation across the 38 plexes. Unsupervised clustering of our data for all 
samples including breast tumors, normals, and SuperMix show the SuperMix samples clustered 
together and are clearly separated from the breast tumor and normal samples. The correlation 
between the SuperMix samples was the highest when compared to the breast tumor and normal 
samples, supporting the robustness of the evaluation of SuperMix samples across the sets 
(appears as new Supplementary Fig. S4c). Pairwise correlation between the 38 SuperMix 
replicates (ranged between 0.68-0.81, median 0.75) was significantly higher than the pairwise 
correlation across the 38 normals (ranged between 0.53- 0.85, median 0.71). These findings are 
shown in new Supplementary Fig. S4d. 
The following information has been added to the results section page #8: 
“An overview clustering of all the samples included in our study showed that the 38 SuperMix 
replicates had the highest correlation across the 38 plexes (range 0.68-0.81) when compared to 
the breast tumors and normal samples (Supplementary Figs. S4c-S4d). 
 
The small difference in correlation between the Supermix, that should be exactly the same 
sample in all TMT sets, and the normal samples, which are biologically different are surprising. 
The supermix should represent technical variation and in this case are very close to the biological 
variation. The large number of proteins used in the sample to sample correlation analysis will 
provide a relatively high correlation, which limits this analysis. 
To be able to support the claim of the dataset as resource, the reader needs to be able to better 
understand the technical variation in the dataset. For example, you could calculate coefficient of 
variation for each protein based on the supermix and plot that. 
Also, you have IHC data for some proteins as ESR1, PGR etc, how these measurements correlate 
to the proteome data would be useful for judging the qualtity of the data. 
 
Indeed, as shown in the plot below, we expected a tighter correlation between SuperMix replicates since they should 
represent the technical variation across TMT plexes. However, we found that the SuperMix shows an average higher 
variation across the cohort compared to the one observed in the (biologically distinct) normal samples. We believe 
that this increase in variation is the result of the very different background matrix composition of the samples as the 
SuperMix includes 13 different cancer models cultured in vitro (as described in the methods) while the rest of the 
cohort consists of breast tissue, which was FFPE preserved. This under-representation (1/11th of the channels) of 
the SuperMix matrix makes it more likely to be affected from isolation interference and background noise leak from 
the breast tissue FFPE samples. For these reasons, while the SuperMix is an important reference standard that 
allows future comparisons with any cohorts that will include a SuperMix control in the design, it doesn‟t completely 
reflect the true technical variation in this cohort. However, a better representation of the technical variation can be 
estimated from the technical (n= 3) and biological (n= 3) tumor replicates that we included as part of the cohort 
(Supplementary Fig. S4a-b).  
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We include the comparison of ER, PR and HER2 IHC results with the proteome data in Supplementary Fig. S7 along 
with the validated IHC markers mentioned in the reviewer‟s comment #8.  
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Supplementary Fig. S7. Correlation between proteomic abundance scores vs. IHC for selected proteins.  
(a) Relative abundance of ESR, PGR and HER2 by Mass spectrometry according to their IHC categories. 
(b) Correlation of protein expression values for protein candidates by mass spectrometry vs. IHC. Scoring values of 

the S100A8, TAP1, IFIT2 and HLA-DQA1 IHC biomarkers were reported using the H scoring system (intensity x 



 6 

positivity) for the cytoplasmic staining observed in the invasive breast tumor cells. Spearman correlations are 
shown on each panel. Abbreviations: IHC, immunohistochemistry.  

 
The categories of ER, PR and Her2 are assigned per the available pathological data extracted from the patients‟ 
charts reporting hormone receptor status and HER2 as positive vs. negative. A highly significant association was 
observed between the proteomic relative abundance of HER2 and clinical HER2 status. A significant association 
between the proteomic relative abundance of ESR1 and ER IHC status was also observed. PGR relative abundance 
was overall higher in PR+ by IHC, but this result was not significant.  
 
In addition, the results page #12 were updated accordingly to include these results: 

“When testing the association between the MS data for ESR1, PGR, HER2 and their IHC categories, results 
were significant for HER2 (p<0.0001) and ER (p=0.02) IHC expression (Supplementary Fig. S7)”. 

 
As is also explained in detail in our response to comment #8, there are several reasons why different IHC biomarkers 
could differ in their association with the proteomic data. ER and PR assessment were performed per the current 
established guidelines that evaluate their nuclear staining on carcinoma cells only, using pre-established 
clinically validated cutpoints to report results categorically as positive vs. negative. In contrast, the MS relative 
abundance does not consider this spatial information when reporting the overall protein scores. The inference of 
the protein level in MS is based on peptide level quantification, while IHC is semi-quantitative with the inherent 
limitations of being an antibody-based assay with analytical and preanalytical issues that can affect the results. 
 
3. An overview clustering of the 2 cohorts with replicates would also be useful to judge how the 
whole dataset behaves. Does the technical replicates cluster together? 
Per the reviewer‟s request, we generated a heatmap showing the overview clustering for all the 
samples, as also requested in the previous comment. As now shown in Supplementary Fig. S4c, 
the three technical replicates indeed have clustered adjacent to each other (T_rep 5, T_rep 6, 
T_rep 7). Regarding the biological replicates, 2 of 3 replicates clustered adjacent to each other 
while the 3rd biological replicates clustered very closely together, a variance in line with 
expectations for intratumoral regional sampling. The normal samples clearly separated from 
tumor samples and showed an overall correlation of 0.70. An overall correlation of 0.5-0.6 was 
observed for the different breast tumor clusters and these included a mix of samples from both 
08-13 and 86-92 cohorts. 
This information has been added to the results section page #8: 
“All the technical replicates and 2 out of 3 biological replicates clustered adjacent to each other, 
while the 3rd biological replicates clustered very closely together, a variance in line with 
expectations for intra-tumoral regional sampling (Supplementary Fig. S4c). 
Ok 
 
4. The data should also confirm with previous knowledge, as ER, PR, HER2, MKI67 levels in 
different PAM50 subtypes, and this would be good to show in a supplementary figure. 
HER2 (ERBB2) and MKI67 expression levels across the different PAM50 subtypes are found in 
Supplementary Fig. S6d. ER (ESR1) and PR (PGR) expression levels across the different 
PAM50 subtypes are now also included in Supplementary Fig. S6d. 
 
Ok, see my comment to question 2. 
 
We include the comparison of ER, PR and HER2 IHC results with the proteome data as explained in the above 
response to comment #2. 
 
5. Proteomics have previously identified immune infiltration in breast cancer subgroups without 
directly linking them to outcome (Krug 2020 Cell, Johansson et al 2019 Nat Comm). Tumorinfiltrating 
lymphocytes (TILs) have also been linked to better outcome in breast cancer subtypes 
(Dieci 2021 Cells). The strength of this study is the direct link between proteomics data with 
“immune hot” tumors and outcome. 
Relation to published data 
In general, anchoring the novel findings further, e.g. by validation of findings in other breast 
proteomics data sets would be valuable to show the usefulness of the data as a resource and 
strengthen the findings. There is several decent datasets published now on breast cancer 
proteome so this should be done. 
Per the reviewer‟s request, we performed a validation of our findings on previous proteomic 
datasets published by Krug et al. Cell 2020 (CPTAC) and Johansson et al. Nat.Commun 2019 
(OSLO2). 
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Validation using the Krug et al. 2020 CPTAC breast tumor cohort: In order to compare our 
results with available published datasets, we performed consensus clustering with the same 
parameters used in our cohort on the CPTAC Cell 2020 cohort, using the 939 proteins from the 
CPTAC data that overlap with the 1054 mostly highly-variant proteins of our 08-13 cohort. This 
analysis identified four main proteome clusters that highly resembled the original CPTAC NMF 
clusters of “LumA-I”, “LumB-I”, “Basal-I”, “HER2-I”. Two of these were almost entirely 
similar to the original NMF clusters of “Basal-I”, and “LumA-I”. Another cluster highly 
resembled NMF “LumB-I” and consistent with Krug et al consisted of 54% luminal A cases 
(compared to 55% luminal A cases assigned as “LumB-I” in the original NMF CPTAC clusters 
by Krug et al). Similar to the original NMF CPTAC clustering composition, the NMF CPTAC 
“HER2-I” cluster identified had a mix of Her2-Enriched, luminal A and luminal B breast 
cancers. Of note, the original Krug et al 2020 study of 122 breast tumors included a majority of 
luminal A PAM50 subtype (n=57, 47%), followed by basal-like (n=29, 24%), luminal B (n=17, 
14%) and Her2-Enriched (n=13, 11%) when compared to the composition of our 08-13 cohort 
which consisted of a higher number of basal-like (n=73, 42%) and Her2-Enriched (n=62, 36%) cases, 
but few luminal A (n=11, 6%). Despite this, our analysis further reproduced the existence of 
subsets enriched for immune response pathways at the proteome level within the basal-like and 
Her2-Enriched subtypes not captured in the CPTAC analysis. Consistent with our analysis on the 
08-13 cohort, stromal pathways were enriched in luminal A tumors and lipid metabolism was 
enriched within luminal B and Her2-Enriched tumors. A description of these findings is 
displayed in Supplementary Fig. S10a. 
 
In the results section you write: Our analysis reproduced the existence of subsets enriched for 
immune response pathways at the…. These subsets are within your clusters. They don‟t come 
out as defined clusters. You need to make that clear. It looks though as it should be possible to 
separate out immune enriched samples. 
 
We agree with the reviewer. Our analysis of the CPTAC breast tumor cohort did not demonstrate these as separate 
defined clusters, though it seemed possible to separate out some immune enriched samples that were classified as 
basal-like and Her2-Enriched. In contrast, the analysis of our 08-13 cohort revealed an “immune hot” cluster that was 
referred to as a defined and distinct cluster. These differences might be because of the reasons explained above in 
our original response regarding the composition of our 08-13 cohort, which includes a much higher number of basal-
like and Her2-Enrcihed cases when compared to the CPTAC cohort. 
 
Overall, our analysis on the CPTAC cohort illustrates that there is a fraction (subset) within the basal-like and the 
Her2-Enriched subtypes that are enriched for immune response pathways. For clarity, we have replaced the word 
“reproduced” with “demonstrated” in the sentence mentioned in the reviewer‟s comment and updated this sentence in 
the results section page #14 and in the legend of Supplementary Figure S10a as below, highlighting that these were 
not captured as defined clusters in the CPTAC analysis. 
 
“Our analysis demonstrated the existence of subsets enriched for immune response pathways at the proteome level 
and these included basal-like and Her2-Enriched subtypes. In contrast to the 08-13 cohort, these subsets were not 
captured as separate and defined clusters by CPTAC analysis”.   
 
Validation using the Johansson et al 2019 “OSLO2 breast cancer landscape cohort”: 
To validate our findings on the 36 cases of the 4 main subtypes (9 for each PAM50 type) in the  
“OSLO2 landscape cohort”, we performed consensus clustering with the same parameters used 
in our analysis, using the 775 proteins from the OSLO2 data that overlap with the 1054 mostly 
highly-variant proteins of our 08-13 cohort. This analysis identified 4 clusters that highly 
resembled the main consensus core tumor clusters (CoTCs) and their biological functions as 
reported in Johansson et al. These clusters consisted of CoTC1 (basal-like immune cold), CoTC2 
(basal-like immune hot), CoTC3 with few CoTC6 cases (luminal A-enriched) and CoTC6 
(luminal B and Her2-Enriched). Importantly, the immune distinctions within the basal-like 
subtype were entirely reproduced using our highly variant proteins showing that the two basal-like 
samples of OSL.3EB and OSL.449 (CoTC2) were consistently classified as “basal immune 
hot cluster” when compared to other basal cases characterized as “basal immune cold”. These 
findings are displayed in Supplementary Fig. S10b. 
The results section page #14 has been updated to include our comparison analysis using the Krug 
et al 2020 and Johansson et al 2019 proteomics datasets, as a new section entitled “Comparison 
with previous breast cancer proteomics studies”. 
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The number of immune hot samples are a little bite low, but in the other hand supports your 
findings. 
 
Indeed. We agree with the reviewer that the number used in Johansson et al. is extremely low when compared to our 
dataset and we highlight that in the comparison we make in discussion section pages #19-20. To date, the only 
proteomic published data preceding our current study which showed the existence of defined immune hot vs. immune 
cold clusters consisting of basal-like cases is Johansson et al, and thus despite its limitations serves as the best 
available proteomic dataset for comparison. It does support our findings as highlighted in the introduction page #4 
and the results section page #15. 
 

 
 

Supplementary Figure S10

b) Validation using the Johansson et al 2019 OSLO2 breast cancer landscape cohort
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6. The 4 TNBC groups are correlating to their suggested RNA based groups. To strengthen the 
finding of 4 TNBC subtypes, can they be identified also at the protein level, for example in Krug 
2020 Cell data? 
We validated our TNBC proteome clusters using the 935 proteins from Krug et al that overlap with the 1055 
mostly highly-variant proteins in our 08-13 TNBC (n=88) subset on the set of 28 TNBC cases 
included in the CPTAC breast cancer cohort by Krug et al. Our analysis reproduced the existence 
of the four main proteome TNBC subgroups and the biological features of „luminal-androgen 
receptor‟, „mesenchymal‟, „basal-immune suppressed‟, and „basal-immune activated‟ as now 
shown in Supplementary Fig. S12. 
The results section page #16 has been updated to include this information: 
“The existence of these TNBC proteome clusters and their biological features were validated 
when applying consensus clustering, with identical parameters, on the 935 proteins overlapping 
with the 1055 mostly highly-variant proteins of our 08-13 TNBC subset on the proteomic data for 
a set of 28 TNBC cases included in the CPTAC breast cancer cohort by Krug et al 
(Supplementary Fig. S12). 
 

 
Ok, good! 
 
7. How generalizable are the 3 ER positive tumor subgroups identified in the manuscript? The 
authors cite Krug 2020 Cell in the discussion as consistent with the stromal-enriched subtype. 
But to my knowledge, the data in the Krug paper don‟t show a separate luminal A subgroup 
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enriched for stroma. Dennison 2016 CCR, however show a stromal subtype of ER positive 
tumors that are or mixed subtype but enriched in Luminal A with a favorable clinical outcome. 
Are the same proteins (in RPPA and your MS data) deterministic of the stromal subgroup? 
We agree with the reviewer that Krug 2020 Cell did not identify a separate stromal enriched 
subtype as a unique cluster by mass spectrometry, but described a subset of luminal A tumors as 
stromal-enriched since these tumors were classified originally as “reactive” in the TCGA 2012 RPPA 
data. In the subsequent Nature 2016 CPTAC proteomics profiling breast cancer 
publication, the proteomic cluster that was highly correlated with the “reactive” RPPA cluster 
was referred to as stromal-enriched. 
The Dennison 2016 CCR study basically tried to characterize the biological and clinical features of the 
stromal enriched tumors as a whole (i.e. reactive tumors) identified in the TCGA based on RPPA 
data. The majority of these tumors were found to be classified as luminal A by PAM50, and 
among the luminal A as a group those that had high stromal protein expression displayed 
favorable clinical outcomes. 
Comparing the proteins in our MS data that are in common with the RPPA proteins (n=30) used 
to classify the “stromal-enriched” vs. the “ER positive cancer derived” subtypes in Dennison 
2016 CCR, we found 5 proteins in the RPPA “stromal-enriched” Dennison 2016 CCR that were 
also characteristic for our luminal A stromal enriched proteomics cluster (log2FC>0.20, adjusted 
p-value<0.05). These were fibronectin, annexin, collagen VI, caveolin, and MYH11. 
While our data correlate with those results, the RPPA data only cover a small percentage of the 
proteome that was quantified in our experiment; thus, our data characterize the luminal A 
stromal enriched cluster in a more comprehensive manner and identify protein candidates that 
are beyond those captured by the restricted number of proteins in the antibody-based RPPA 
assay. 
The discussion page #23 has been updated to highlight this information. 
“Our analysis of ER+ cases with mature clinical data identified a stromal-enriched subset 

(86-92-Cluster-2) consistent with previous reports
57,63

, which could help sub-classify luminal 

breast cancer. However, our data characterize the luminal A stromal enriched cluster in a more 
comprehensive manner and identify protein candidates that are beyond those captured by the 
restricted number of proteins in the antibody-based RPPA assay”. 
OK 
 
8. IHC validation of S100A8, TAP1, IFIT2, HLA-DQA1 and CD8 as suggested biomarkers of 
immune infiltration and better outcome are done on the same cohort as the proteomics. To 
consolidate the findings, validation in an independent cohort would be valuable. Also, what is 
correlation between the MS data and the IHC validated markers? Are the MS protein levels also 
related to outcome? 
 
First part of the reviewer’s comment: Per the reviewer‟s request, we have now performed a 
validation of these IHC biomarkers on an independent set of 176 breast cancer cases with similar 
clinicopathological characteristics to the 08-13 cohort. Our analysis confirmed that high 
expression of HLA-DQA1 as a single biomarker had a significantly better survival (log-rank 
p=0.02) and a similar trend was seen with high TAP1 as a single biomarker (log-rank p=0.09). 
The findings further confirmed that tumors with IHC expression for both TAP1 and HLA-DQA1 
showed the most favorable survival, while the subgroup with low expression for both had the 
worst RFS (log-rank p=0.05) (Supplementary Fig. S9). 
 



 11 

 
 
The results section page #14 has been updated with this information: 
“We subsequently confirmed our observations on an independent, clinically similar set of 
176 breast cancer cases and showed that high expression of HLA-DQA1 as a single biomarker 
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had a significantly better survival (log-rank p=0.02) and a trend was seen for high TAP1 as a 
single biomarker (log-rank p=0.09). These data also confirmed that tumors with high IHC 
expression for both TAP1 and HLA-DQA1 showed the most favorable survival, while the 
subgroup with low expression for both had the worst RFS (log-rank p=0.05) (Supplementary 
Table 3; Supplementary Fig. S9). 
The Supplementary methods in the Supplementary Information file page #27 and Supplementary 
Table 3 include information on the characteristics of this IHC validation cohort: 
“IHC validation cohort: A tissue microarray for an independent set of 176 breast cancer cases 
was used to validate observations on the 08-13 cohort for the key protein IHC biomarkers. This 
validation cohort had clinicopathological characteristics similar to the 08-13 cohort and was 
analyzed for IHC biomarker association with clinical outcomes. The median follow-up for the 
IHC validation cohort was 10 years and cases were treated in accordance with contemporary 
guidelines”. Characteristics of this cohort appear in the new updated Supplementary Table 3. 
 
Supplementary Table 3 
 

Characteristic IHC Validation cohort  
 (n=176) 

Age at diagnosis (median) 53 years 

Tumor size (median) 2 cm 

Tumor grade  

1, 2 44 (25%) 

3 127 (72%) 

Missing 5 (3%) 

Nodal status  

Negative 105 (60%) 

Positive 66 (37%) 

Missing 5 (3%) 

IHC subtype   

Luminal ([ER+ or PR+]) 69 (39%) 

ER-, PR-, HER2+ 32 (18%) 

ER-, PR-, HER2-  71 (40%) 

Missing 4 (3%) 

Disease specific death   

No  134 (76%) 

Yes 35 (20%) 

Missing 7 (4%) 

CD8 iTILs  

<1% 42 (24%) 

≥1% 129 (73%) 

Missing 5 (3%) 

TAP1/HLA-DQA1 IHC groups  

TAP1 high /HLA-DQA1 high 35 (20%) 

TAP1 low /HLA-DQA1 high 22 (13%) 

TAP1 high /HLA-DQA1 low 50 (28%) 

TAP1 low /HLA-DQA1 low 65 (37%) 

Missing 4 (2%) 

 
Good! 
 
Second part of the reviewer’s comment: The Spearman correlation between the MS data and the H score for the 
IHC validated markers was found to be 0.51 for TAP1 and S100A8, 0.31 for HLA-DQA1, and 0.11 for IFIT2 as shown 
in the figure below. Of note, the assessment of the validated markers by IHC was performed on the carcinoma cells.  
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This data should also be in the paper together with the same kind of analysis for ESR1 and PGR. 
Why do you think the correlations are weak? For TAP1 and HLA-DQA1 that performs well 
together, what is the difference in signal that is picked up by IHC and MS? Both are prognostic 
but show weak correlations indicating different signal/information that they pick up. 
 
Per the reviewer‟s request, this analysis has been added as a new Supplementary Figure S7.  
The analysis according to the IHC ER score with ESR1 proteomic abundance and the IHC PR score with PGR 
proteomic abundance is described in comment #2 and included in the manuscript under new Supplementary Figure 
S7. In addition, the results page #13 were updated accordingly: 
“When assessing the correlation between the MS data and the IHC scores for the validated biomarkers, a low-
moderate correlation was noted (Supplementary Fig. S7)”.  
  
Regarding the weak-moderate correlation between IHC and MS data, there are several explanations. Firstly, as 
explained in the methods section, the assessment of the validated markers by IHC was performed following practical 
and established IHC methodologies to assess their expression only on the invasive carcinoma cells and using the H 
score that in addition to positivity also takes into account the intensity when reporting the IHC expression. These 2 
components of positivity x intensity are multiplied to give the overall score. Importantly, for these biomarkers scores 
were reported for the cytoplasmic staining only that was observed in the invasive breast tumor cells, using a tissue 
microarray format with duplicate cores for each specimen. Intensity scores were reported as (0: none, 1: weak, 2: 
moderate, 3: strong) and the positivity proportion scores were reported as (1-100%) for each core. The averaged 
cytoplasmic H score between the duplicate cores per case was used for the scoring of the protein expression by IHC. 
Secondly, when analyzing tumor specimens by MS, the whole section is analyzed and the expression of specific 
proteins is not measured in the context of spatial expression on invasive carcinoma cells only and considering 
appropriate subcellular (cytoplasmic) expression only. Furthermore, the representative cores assessed on tissue 
microarray do not always represent the expression on the whole slide taken from the source block, but rather 
represent the expression of the relevant biomarker specifically in the most histologically-representative viable 
invasive carcinoma areas punched out as cores to construct these tissue microarrays. Thirdly, there are several 
analytical and preanalytical differences related to IHC as an antibody-based assay vs. MS that contribute to the 
correlations observed with these biomarkers. IHC is semi-quantitative due to the fact that it is antibody hybridization-
based (with the signal amplified using secondary antibodies and linked enzymatic chromogen activation) while the 
inference of the protein level in MS is based on the peptide level quantification that is more quantitative than IHC. 
Altogether, these are reasons why while MS-IHC data would be expected to show weak-moderate correlation, they 
could still both be prognostic. 

These reasons were briefly summarized and included in the discussion page #21. 

“Of note, the assessment of the validated markers by IHC was performed only on the carcinoma cells and using the H 
score that in addition to positivity, takes into account staining intensity when reporting the IHC expression. These 
variables along with using a TMA format and the differences related to IHC as a multi-step antibody-based assay vs. 
MS contribute to the weak-moderate correlations observed with these biomarkers”. 

Third part of the reviewer’s comment: The selection of the biomarkers for IHC validation was based on biology 
rather than clinical outcomes. In response to the reviewer‟s comment, we performed a Cox proportional-hazards 
analysis on the protein abundance (in MS data) and recurrence free survival for the protein candidates we assessed 
by IHC. MS protein levels are significantly correlated with improved outcome for TAP1 and IFIT2, while a trend is 
shown for HLA-DQA1 and S100A8 as follows: 
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Protein 
 

Survival analysis for RFS 
 HR (95% CI), P-value 
 

Adjusted P-value 

TAP1 0.34 (0.18-0.65), 0.001 0.04 

HLA-DQA1 0.87 (0.69-1.10), 0.24 0.71 

S100A8 0.87 (0.73-1.06), 0.16 0.62 

IFIT2 0.38 (0.18-0.80), 0.01 0.19 

 
Additional comments: 
9. From introduction: “This method can query large FFPE material cohorts linked to outcome 
data, enabling comprehensive quantification of protein expression from lower input quantities of 
routinely-available patient specimens, and employs a more highly efficient workflow than other 
MS-based methods for protein profiling of clinical FFPE tissues21,22. “ 
Based on the data, the MS workflow seems efficient, but there is really no data to comparing all 
other methods to support your claim of “more highly efficient workflow than other MS-based 
methods….”? Many of the large MS proteomics groups have published their versions of FFPE 
sample preparation methods. See for example Coscia 2020 Modern Pathology, Griesser 2020 
MCP, Marchione 2020 JPR, Zhu 2019 Molecular Oncology. 
We thank the reviewer for this comment. We have updated this sentence in the introduction page 
#5 accordingly: 
“This method can be used to query large FFPE material cohorts linked to outcome data, 
enabling comprehensive quantification of protein expression from lower input quantities of 
routinely-available patient specimens, and employing a more highly efficient workflow than 

other MS-based methods for protein profiling of clinical FFPE tissues
21,22

. 

Ok 
 
10. In the abstract and in figure one, 300 samples are mentioned as included in the study. The 
number is correct but it is bit misleading since it‟s divided up in 2 cohorts. The overview in 
Figure 1A is not useful since this collection of samples are not used together later on in the 
paper. The overview presented in fig S1A are much more useful since it gives an overview of the 
samples used together in each of the later analyses. Also the number of samples drop after QC 
and removal of replicates. To make it clearer for the reader I suggest you make a combination 
figure of fig S1A and S2H with the tumor characteristics and the numbers that make up each 
cohort used in the downstream analysis. Also include the info of how the TNBC cohort was 
made. This took time to figure out and with a figure outlining the 2 cohorts, it would be much 
clearer from the beginning for the readability of the entire paper. To make it even clearer one 
could add what type of analysis / aim you have with each 
cohort. There is also normal samples for which it is unclear of their purpose/how they are used. 
Did not find any comparison to the normal samples in the text? 
Per the reviewer‟s recommendation we have moved the original Figures S1A and S2H to Figure 
1. Now they appear as Fig. 1b and Fig. 1c. 
Given that normals were sourced from independent reduction mammoplasties, they are very 
biologically different from tumors and thus they are not helpful in the subtyping or performing 
direct comparisons with tumor samples. The normals were included in the UMAP plots where 
they form a clearly separated cluster from tumors, added to the heatmaps (Figures 2c and 5a) as a 
reference to illustrate that proteins and pathways of interest for the proteome clusters were not 
high in normals, and as a visual comparator for the expression of key breast cancer associated 
proteins in Supplementary Figure S6d. 
In addition, when we picked specific proteins of interest for validation in IHC, we used 
candidates that were not highly expressed in normals. We updated the text to include this specific 
information in page #12. 
“We selected four that were among the top differentially-expressed proteins between the immune 
hot cluster vs. others (Supplementary Data S2c), had available antibodies applicable to FFPE, 
and had a practical scoring methodology on carcinoma cells: TAP1 (MHC class I), HLA-DQA1 
(MHC class II), IFIT2 (type I interferon signaling) and S100A8 by IHC (Figs. 4b-4c). In 
addition, these proteins were not highly expressed in the normal reduction mammoplasty 
samples”. 
 
The authors have gone some way to make the paper clearer when it comes to the patient cohorts. 
However, the results section starts with: A cohort of 300 archival FFPE breast tumor primary 
tissues,…. All the samples are never used together as a cohort. So this sentence and fig 1A, B are 
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misleading and need to be changed. You need to make it clear in the figure texts and abstract that 
you are analyzing 2 different cohorts, not one with 300 samples. 
 
We thank the reviewer for this point. The design of this study was to include 300 total samples such that in sum they 
would represent 75 samples from each 4 main PAM50 subtype. Among the total 300 samples, luminals were mostly 
collected from an older cohort, so as to allow meaningful clinical outcomes that can only be captured by using long-
term follow-up for these clinically less-aggressive cases, as described in the first paragraph of the results section 
page #6. The original intent of the study design was to analyze the 300 samples as a single cohort and thus a mix of 
cases from “08-13” and “86-92” were spread across the 38 11-plexes when we ran the study. Thus, the MS data were 
collected as a single cohort design. However, as explained in detail in page #7, due to the batch effects observed we 
analyzed the total 300 cases as two separate cohorts.  
 
Per the reviewer‟s request, the paragraph in page #6 has been updated accordingly: 
 
A total of 300 archival FFPE breast tumor primary tissues, representing 75 from each of the RNA PAM50 subtypes

4
, 

and 38 normal reduction mammoplasty samples, were obtained (Fig. 1a-1b). Samples were assembled with an 
original aim to be analyzed as one cohort, thus the MS data were obtained per this design, from patients diagnosed 
with invasive breast cancer using tissue obtained prior to adjuvant systemic therapy in 2008-2013 (n=178; the 08-13 
cohort) and 1986-1992 (n=122; the 86-92 cohort). The 08-13 cohort included 75 basal-like, 62 Her2-Enriched, 30 
luminal B, and 11 luminal A PAM50 defined cases. The 86-92 cohort provided the long-term outcome data required to 
gather sufficient outcome events for luminal A breast cancers and included 64 luminal A, 45 luminal B, and 13 Her2-
Enriched PAM50 cases (Fig. 1b).  
 
Figure 1b shows the breakdown of the two cohorts included according to “time of collection” to indicate the difference 
between 08-13 vs. 86-92 cohorts that were analyzed separately. The word “cohort” and the description of the cohorts 
has been added to the x axis in Figure 1b for further clarity. In addition, per the reviewer‟s request, the legend for 
Figure 1 has been updated: 
 
Figure 1. Proteomic analysis of FFPE breast cancer tissue samples 
(a) The clinical features of the 300-tumor study cohort across the four PAM50 breast cancer subtypes. Samples 

were assembled from patients diagnosed with invasive breast cancer using tissue obtained prior to adjuvant 
systemic therapy in 2008-2013 (n=178; the 08-13 cohort) and 1986-1992 (n=122; the 86-92 cohort). While the 
MS data were obtained with the 08-13 and 86-92 samples intermixed (see Fig S1b batch design), these two 
cohorts were analyzed separately. Pathological primary tumor size is defined as (T1 <=2cm), (T2 2-5cm), (T3 
>5cm); recurrence, (local, regional, distant). The feature list is in Supplementary Data S1e. LVI, lympho-vascular 
invasion; TNBC, triple-negative breast cancer. 

(b) The distribution of the PAM50 subtypes for the 300 tumor samples described in (a) across the 86-92 and 08-13 
cohorts. The study also included 38 normal breast reduction mammoplasty samples. Within the 08-13 cohort, a 
set of 88 cases were classified as TNBC by IHC and were analyzed as a separate cohort. 

We further updated the abstract per the reviewer‟s request: 
 
“Despite advances in genomic classification of breast cancer, current clinical tests and treatment decisions are 
commonly based on protein level information. Formalin-fixed paraffin-embedded (FFPE) tissue specimens with 
extended clinical outcomes are widely available. We performed comprehensive proteomic profiling of 300 FFPE 
breast cancer surgical specimens, 75 of each PAM50 subtype, from patients diagnosed in 2008-2013 (n=178) and 
1986-1992 (n=122) with linked clinical outcomes. These two cohorts were analyzed separately and we quantified 
4214 proteins across all 300 samples….” 
 
11. PAM50 is defined both by RNA and by surrogate IHC markers in the manuscript. However, 
it is unclear when each definition is used in the manuscript, which makes it confusing to read at 
times. 
PAM50 per definition only refers to RNA not IHC as PAM50 is a RNA-based assay. There is no 
definition of PAM50 by IHC in the manuscript. We have however now added the word “”RNA-based”” 
before the word PAM50 in the section that included IHC data for further clarity. 
page #15: “We analyzed 88 IHC defined TNBC cases (profiled by RNA-based PAM50 as: 61 
basal-like, 22 Her2-Enriched, and 5 luminal B), all in the 08-13 cohort (Fig. 1b) 
Ok 
 
12. The authors use a new method denoted isodoping, with the aim to increase the overlap of 
identifications between TMT sets. The dynamic range in the orbitrap is max 3 orders of 
magnitude and the practical with TMT is closer to 2 orders of magnitude. To the pool of 
samples, 4.26 pmol of each peptide is added as isodoping. What is the evidence that you have not 
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added 2 orders of magnitude of your spike in peptide compared to the endogenous levels? 
Adding spike in peptide amounts in excess of 2 orders of magnitude would make the other TMT 
channels hover around background and lose quantitative accuracy. How is it checked that this 
don‟t affect the quantification used? Could the same scenario happen for the SuperMix channel? 
 
The reviewers make an astute point that issues with the dynamic quantification range can arise 
when implementing TMT. As shown in Supplementary Fig. S2f, when we compared the average 
S/N ratio, before normalization, across different sample types we detected an average difference 
of 3.7x between SuperMix and tumor samples, with all SuperMix samples showing an average 
S/N comparable to the tumor samples with higher signal. 
In Supplementary Fig. S2g, it is displayed that there is only a 3.2x difference between the 
average abundance of isoDoped peptides and endogenous peptides for isodoped proteins in the 
PIS+isoDoping channel. When comparing the average S/N of the isoDoping peptides in the 
tumor samples and the spiked in channel we detected an 8.6x difference, below the suggested 
limit of 20x (Cheung TK et al. “Defining the carrier proteome limit for single-cell proteomics” 
Nature Methods, 2021). 
 
Ok, I would be curries to see how the TMT profiles compare between isodoped and not isodoped 
peptides from the same protein. 
 
For the reviewer‟s request, the figure below shows the correlation between the protein abundance measured by 
isoDoped peptides only vs protein abundance measured by the endogenous peptides only (for the same proteins). 
The proteins shown on the plot are the ones from the 4214 set of proteins identified across all the samples for which 
at least 3 isoDoping and 3 endogenous peptides were included.  
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13. The isodoping is presented in fig1. This to me indicates that it is one of the main concepts in 
the paper since if it comes in the first main figure. However, this is a technicality which the 
authors say that they are preparing a manuscript for and could be moved to supplementary. 
Per the reviewer‟s recommendation we have moved the isodoping performance to 
Supplementary Figure S2. 
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14. It is also unclear how the isodoping peptides were selected. Usually peptides are selected due 
to their good ionization capabilities which could explain much of the results in fig 1b? 
Figure 1C is unclear to me. How do you reach 74 isodoping dependent proteins? Can you update 
the figure legend or make a new clearer figure? 
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As elaborated on in the methods section, the set of synthetic peptides was selected to fulfill the 
following criteria: (i) include unique peptides for the protein, and (ii) peptides should be between 
6 and 20 amino acids long and/or (iii) have physiochemical properties amenable to MS detection. 
Our isoDoping methodology has been updated and improved in subsequent 
experiments for which we have a manuscript under review and can be made available upon 
request once it is in pre-print. We have also removed Figure 1C from the manuscript. 
Ok 
 
15. From results: “The cases in the 08-13 cohort were treated in accordance with contemporary 
guidelines and contained cases from all four PAM50 subtypes, including all 75 basal-like cases 
(Supplementary Figs. S1a, S2h, Supplementary Data S1d).” 
Which contemporary guidelines are you referring to? 
The contemporary guidelines refer to the updated recent guidelines recommended to treat breast 
cancer commonly used in practice. A reference (Cardoso F et al. Early breast cancer: ESMO 
Clinical Practice Guidelines for diagnosis, treatment and follow-up. Annals of Oncology 2019) 
has now been added to support this statement. 
Good 
 
16. LVI, lymphovascular invasion is mentioned. Don‟t find it in materials & methods. 
Lymphovascular invasion is found in the methods as part of the survival analysis section. The 
acronym (LVI) has been added to page #35 as well. 
Ok 
 
17. When the tumor groups are defined they are given numbers. However, when they are first 
introduced in figures (for example 2b & c, 5a, 7a) they are not in numerical order. It would 
maybe be much easier to follow if the clusters are renumbered in numerical order in the first 
figure where they appear. 
The assignment of numbers of the clusters in figures 2b,2c, 5a and 7a is not random and were not 
manually chosen, but derived from the consensus clustering algorithm we used. The numbers 
assigned for each cluster are based on the consensus clustering algorithm output and determined 
in an unsupervised manner by the ConsensusClusterPlus function. If we were to manually 
change the numbers in figure 2b to be in a numerical order, we would need to force changing the 
figure itself to follow that order. This will consequently result in changing the numerical order of 
the clusters in figure 2c again and the reader would not be able to match the cluster names with 
the consensus matrices plots present in Supplementary figures S5, S10 and S12. This is described 
in the consensus clustering algorithm of the ConsensusClusterPlus package where it makes 
cluster number decisions based on the purity of members in the clusters {Wilkerson MD; 
ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking. 
Bioinformatics 2010}. 
 
The lack of numerical order in multiple figures of clustering is confusing and makes the paper 
more difficult to read and understand. This will translate into fewer people understanding the 
paper and thus fewer citations etc.. 
If you want to make it easier for the reader, you can change the order of the clusters manually 
and just transfer that order between figures. It can all be done easily by a bioinformatician in the 
R-code. 
 
Per the reviewer‟s request, we have manually changed the order of the clusters and transferred that order between 
figures. Figure 2, Figure 5 and Figure 7 have been updated accordingly. 
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18. The identification and quantification of 4214 proteins across all samples is a good result for 
MS analysis of FFPE samples. But could some of the results be explained by not reaching deep 
enough into the proteome, considering that there should be around 14000 proteins in a tissue 
according to ProteinAtlas. Could this be a reason for the grouping of Luminal A tumors with 
Her2 in fig 2b? In the Krug et al Cell 2020 paper their tumor grouping almost exclusively only 
mix luminal A and Bs. No HER2 based on 7679 proteins quantified across all 122 samples. Can 
the lum A mixing with Her2 be reproduced with the same proteins? Or is this an effect of FFPE? 
The composition of our 08-13 cohort is different from CPTAC as our cohort included only 11 
luminal A cases compared to 73 basal-like, 62 Her2-Enriched, and 28 luminal B. The 4 clusters 
displayed in Fig 2b were the best to segregate this cohort by consensus clustering and thus with 
only 11 cases, luminal A tumors were not found as a unique cluster, but grouped with clusters 1 
and 4 that included luminal B and Her2-Enriched in Fig 2b. In these clusters 1 and 4, luminal B 
and Her2-Enriched were often intermixed which is a commonly known phenomenon in breast 
cancer subtyping {Prat, A. et al. Molecular features and survival outcomes of the intrinsic 
subtypes within HER2-positive breast cancer. JNCI 2014} and is consistent with the proteomics 
breast cancer data in {Johansson et al. Nat Comm 2019}. 
The cluster membership of our cohort compared to the CPTAC breast cancer cohort was 
dependent on a different combination of cases and in turn our analysis of the 86-92 with more 
luminal A cases was more powered showing distinctions of two subgroups within the luminal A 
subtype including a unique luminal A “stromal enriched” cluster, and a cluster that was more a 
mix of luminal A and B. Thus, overall our results are driven by the biology and the composition 
of our 08-13 cohort rather than an artifact or a technical limitation. 
Ok 
 
19. In fig S3a, you refer to biological replicates. How is biological replicates defined in clinical 
samples? For the technical replicates, it would have been better if they were spread out in 
different TMT sets. 
The biological replicates refer to different specimens taken from the same patients. We 
acknowledge that technical replicates were in the same TMT set. 
We have added the definition of biological replicates to the text on page #7-8: 
“High reproducibility was observed between the biological replicates (referring to different 
specimens taken from the same patient) (mean r=0.71) and the technical replicates (mean 
r=0.88) (Supplementary Figs. S4a-S4b)”. 
Ok 
 
20. The PAM50 subtypes have got standard color code. See TCGA 2012 Nature or Krug et al 
Cell 2020. To avoid confusion I strongly recommended to use the same color code. 
As per the reviewers‟ request to make it easier for a reader to compare our results with recent 
breast cancer „omic studies we changed the colors to match the color code used in Johansson et 
al and Krug et al. 
 
21. In general the authors make a good job in describing their findings. But to make it easier to 
follow I would suggest to add ER, PR and HER2 status to fig 2C. For example in the text it says: 
“Most cases in Cluster-2 and -3 were associated with ER, PR and Her2 negativity by IHC 
clinical tests, high proliferation index (Ki67), and the “core basal” phenotype (defined as ER-, 
PR-, Her2- and [EGFR+ or CK5+])29 (Supplementary Table 1).” Adding the clinicopathological 
markers to the heatmap in fig 2c would make it easy to see this in addition to the table. But this is 
a matter of taste and you can ignore if you like. 
 
We thank the reviewer for this suggestion. Supplementary Table 1, Supplementary Table 2, 
Supplementary Data S1e and the “results” section describe and elaborate on the correlation 
between these clinicopathological variables and clusters. Figure 2c is already rich in information 
and different types of analysis and so we feel that the main emphasis for readers should be the 
PAM50 subtype membership in each proteome cluster. 
 
22. In fig 2c, 5a, there is a column called immune with 2 categories, Immune related and Other. 
How are they defined? Also, for the protein groups there are enrichments, how were the 
enrichments done? Specify in fig text how the terms were selected, representative/ cutoff? 
Immune related proteins were defined based on their protein function involvement in immuneresponse 
biological processes. Proteins belonging to any of these gene ontology (GO) categories 
were labeled as Immune: 
"GO_DEFENSE_RESPONSE_TO_VIRUS", "GO_RESPONSE_TO_VIRUS", 
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"GO_RESPONSE_TO_TYPE_I_INTERFERON", 
"GO_CELLULAR_RESPONSE_TO_INTERFERON_GAMMA", 
"GO_RESPONSE_TO_INTERFERON_GAMMA", 
"GO_REGULATION_OF_INNATE_IMMUNE_RESPONSE", 
"GO_CYTOKINE_MEDIATED_SIGNALING_PATHWAY", 
"GO_ANTIGEN_RECEPTOR_MEDIATED_SIGNALING_PATHWAY", 
"GO_IMMUNE_EFFECTOR_PROCESS", 
"GO_ACTIVATION_OF_INNATE_IMMUNE_RESPONSE", 
"GO_ANTIGEN_PROCESSING_AND_PRESENTATION_OF_PEPTIDE_ANTIGEN_VIA_M 
HC_CLASS_I" 
"GO_FC_EPSILON_RECEPTOR_SIGNALING_PATHWAY", 
"GO_POSITIVE_REGULATION_OF_INNATE_IMMUNE_RESPONSE" 
 
For each protein cluster, the most representative terms were selected based on gprofiler 
enrichment analysis with the following parameters: organism = "hsapiens" ,ordered_query = 
FALSE, multi_query = FALSE, significant = TRUE, exclude_iea = 
TRUE, measure_underrepresentation = FALSE, evcodes = TRUE, user_threshold = 0.05, 
correction_method = "g_SCS", domain_scope = "annotated", custom_bg = NULL, numeric_ns = 
"", sources = NULL, term_size<150 and source in GO:MF , GO:BP or REACTOME' 
Raudvere, U., Kolberg, L., Kuzmin, I., Arak, T., Adler, P., Peterson, H., & Vilo, J. (2019). 
Reference: g:Profiler: a web server for functional enrichment analysis and conversions of gene 
lists (2019 update). Nucleic Acids Research, 47(W1), W191–W198. 
https://doi.org/10.1093/nar/gkz369. 
The legends of figures 2c and 5a were updated to include this information. 
“Immune related is defined based on the protein function as involved in immune-response 
biological process and for each protein cluster, the most representative terms displayed on the 
heatmap were selected based on g:profiler4 enrichment analysis”. 
The methods section page #32 was updated to include information on the terms selected from the 
enrichment analysis. 
For each protein cluster, the most representative terms were selected and presented on heatmaps 
based on g:profiler77 enrichment analysis with the following parameters: organism = 
"hsapiens" ,ordered_query = FALSE, multi_query = FALSE, significant = TRUE, exclude_iea = 
TRUE, measure_underrepresentation = FALSE, evcodes = TRUE, user_threshold = 0.05, 
correction_method = "g_SCS", domain_scope = "annotated", custom_bg = NULL, numeric_ns 
= "", sources = NULL, term_size<150 and source in GO:MF , GO:BP or REACTOME'. 
Ok, good 
 
23. Fig 2a, is this using all or the most varying proteins? In 2b it does not say that the grouping is 
based on consensus clustering. 
UMAP in Fig 2a is based on using all proteins quantified in every sample (4214). The figure 
legend has been updated accordingly. 
The legend of Fig. 2b has been updated to show that the grouping of the different clusters is 
based on consensus clustering. 
(a) Uniform Manifold Approximation and Projection of the 08-13 cohort for the basal-like, 
luminal A, luminal B, and Her2-Enriched PAM50 subtypes based on all proteins quantified in 
every samples (4214). 
(b) Alluvial plot shows the relationship between PAM50 subtypes and the four proteomic 
consensus clusters in the 08-13 cohort. 
 
24. In figure S2b-c, the authors show number of peptides per protein. Bit unclear to what it refers 
to when mentioning peptide? Is that unique peptides? Nr of peptides per protein, is that the per 
set or total across all TMT sets or mean/median? 
It refers to the total number of peptides identified per protein across all TMT sets. The legends 
for these figures have been updated accordingly. 
(a) Percentage of the total number of proteins detected in different number of samples. 
(b and c) Number and percentages of proteins identified according to total number of peptides 
per protein. Yellow bars in the histogram show the number of proteins identified by different 
numbers of peptides per protein. Blue dots show the percentage of total proteins identified per 
minimal number of peptides per protein. 
 
In my version of suppl info it reads: Number and percentages of proteins identified according to 
number of peptides per protein. Not total. Mean nr across TMT sets would be more informative, 
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since some sets might have many peptides and some might have few peptides. 
 
We have updated this sentence in the Supplementary Fig. S2b-c legends with the correct definition.  
 
 “(b and c) Numbers and percentages of the total number of proteins detected in different number of samples 
according to number of peptides per protein”.  
 
A measure of the plex variability is given in Supplementary Figure S2d, showing the average number of PSM per plex 
that closely relates to the average number of peptides. 
 
25. The number of unique peptides per protein, nr of psm per protein and nr of psms/protein for 
TMT quantification is missing from the supplementary table with all MS data. Please add this, 
since it is important when it comes to judging the quantitative robustness. Having said that, must 
give all the credits for clear clinical information and that the authors include it in the same 
document so it is easy to access! 
We thank the reviewer for this point. As also requested in the reviewer‟s comment #1, we have 
added the total number of peptides for each protein, number of unique peptides per protein and 
number of PSMs used for quantification per protein to the Supplementary Data S1c. 
 
26. In figure 3e, the y-axis says abundance. Is this log2 ratio to the pool of samples? ESR1 is 
high in cluster 2 which is one of the basal enriched clusters, which is surprising. Could this be 
due to isodoping or poor quantification? KRT18 and FOXA1 on the other hand behave as 
expected. 
Protein abundance shown is based on a log2 ratio for PSM abundances divided by the relative 
PIS value in each TMT plex. Then for each protein, the median ratio of the 5 most abundant 
PSMs was used as relative abundance. This is explained in the methods section page #31 and has 
been added to the legend of Fig. 3e. 
“Protein abundance values are based on log2 ratio for PSMs abundances divided by the relative 
PIS value in each TMT plex. For each protein, the median ratio of the 5 most abundant PSMs 
was used as relative abundance”. 
The abundance for ESR1 was significantly lower in Cluster-3 than the mean against “all” while 
ESR1 was non-significantly high in Cluster-2. This could be due to challenges in quantifying 
ESR1 as endogenous peptides for this protein were only detected in less than 10% of the 
samples. Using isoDoping, 3 isoDoping peptides for ESR1 were detected in the majority of 
samples and thus challenges in ESR1 quantification might explain the non-significantly higher 
levels observed for Cluster-2. 
 
What is the justification for limiting ratio calculation to top 5 most abundant PSMs? Should you 
not obtain a more robust median with more values (if available)? How is abundance in this case 
defined? 
The unexpected behavior of ESR1 and PGR are concerning. How does the IHC data correlate to 
the proteomics data? 
 
Since the averaged S/N ratio is directly anti-correlated with the coefficient of variation on repeated measurements,  
we prioritized the PSMs with the highest S/N ratio in an attempt to reduce the quantification‟s background noise. 
Abundance is defined as the signal to noise ratio as reported in the methods section page #31.  
 
We added estrogen and progesterone receptor IHC and proteome measurement comparisons in the new 
Supplementary Fig. S7; explanations have been included in comment #2 and #8. 
 
27. PECA is used for calculating p-values. Wonder if that inflates the p-values and makes them 
smaller just because you have a lot of peptides per protein? 
https://pubs.acs.org/doi/10.1021/acs.jproteome.5b00363 
PECA method leverages the number of peptides per protein to assign higher confidence to 
proteins with higher peptide coverage. While we agree that this method tends to drive the p-value 
of certain proteins with a particularly high number of peptides, we find it useful to separate 
proteins with a small number of peptides since these are the ones with lower confidence in 
quantification levels. We directly compared PECA performance to another differential 
expression algorithm (DEqMS, Zhu, Y., Orre, L. M., Zhou Tran, Y., Mermelekas, G., Johansson, 
H. J., Malyutina, A., Anders, S., & Lehtiö, J. (2020). DEqMS: A Method for Accurate Variance 
Estimation in Differential Protein Expression Analysis. Molecular & Cellular Proteomics, 19(6), 
1047–1057. https://doi.org/10.1074/mcp.tir119.001646) on the first differential expression 
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contrast (Cluster1 vs Cluster2-3-4). We found that the two methods give comparable results in 
terms of calling differentially expressed (DE) proteins (adjusted p-value < 0.05). We found an 
overall agreement by DE status on 86% of the proteins: 6% of the proteins differentially 
expressed in PECA and not in DEqMS, 9% of proteins differentially expressed in DEqMS and 
not PECA, 11% consistently identified as DE in both methods, and 75% consistently identified 
as not differentially expressed. 
While several differential expression analysis methods are routinely used in the proteomics 
field and their evaluation over multiple types of data and experiments would be of great interest, 
we believe that a technical evaluation of PECA and/or comparison with other methods are 
beyond the scope of this paper. 
Ok, this is a point that is good to include in the paper since the general breast cancer biologists 
reading the paper will not be aware of the inflated p-values and may draw wrong conclusions 
about the data. 
 
We note that while PECA can achieve improved or comparable overall performance with other differential expression 
methods [PMID:34373457], it tends to estimate particularly low p-values for proteins with a high number of quantified 
peptides.  
 
Ref: Kalxdorf, M., Müller, T., Stegle, O. et al. IceR improves proteome coverage and data completeness in global and 
single-cell proteomics. Nat Commun 12, 4787 (2021). https://doi.org/10.1038/s41467-021-25077-6 
 
To add clarity to the readers, we added this point to the methods section page #31: 
 
“While PECA can achieve improved or comparable overall performance with other differential expression methods 
[34373457], it can obtain very low p-values for proteins with a high number of quantified peptides”.  
 
 
28. Full credit for uploading the immunohistochemistry slides to http://www.gpec.ubc.ca/prot. 
But why limit to representative images. For the dataset to be useful, all images needs to be 
available. In addition, there should be an easy way to download all data for image analysis. 
Our IT team at the Genetic Pathology Evaluation Centre has diligently uploaded all images to 
http://www.gpec.ubc.ca/prot. This information has been updated under the section of “Data 
availability”, page #35, in the methods. 
“Images from immunohistochemistry slides of tissue microarrays used in the study coded as 
“11-012” and “14-004” are available for public access via the website of Genetic Pathology 
Evaluation Center (http://www.gpec.ubc.ca/prot). 
Data image analysis and clinical outcome data for the cases used in this study can be made 
available through the Genetic Pathology Evaluation Centre and Breast Cancer Outcomes Unit 
of BC Cancer Centre, upon completion of a Data Transfer Agreement and confirmation of 
ethical approval for qualified researchers”. 
Good 
 
29. To make the data analysis part transparent and reproducible, analysis code should be 
uploaded to Github or similar repository. 
“Code Availability” section has been added to the methods after the “Data Availability” section 
as requested. Code used for proteomics data analysis is available at GitHub 
https://github.com/glnegri/brca. 
Good, but the code seems to only cover basic functions and processing. You need to add the 
code for consensus clustering and the figures. Also, make sure that the input data is readily 
available/pointed to. 
 
The available code takes Proteome Discoverer search output data and performs all the steps for filtering and 
normalization that result in the data used throughout the manuscript. Clustering, differential expression analysis, 
survival analysis and all other downstream analyses have been performed with publicly available R packages using 
the parameters described in the methods section. The level of detail provided is sufficient to reproduce the analysis 
and is in line with several similar articles published recently by Nature Communications: 
 
Liu, W., Xie, L., He, YH. et al. Large-scale and high-resolution mass spectrometry-based proteomics profiling defines 
molecular subtypes of esophageal cancer for therapeutic targeting. Nat Commun 12, 4961 (2021). 
https://doi.org/10.1038/s41467-021-25202-5 
 

https://doi.org/10.1038/s41467-021-25077-6
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Franciosa, G., Smits, J.G.A., Minuzzo, S. et al. Proteomics of resistance to Notch1 inhibition in acute lymphoblastic 
leukemia reveals targetable kinase signatures. Nat Commun 12, 2507 (2021). https://doi.org/10.1038/s41467-021-
22787-9 
 
Satpathy, S., Jaehnig, E.J., Krug, K. et al. Microscaled proteogenomic methods for precision oncology. Nat Commun 
11, 532 (2020). https://doi.org/10.1038/s41467-020-14381-2 
 
30. Orbitrap MS2 data was matched with 0.5 Daltons tolerance. This is a very large window that 
is usually used for iontrap data. For orbitrap MS2, the tolerance should be around 0.02 Dalton to 
reduce the risk of miss assigning transitions. Since you are also using methylation of lysine as a 
variable modification, this in combination with a large tolerance will increase your FDR. You 
should research at least parts of the data and compare the results to your present results to 
determine if all data needs to be researched. In relation to this, what is the protein FDR of the 
dataset, q-value, pep value for each protein? 
We thank the reviewer for this point. This was actually a typographical error in the text; the data 
were in fact searched with 0.05 Da tolerance. We have updated the “methods” page #30 
accordingly. The full parameters used for the Proteome Discoverer search, together with the 
results output are available at the PRIDE repository with the dataset identifier PXD024322. 
Ok 
 
31. From results: FFPE samples were macro-dissected from 3-6 sections to obtain >80% tumor 
content and analyzed using the SP3-CTP multiplex MS proteomics protocol24 (Supplementary 
Fig. S1b). 
Should it not be ref 19 instead of 24? 
Reference #24 {Hughes, C.S., et al. Single-pot, solid-phase-enhanced sample preparation for 
proteomics experiments. Nat Protoc 14, 68-85 (2019)} is a more detailed and up-to-date protocol 
for the methods used in this study when compared to Reference #19 {Hughes, C.S., et al. 
Quantitative Profiling of Single Formalin Fixed Tumour Sections: proteomics for translational 
research. Sci Rep 6, 34949 (2016)}. Given that Reference #19 included work done on FFPE (in 
ovarian cancer) we now include both references #19 and #24 to support our statement. 
Ok 
 
New questions based on the updated manuscript 
 
32. In the discussion the authors write: Furthermore, the 9088 total proteins identified is 
comparable to that achieved using fresh frozen materials (10,107 proteins) by the CPTAC breast 
cancer project15. The 4214 proteins quantified in every sample (n=342) across a large-scale 
breast cancer project using minimal tissue demonstrates the efficiency and high sensitivity of the 
SP3-CTP approach for FFPE cancer proteomics studies36-39. 
The total number of identifications are easily achievable in MS based proteomics. The 
difficulties are to achieve good overlap in quantification across samples. To make it a fair 
comparison you should also include the nr of overlapping proteins with quantification. You have 
also used Johansson et al dataset and should add that also in the comparison. 
 
Given that our study quantified 4214 proteins across a high number (n= 342) of FFPE samples, we did not compare 
the coverage across all samples to CPTAC and Johansson et al as those studies have a significantly smaller number 
of cases and are from fresh frozen samples. Given that the reviewer has mentioned that the total number of proteins 
identified is easily achievable, we have simply removed this sentence from our discussion to avoid any confusion. 
 
33. In the discussion the authors write: Our result is consistent with a proteomic profiling study 
of 2 “basal immune hot” cases vs. 7 “basal immune cold” cases using >10mg of frozen tissue16. 
For max TMT labelling, 100 μg of peptides are used. This usually equates to 1-2 mg wet weight 
of tissue. Not >10 mg. where in paper 16 did you find this statement? 
 
We thank the reviewer for this point. We reviewed the Johansson et al and we did not find that it used >10 mg. It was 
actually a mistake in the reference added to this sentence as the CPTAC paper is the one that mentioned the use of 
200 mg of material for analysis in their methods:  
In Krug 2020 Cell the methods state: “Samples were qualified for the study if two or more tumor tissue core biopsies 
or surgical resection segments had a minimum mass of 200 mg and demonstrated greater than 60% tumor cell nuclei 
and less than 20% tumor necrosis on frozen tissue section review”. 
 
We decided it is best to remove this sentence from the discussion, as follows (page #19): 
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“Our result is consistent with a proteomic profiling study of 2 “basal immune hot” cases vs. 7 “basal immune cold” 
cases using >10mg of frozen tissue

16
”. 

 
34. Many of the supplementary figures are a bite blurry, which needs to be fixed. 
 
The Supplementary Figures in the PDF files have been fixed and seem to be clear now. Hopefully, these will look OK 
to the reviewer when merged in the Nat. Commun journal submission system. All figure files used for the final 
publication will be in the Ai format for high resolution rendering as per Nat Commun requirements.  
 
35. Check panel labeling in fig S5. The word robust is mentioned multiple times here and in the 
paper in general. What do the authors mean by robust? What is the criteria(s) that needs to be 
meet to be called robust? 
 
The word “robust” has been mentioned multiple times when describing results based on the inspection of consensus 
matrix and delta plots examining the change in consensus cumulative distribution function (CDF) area to assign the 
number of consensus clusters to be used in the analysis.  

Based on the ConsensusClusterPlus package in R, Consensus Clustering provides quantitative and visual „stability‟ 
evidence derived from repeated subsampling and clustering. The Consensus Clustering reports a consensus of 
these repetitions (multiple iterations), which is robust relative to the resampling variability. Thus, the word “robust” 
has been used in this regard.  

Nevertheless, to avoid over-use and less specific uses of the term, the word “robust” page #8 has been removed:  

“An overview clustering of all the samples included in our study showed that the 38 SuperMix replicates had the 
highest correlation across the 38 plexes (range 0.68-0.81) when compared to the breast tumors and normal samples. 
(Supplementary Figs. S4c-S4d)”. 

Other “robust” wordings in a context other than the bioinformatic consensus cluster assignments as described above 
have been removed from the manuscript as follows: 

Discussion, page #20: 

“Thus, our outcome-linked proteomic data could aid the development of robust protein biomarkers for clinical tests to 
distinguish TNBC/basal-like patients with favorable versus poor prognosis that may benefit from therapies beyond 
standard chemotherapies”. 

Discussion, page #24: 

“The findings on immune distinctions, ECM, and lipid metabolism pathways are potentially clinically relevant as 
standard clinical tests do not yet interrogate this level of heterogeneity for breast cancer subtyping. Furthermore, this 
study identifies protein candidates for in-depth analysis of existing archived clinical trial FFPE specimens, providing a 
valuable resource to develop robust diagnostic and prognostic biomarkers in breast cancer”. 

 

Reviewer #2, expert in bioinformatics and subtype classification (Remarks to the Author): 
 
In this study, the authors carry out mass-spec proteomic profiling of 300 FFPE breast cancer surgical specimens. The 
specimens are separated into two cohorts based on batch effects. The 08-13 cohort included 75 basal-like, 62 Her2-
Enriched, 30 luminal B, and 11 luminal A PAM50 defined cases. The 86-92 cohort provided the long-term outcome 
data required for luminal cases and included 64 luminal A, 45 luminal B, and 13 Her2-Enriched PAM50 cases. The 
08-13 cohort was used for subtype discovery, both across all tumors and within the TNBC subset. ER+ subtypes 
examined in the 08-13 cohort were examined in the 86-92 cohort. 
 
Specific comments: 
1. Batch effects were found between the 08-13 and 86-92 cohorts, likely due to differences in collection techniques, 
pre-analytical handling, and fixation procedures. Could the authors try to harmonize the two datasets using Combat 
(https://rdrr.io/bioc/sva/man/ComBat.html)? In practice, Combat is very good at removing batch effect differences. 
Data from different platforms (RPPA, RNA-seq, DNA methylation) have been successfully processed with Combat, 
and the method is independent of nature of the batch effect. The PAM50 subtype could be used as the experimental 
group. There would be advantages in having one harmonized dataset of 300 samples. It seems worth a try. As 

https://rdrr.io/bioc/sva/man/ComBat.html
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currently written, the Abstract suggests that there is one dataset that was analyzed, rather than two separate cohorts.  
 
As has been shown before, ComBat can lead to overestimating ratios and many in the field believe should be 
avoided. (Methods that remove batch effects while retaining group differences may lead to exaggerated confidence in 
downstream analyses https://academic.oup.com/biostatistics/article/17/1/29/1744261), especially considering that the 
batch effect observed in our study is mostly driven by missed identification of peptides cleaved at lysines and not by 
artifacts on quantification, as shown in figures S3c and S3d. Furthermore, some of the subtypes are completely 
(basal-like) or almost completely (luminal A) confounded with the „cohort‟ batch effect. While Combat will always 
transform the data to minimize batch differences, we believe that for the reasons above, its application in this dataset 
would lead to serious artifacts in the data.  
 We would also like to note that the decision to include cases from the 86-92 cohort in our study design was 
based on clinical and translational considerations. In order for analysis to be meaningful for luminal cases, a long 
enough follow-up was necessary to obtain sufficient events for outcome analyses. Thus, the majority of luminal 
PAM50 cases were derived from patients diagnosed with invasive breast cancer in the period January 1986 to 
September 1992. Forcing the two cohorts to be lumped together for subtyping does not allow obtaining clinically-
relevant results for the subtypes found, and could compromise any clinical relevant observations.  
 
We have updated the abstract to highlight that for the 300 cases included there were 2 datasets analyzed rather than 
one.  
“We performed comprehensive proteomic profiling of 300 FFPE breast cancer surgical specimens, 75 of each PAM50 
subtype, from patients diagnosed in 2008-2013 (n=178) and 1986-1992 (n=122) with linked clinical outcomes”.  
 
2. Page 8: "Cluster-1 (n=34) consisted mostly of luminal B and Her2-Enriched PAM50 cases. Clusters-2 (n=50) was 
enriched for basal-like subtype, included few Her2-Enriched, but had no luminal cases. Cluster-3 (n=47) was primarily 
basal-like cases but included Her2-Enriched cases. Cluster-4 (n=43) was mostly Her2-Enriched but included luminal 
A and luminal B cases." It seems that actual numbers to reflect the noted associations would be helpful here, e.g. 
exactly how many basal-like cases and Her2 cases were in Cluster-3, and was Cluster-2 SIGNIFICANTLY enriched 
for basal-like.  
 
Cluster-2 is enriched for basal-like (pval<1.16e-11, Fisher‟s test), Cluster-3 is enriched for basal-like (pval<1.3e-4, 
Fisher‟s test), Cluster-4 is enriched for Her2-Enriched (pval<1.9e-4, Fisher‟s test). 
The numbers reflecting the breakdown for each PAM50 subtype within each proteome cluster as they appear in Fig. 
2b have also been added to the text, page #9. 
 
“Cluster-1 (n=34) consisted mostly of luminal B (n=18) and Her2-Enriched (n=13) PAM50 cases. Clusters-2 (n=50) 
was significantly enriched for basal-like subtype (n=41), included few Her2-Enriched, but had no luminal cases (p-
value<1.16e-11, Fisher’s test). Cluster-3 (n=47) was primarily basal-like cases (n=31) but included Her2-Enriched 
cases (n=14) (p-value<1.3e-4, Fisher’s test). Cluster-4 (n=43) was mostly Her2-Enriched (n=26) but included luminal 
A (n=8) and luminal B (n=8) cases (p-value<1.9e-4, Fisher’s test)”.  
 
3. In general, where the word "significantly" appears in the main text, it would be good to include a p-value and 
associated test to support the claim. The figures referred to likely include the test, but reflecting this in the main text 
as well would be helpful to the reader. For example, page 11: "The immune hot cluster also had significantly higher 
CD8+ TILs in the intratumoral compartment compared to other clusters (Fig. 4a)." by what p-value and test? 
 
The p-values and tests are now updated across the text where the word “significantly” appears. 
 
4. Wherever a p-value appears in the main text, the test used to derive that p-value should also be indicated. For 
example, page 12: "The subgroups with a high expression for only one of these biomarkers were characterized with 
intermediate RFS (Supplementary Fig. S5b). 70% (21/30) of the cases classified as (TAP1 high/HLA-DQA1 high) 
were in Cluster-3, while 90% (76/84) of (TAP1 low/HLA-DQA1 low) cases were in other clusters (p-value<0.00001) 
(Supplementary Table 1)." What test was used here (we can save the reader from having to go the Table for the 
answer)? 
 
The test used was the Chi-square test. The text in page #13 has been updated to include this information. 
“70% (21/30) of the cases classified as (TAP1 high/HLA-DQA1 high) were in Cluster-3, while 90% (76/84) of (TAP1 
low/HLA-DQA1 low) cases were in other clusters (Chi-square p-value<0.00001) (Supplementary Table 1)”. 
 
5. Page 15: "Multiple correction testing identified fatty acid-binding protein-7 (FABP7) as a candidate biomarker most 
significantly associated with >10-year RFS on tamoxifen treatment..." Was this the only protein that was significant? 
Were other proteins significant and using what statistical test and cutoff? 
 

https://academic.oup.com/biostatistics/article/17/1/29/1744261
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The association between the continuous increase in each individual protein identified in the cohort 86-92 and the 
endpoint of 10-years RFS was tested using a Cox regression model and stratified log-rank test. This analysis is 
displayed in Supplementary Data S4f. Only protein biomarkers that had a significant log-rank p-value <0.05 when 
adjusted for multiplicity testing by the Benjamini-Hochberg test were selected. Only FABP7 protein was found to 
meet these criteria as displayed in Supplementary Data S4f.  
The relevant text for the 86-92 analysis page #18 has been updated to include this information. 
“Multiple correction testing identified fatty acid-binding protein-7 (FABP7) as the only candidate biomarker associated 
with >10-year RFS on tamoxifen treatment (log-rank BHadj p=0.00004) (Supplementary Data S4f, Supplementary 
Fig. S12e)”. 
 
6. Discussion, page 16. Many journals are uncomfortable with the phrase "(manuscript in preparation)." It seems that 
the method indicated should be described in sufficient detail in the Methods, if it isn't already.  
 
We believe that the methods regarding the isoDoping methodology are now described in sufficient detail in the 
methods section of this manuscript for the reader to be able to reproduce the experiment as was intended. While we 
are currently preparing an even more detailed and comprehensive description of the general isoDoping strategy for a 
separate primary methodology-oriented publication, to avoid confusion we have deleted the mention of a “manuscript 
in preparation.” From pages #6 and #18.  
 
7. In addition to making the raw data available on ProteomeXchange, it would be most helpful to include the 
processed proteinXsample tables as Supplementary Data with the published paper. CPTAC has done a similar thing 
with their past publications. 
 
The proteinXsample data are included in the original Supplementary Data S1c. As requested by reviewer #1, we 
have also added the peptides identified across the cohort to the Supplementary data S1 along with the total number 
of unique peptides per protein and number of PSMs used in quantification per protein (Supplementary Data S1c-
S1d).  
 
8. For boxplots in the figures, please define the ranges involved. 
 
Boxplot whiskers range extends to the most extreme data point which is no more than 1.5 times the interquartile 
range from the box. This definition has been added to the legends of Fig. 3e and Fig. 7b. 
 
Reviewer #3, expert in breast cancer subtypes (Remarks to the Author): 
 
1. The authors present their previously described highly sensitive MS-based methodology termed “Single-Pot, Solid-
Phase enhanced, Sample Preparation”-Clinical Tissue Proteomics (SP3-CTP). This technology has been shown to 
capture known and novel features in FFPE tumor samples. The authors have previously shown that this method can 
be applied on large FFPE material cohorts linked to outcome data. Comprehensive quantification of protein 
expression can be achieved even from lower input quantities of patient specimens such as small biopsies. Here is 
would have been useful to know how small? 
 
This is described in the methods section and supplementary Figure S1a. One to six unstained 10µm tissue sections 
were cut for each sample to obtain an aggregate total area of ~=1cm x 1cm x 10µm, with >80% tumor content. 
 
2. In this paper they have applied the method to 300 well-characterized archival FFPE breast cancer specimens in 
terms of clinical outcome, IHC, and PAM50 RNA-based intrinsic subtypes. The authors demonstrate that at the 
protein level one can identify groups characterized by high expression of immune-response proteins and favorable 
clinical outcomes. 
Doe this paper bring a sufficient novelty? While it is true that “classifications do not always guide therapeutic choices, 
due to the extensive heterogeneity that still characterizes breast cancers” can this be solved by adding one more, at 
the level of proteomics? 
 
As described in the introduction, we performed the current study because genomic classifications of breast cancer 
are inherently limited as clinical decisions are generally based on the protein level. The underlying technology‟s 
application to FFPE breast cancer material is novel. To the extent that some of the findings overlap with genomic 
classifications, our study still provides an important verification at the protein level, where most drugs act.  
 
Q1. How do this extension to 300 cases add to what we know from Johansson at al Nat Comm, 2019? 
 

As highlighted in the introduction, Johansson et al. Nat Comm 2019 only profiled 9 tumor samples from each of the 
four main breast cancer PAM50 subtypes, a set which also lacked clinical outcome associations and was insufficient 
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to characterize the biological heterogeneity of breast cancers in relation to clinical behavior and treatment response. 
In addition, their work required fresh-frozen tissues that are not routinely available from patients, unlike the FFPE 
clinical specimens we were able to use that can be accessed in larger numbers allowing meaningfully powered 
linkages to clinical outcomes.   

 
Q2. How does the heterogeneity described here match what is known from RNA based classification (basal also 
divided in several immune clusters) 

 
The PAM50 subtypes used in this study are an RNA-based classification and the associations of each proteome 
cluster membership with each PAM50 subtype are described in detail in the manuscript. Within the basal-like RNA-
based subtype, there are two distinct proteomic groups that differ in immune response. In the results section, we 
describe how the heterogeneity of triple negative breast cancer relates to what is known from RNA-based 
classifications by comparing our findings with those by Burstein M et al. CCR 2015, showing that our triple negative 
clusters were highly correlated with their corresponding RNA subtypes of „luminal-androgen receptor‟, 
„mesenchymal‟, „basal-immune suppressed‟ and „basal-immune activated‟.  
 
Q3. If the authors were to make biomarkers based on protein as they suggest, which ones would they chose? 
 
TAP1 and HLA-DQA1, as described in detail in the results and discussion sections. These choices are further 
supported by the supplementary validation work done in response to reviewer #1, comment #8 as described above 
(based on the data shown in Supplementary Figures S7 and the new figure S8). We do note that TAP1 and HLA-
DQA1 were chosen, in part, because of the availability of quality IHC grade antibodies; it remains possible that other 
proteins may perform better on IHC-based tests when quality antibodies are available. Indeed, this is one of the prime 
utilities of our results for the breast cancer community, to spur additional biomarker research using our data. 

The discussion page #21 has been updated with this information. 

“Other proteins elevated in the immune hot cluster with available quality antibodies could also be used and developed 
as candidate biomarkers”. 

 
Q4. An introduction of 5 pages and large number of references (81) makes it into a difficult read. This paper as 
rigorously performed and described, would benefit from some clarity and simplification, just highlighting the results 
that move the field forward. 
 

The original work was written in a way that fits the requirements of Nature Communications. The introduction here is 
2.5 pages double spaced rather than 5 pages as pointed out by the reviewer and the authors hold that this is 
adequate to succinctly review the pertinent literature, making it hard to remove any essential information from the 
introduction. As this research sits at a crossroads of breast cancer, bioinformatics, and analytical chemistry the 
authors believe it is important to provide key background information for scientists from a breadth of related and 
interested fields to fully appreciate the work. 84 references are merely supporting information for the interested reader 
to pursue, a number that complies with the Nature Communications guidelines (and we are aware of several detailed 
and comprehensive publications in Nature Communications that have a similar or even higher number of references 
used to properly cover the scientific data presented). 
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Reviewer #1: 
Remarks to the Author: 
 
NCOMMS-21-10792, Response to reviews 
 
RESPONSE TO REVIEWER COMMENTS 
Reviewer #1, expert in proteomics (Remarks to the Author): 
Asleh et al have performed quantitative proteomics of 300 breast tumors from formalin fixed 
paraffin embedded (FFPE) material. The general idea and its potential value to the community of 
this work is great. 
The main Merits of the paper are: 1) the acquisition of proteomics data from FFPE samples 
across a large number of breast cancer samples with clinical follow up that can serve as a 
resource, 2) directly linking protein based sample groups with immune infiltration to improved 
outcome, 3) suggestion of potential biomarkers for tumor groups 4) identification of 4 TNBC 
groups as previously suggested at the RNA level and linking the immune infiltrated subgroup to 
good outcome, 5) identification of 3 ER positive tumor groups with a stromal enriched group. 
We appreciate the reviewer‟s view that the work will provide important value to both the fields 
of breast cancer and of proteomic analysis of patient samples in general. 
 
Limitations regarding merits above:  
1. To function as a resource the data needs to be judged as robust. 
To evaluate protein quantitative robustness, the number of peptides used for quantification per 
protein needs to be available and visualized. Now it is lacking from the supplementary data table 
with all ratios. A panel can also be added to figure 2 to show nr of psms/protein used for 
quantification. 
We thank the reviewer for this point. We have added the total number of peptides for each 
protein, number of unique peptides per protein and number of PSMs used in quantification per 
protein to the Supplementary Data S1c. We have also added the data on the peptide abundance 
per protein (now appears as new Supplementary Data S1d) and PSMs per protein in 
Supplementary Figure S2d. 
 
Good! However, you need to fix the x-axis. Now it reads: 
Fig text: Average number of quantified PSMs per protein, across the full cohort – is that for the 
subset with quantification across all or including all proteins? 
In suppl data S1C the column header says: set_1_number_PSMs – that is nr of psms used for 
quantification I presume? When you add this information, it would also be informative to add the 
nr of uniqeue peptides/protein per set. Also, protein scores and q-values are missing from the 
table. Add a column to easily select the proteins that you have used in your data analysis. 
 
The x axis relates to the PSM data from the 4214 proteins quantified across all samples rather than all 9088 proteins 
quantified in total. We have updated the text of Figure S2d legends accordingly. 
“(d) Average number of quantified PSMs per protein, across the full cohort (corresponding to the 4214 quantified 
across all samples)”.  
  
Supplementary Data S1c shows the number of PSM per protein after filtering as described in the methods section, 
which were then used for quantification.  
Per the reviewer‟s request, we added additional columns to Supplementary Data S1c with the PSMs #/protein per 
set, protein scores per set and q-values per set. In addition, we added a column to quickly identify the proteins used 
in the analysis (TRUE vs. FALSE). 
 
Good! 
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2. The supermix is present in all TMT sets and should represent how well quantifications can be 
reproduced between TMT sets. Can the supermix data be use for robustness evaluation between 
the sets? For example a heatmap for overview, variation of supermix in relation to the breast 
samples and particular sets with deviation on supermix-sample. 
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We thank the reviewer for this point. The 38 SuperMix replicates included in our experiment showed a high 
high correlation across the 38 plexes. Unsupervised clustering of our data for all 
samples including breast tumors, normals, and SuperMix show the SuperMix samples clustered 
together and are clearly separated from the breast tumor and normal samples. The correlation 
between the SuperMix samples was the highest when compared to the breast tumor and normal 
samples, supporting the robustness of the evaluation of SuperMix samples across the sets 
(appears as new Supplementary Fig. S4c). Pairwise correlation between the 38 SuperMix 
replicates (ranged between 0.68-0.81, median 0.75) was significantly higher than the pairwise 
correlation across the 38 normals (ranged between 0.53- 0.85, median 0.71). These findings are 
shown in new Supplementary Fig. S4d. 
The following information has been added to the results section page #8: 
“An overview clustering of all the samples included in our study showed that the 38 SuperMix 
replicates had the highest correlation across the 38 plexes (range 0.68-0.81) when compared to 
the breast tumors and normal samples (Supplementary Figs. S4c-S4d). 
 
The small difference in correlation between the Supermix, that should be exactly the same 
sample in all TMT sets, and the normal samples, which are biologically different are surprising. 
The supermix should represent technical variation and in this case are very close to the biological 
variation. The large number of proteins used in the sample to sample correlation analysis will 
provide a relatively high correlation, which limits this analysis. 
To be able to support the claim of the dataset as resource, the reader needs to be able to better 
understand the technical variation in the dataset. For example, you could calculate coefficient of 
variation for each protein based on the supermix and plot that. 
Also, you have IHC data for some proteins as ESR1, PGR etc, how these measurements correlate 
to the proteome data would be useful for judging the qualtity of the data. 
 
Indeed, as shown in the plot below, we expected a tighter correlation between SuperMix replicates since they should 
represent the technical variation across TMT plexes. However, we found that the SuperMix shows an average higher 
variation across the cohort compared to the one observed in the (biologically distinct) normal samples. We believe 
that this increase in variation is the result of the very different background matrix composition of the samples as the 
SuperMix includes 13 different cancer models cultured in vitro (as described in the methods) while the rest of the 
cohort consists of breast tissue, which was FFPE preserved. This under-representation (1/11th of the channels) of 
the SuperMix matrix makes it more likely to be affected from isolation interference and background noise leak from 
the breast tissue FFPE samples. For these reasons, while the SuperMix is an important reference standard that 
allows future comparisons with any cohorts that will include a SuperMix control in the design, it doesn‟t completely 
reflect the true technical variation in this cohort. However, a better representation of the technical variation can be 
estimated from the technical (n= 3) and biological (n= 3) tumor replicates that we included as part of the cohort 
(Supplementary Fig. S4a-b).  

 

%
 C

V

0
5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

Supermix Normal Rep1 Rep2 Rep3 T_rep4 T_rep5 T_rep6



 4 

 
We include the comparison of ER, PR and HER2 IHC results with the proteome data in Supplementary Fig. S7 along 
with the validated IHC markers mentioned in the reviewer‟s comment #8.  
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Supplementary Fig. S7. Correlation between proteomic abundance scores vs. IHC for selected proteins.  
(a) Relative abundance of ESR, PGR and HER2 by Mass spectrometry according to their IHC categories. 
(b) Correlation of protein expression values for protein candidates by mass spectrometry vs. IHC. Scoring values of 

the S100A8, TAP1, IFIT2 and HLA-DQA1 IHC biomarkers were reported using the H scoring system (intensity x 
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positivity) for the cytoplasmic staining observed in the invasive breast tumor cells. Spearman correlations are 
shown on each panel. Abbreviations: IHC, immunohistochemistry.  

 
The categories of ER, PR and Her2 are assigned per the available pathological data extracted from the patients‟ 
charts reporting hormone receptor status and HER2 as positive vs. negative. A highly significant association was 
observed between the proteomic relative abundance of HER2 and clinical HER2 status. A significant association 
between the proteomic relative abundance of ESR1 and ER IHC status was also observed. PGR relative abundance 
was overall higher in PR+ by IHC, but this result was not significant.  
 
In addition, the results page #12 were updated accordingly to include these results: 

“When testing the association between the MS data for ESR1, PGR, HER2 and their IHC categories, results 
were significant for HER2 (p<0.0001) and ER (p=0.02) IHC expression (Supplementary Fig. S7)”. 

 
As is also explained in detail in our response to comment #8, there are several reasons why different IHC biomarkers 
could differ in their association with the proteomic data. ER and PR assessment were performed per the current 
established guidelines that evaluate their nuclear staining on carcinoma cells only, using pre-established 
clinically validated cutpoints to report results categorically as positive vs. negative. In contrast, the MS relative 
abundance does not consider this spatial information when reporting the overall protein scores. The inference of 
the protein level in MS is based on peptide level quantification, while IHC is semi-quantitative with the inherent 
limitations of being an antibody-based assay with analytical and preanalytical issues that can affect the results. 
 
Ok, Good! 
I would be a bite cautious to use the supermix to compare between TMT sets in the future since it shows higher CVs 
than the rest of the conditions (comment not related to this manuscript).  
 
 
3. An overview clustering of the 2 cohorts with replicates would also be useful to judge how the 
whole dataset behaves. Does the technical replicates cluster together? 
Per the reviewer‟s request, we generated a heatmap showing the overview clustering for all the 
samples, as also requested in the previous comment. As now shown in Supplementary Fig. S4c, 
the three technical replicates indeed have clustered adjacent to each other (T_rep 5, T_rep 6, 
T_rep 7). Regarding the biological replicates, 2 of 3 replicates clustered adjacent to each other 
while the 3rd biological replicates clustered very closely together, a variance in line with 
expectations for intratumoral regional sampling. The normal samples clearly separated from 
tumor samples and showed an overall correlation of 0.70. An overall correlation of 0.5-0.6 was 
observed for the different breast tumor clusters and these included a mix of samples from both 
08-13 and 86-92 cohorts. 
This information has been added to the results section page #8: 
“All the technical replicates and 2 out of 3 biological replicates clustered adjacent to each other, 
while the 3rd biological replicates clustered very closely together, a variance in line with 
expectations for intra-tumoral regional sampling (Supplementary Fig. S4c). 
Ok 
 
4. The data should also confirm with previous knowledge, as ER, PR, HER2, MKI67 levels in 
different PAM50 subtypes, and this would be good to show in a supplementary figure. 
HER2 (ERBB2) and MKI67 expression levels across the different PAM50 subtypes are found in 
Supplementary Fig. S6d. ER (ESR1) and PR (PGR) expression levels across the different 
PAM50 subtypes are now also included in Supplementary Fig. S6d. 
 
Ok, see my comment to question 2. 
 
We include the comparison of ER, PR and HER2 IHC results with the proteome data as explained in the above 
response to comment #2. 
Ok! 
 
 
5. Proteomics have previously identified immune infiltration in breast cancer subgroups without 
directly linking them to outcome (Krug 2020 Cell, Johansson et al 2019 Nat Comm). Tumorinfiltrating 
lymphocytes (TILs) have also been linked to better outcome in breast cancer subtypes 
(Dieci 2021 Cells). The strength of this study is the direct link between proteomics data with 
“immune hot” tumors and outcome. 
Relation to published data 
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In general, anchoring the novel findings further, e.g. by validation of findings in other breast 
proteomics data sets would be valuable to show the usefulness of the data as a resource and 
strengthen the findings. There is several decent datasets published now on breast cancer 
proteome so this should be done. 
Per the reviewer‟s request, we performed a validation of our findings on previous proteomic 
datasets published by Krug et al. Cell 2020 (CPTAC) and Johansson et al. Nat.Commun 2019 
(OSLO2). 
Validation using the Krug et al. 2020 CPTAC breast tumor cohort: In order to compare our 
results with available published datasets, we performed consensus clustering with the same 
parameters used in our cohort on the CPTAC Cell 2020 cohort, using the 939 proteins from the 
CPTAC data that overlap with the 1054 mostly highly-variant proteins of our 08-13 cohort. This 
analysis identified four main proteome clusters that highly resembled the original CPTAC NMF 
clusters of “LumA-I”, “LumB-I”, “Basal-I”, “HER2-I”. Two of these were almost entirely 
similar to the original NMF clusters of “Basal-I”, and “LumA-I”. Another cluster highly 
resembled NMF “LumB-I” and consistent with Krug et al consisted of 54% luminal A cases 
(compared to 55% luminal A cases assigned as “LumB-I” in the original NMF CPTAC clusters 
by Krug et al). Similar to the original NMF CPTAC clustering composition, the NMF CPTAC 
“HER2-I” cluster identified had a mix of Her2-Enriched, luminal A and luminal B breast 
cancers. Of note, the original Krug et al 2020 study of 122 breast tumors included a majority of 
luminal A PAM50 subtype (n=57, 47%), followed by basal-like (n=29, 24%), luminal B (n=17, 
14%) and Her2-Enriched (n=13, 11%) when compared to the composition of our 08-13 cohort 
which consisted of a higher number of basal-like (n=73, 42%) and Her2-Enriched (n=62, 36%) cases, 
but few luminal A (n=11, 6%). Despite this, our analysis further reproduced the existence of 
subsets enriched for immune response pathways at the proteome level within the basal-like and 
Her2-Enriched subtypes not captured in the CPTAC analysis. Consistent with our analysis on the 
08-13 cohort, stromal pathways were enriched in luminal A tumors and lipid metabolism was 
enriched within luminal B and Her2-Enriched tumors. A description of these findings is 
displayed in Supplementary Fig. S10a. 
 
In the results section you write: Our analysis reproduced the existence of subsets enriched for 
immune response pathways at the…. These subsets are within your clusters. They don‟t come 
out as defined clusters. You need to make that clear. It looks though as it should be possible to 
separate out immune enriched samples. 
 
We agree with the reviewer. Our analysis of the CPTAC breast tumor cohort did not demonstrate these as separate 
defined clusters, though it seemed possible to separate out some immune enriched samples that were classified as 
basal-like and Her2-Enriched. In contrast, the analysis of our 08-13 cohort revealed an “immune hot” cluster that was 
referred to as a defined and distinct cluster. These differences might be because of the reasons explained above in 
our original response regarding the composition of our 08-13 cohort, which includes a much higher number of basal-
like and Her2-Enrcihed cases when compared to the CPTAC cohort. 
 
Overall, our analysis on the CPTAC cohort illustrates that there is a fraction (subset) within the basal-like and the 
Her2-Enriched subtypes that are enriched for immune response pathways. For clarity, we have replaced the word 
“reproduced” with “demonstrated” in the sentence mentioned in the reviewer‟s comment and updated this sentence in 
the results section page #14 and in the legend of Supplementary Figure S10a as below, highlighting that these were 
not captured as defined clusters in the CPTAC analysis. 
 
“Our analysis demonstrated the existence of subsets enriched for immune response pathways at the proteome level 
and these included basal-like and Her2-Enriched subtypes. In contrast to the 08-13 cohort, these subsets were not 
captured as separate and defined clusters by CPTAC analysis”.   
 
Ok, good! 
 
Validation using the Johansson et al 2019 “OSLO2 breast cancer landscape cohort”: 
To validate our findings on the 36 cases of the 4 main subtypes (9 for each PAM50 type) in the  
“OSLO2 landscape cohort”, we performed consensus clustering with the same parameters used 
in our analysis, using the 775 proteins from the OSLO2 data that overlap with the 1054 mostly 
highly-variant proteins of our 08-13 cohort. This analysis identified 4 clusters that highly 
resembled the main consensus core tumor clusters (CoTCs) and their biological functions as 
reported in Johansson et al. These clusters consisted of CoTC1 (basal-like immune cold), CoTC2 
(basal-like immune hot), CoTC3 with few CoTC6 cases (luminal A-enriched) and CoTC6 
(luminal B and Her2-Enriched). Importantly, the immune distinctions within the basal-like 
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subtype were entirely reproduced using our highly variant proteins showing that the two basal-like 
samples of OSL.3EB and OSL.449 (CoTC2) were consistently classified as “basal immune 
hot cluster” when compared to other basal cases characterized as “basal immune cold”. These 
findings are displayed in Supplementary Fig. S10b. 
The results section page #14 has been updated to include our comparison analysis using the Krug 
et al 2020 and Johansson et al 2019 proteomics datasets, as a new section entitled “Comparison 
with previous breast cancer proteomics studies”. 
 
 
The number of immune hot samples are a little bite low, but in the other hand supports your 
findings. 
 
Indeed. We agree with the reviewer that the number used in Johansson et al. is extremely low when compared to our 
dataset and we highlight that in the comparison we make in discussion section pages #19-20. To date, the only 
proteomic published data preceding our current study which showed the existence of defined immune hot vs. immune 
cold clusters consisting of basal-like cases is Johansson et al, and thus despite its limitations serves as the best 
available proteomic dataset for comparison. It does support our findings as highlighted in the introduction page #4 
and the results section page #15. 
Ok, good! 
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6. The 4 TNBC groups are correlating to their suggested RNA based groups. To strengthen the 
finding of 4 TNBC subtypes, can they be identified also at the protein level, for example in Krug 
2020 Cell data? 
We validated our TNBC proteome clusters using the 935 proteins from Krug et al that overlap with the 1055 
mostly highly-variant proteins in our 08-13 TNBC (n=88) subset on the set of 28 TNBC cases 
included in the CPTAC breast cancer cohort by Krug et al. Our analysis reproduced the existence 
of the four main proteome TNBC subgroups and the biological features of „luminal-androgen 
receptor‟, „mesenchymal‟, „basal-immune suppressed‟, and „basal-immune activated‟ as now 
shown in Supplementary Fig. S12. 
The results section page #16 has been updated to include this information: 

Supplementary Figure S10

b) Validation using the Johansson et al 2019 OSLO2 breast cancer landscape cohort
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“The existence of these TNBC proteome clusters and their biological features were validated 
when applying consensus clustering, with identical parameters, on the 935 proteins overlapping 
with the 1055 mostly highly-variant proteins of our 08-13 TNBC subset on the proteomic data for 
a set of 28 TNBC cases included in the CPTAC breast cancer cohort by Krug et al 
(Supplementary Fig. S12). 
 

 
Ok, good! 
 
7. How generalizable are the 3 ER positive tumor subgroups identified in the manuscript? The 
authors cite Krug 2020 Cell in the discussion as consistent with the stromal-enriched subtype. 
But to my knowledge, the data in the Krug paper don‟t show a separate luminal A subgroup 
enriched for stroma. Dennison 2016 CCR, however show a stromal subtype of ER positive 
tumors that are or mixed subtype but enriched in Luminal A with a favorable clinical outcome. 
Are the same proteins (in RPPA and your MS data) deterministic of the stromal subgroup? 
We agree with the reviewer that Krug 2020 Cell did not identify a separate stromal enriched 
subtype as a unique cluster by mass spectrometry, but described a subset of luminal A tumors as 
stromal-enriched since these tumors were classified originally as “reactive” in the TCGA 2012 RPPA 
data. In the subsequent Nature 2016 CPTAC proteomics profiling breast cancer 
publication, the proteomic cluster that was highly correlated with the “reactive” RPPA cluster 
was referred to as stromal-enriched. 
The Dennison 2016 CCR study basically tried to characterize the biological and clinical features of the 

Supplementary Figure S12
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stromal enriched tumors as a whole (i.e. reactive tumors) identified in the TCGA based on RPPA 
data. The majority of these tumors were found to be classified as luminal A by PAM50, and 
among the luminal A as a group those that had high stromal protein expression displayed 
favorable clinical outcomes. 
Comparing the proteins in our MS data that are in common with the RPPA proteins (n=30) used 
to classify the “stromal-enriched” vs. the “ER positive cancer derived” subtypes in Dennison 
2016 CCR, we found 5 proteins in the RPPA “stromal-enriched” Dennison 2016 CCR that were 
also characteristic for our luminal A stromal enriched proteomics cluster (log2FC>0.20, adjusted 
p-value<0.05). These were fibronectin, annexin, collagen VI, caveolin, and MYH11. 
While our data correlate with those results, the RPPA data only cover a small percentage of the 
proteome that was quantified in our experiment; thus, our data characterize the luminal A 
stromal enriched cluster in a more comprehensive manner and identify protein candidates that 
are beyond those captured by the restricted number of proteins in the antibody-based RPPA 
assay. 
The discussion page #23 has been updated to highlight this information. 
“Our analysis of ER+ cases with mature clinical data identified a stromal-enriched subset 

(86-92-Cluster-2) consistent with previous reports
57,63

, which could help sub-classify luminal 

breast cancer. However, our data characterize the luminal A stromal enriched cluster in a more 
comprehensive manner and identify protein candidates that are beyond those captured by the 
restricted number of proteins in the antibody-based RPPA assay”. 
OK 
 
8. IHC validation of S100A8, TAP1, IFIT2, HLA-DQA1 and CD8 as suggested biomarkers of 
immune infiltration and better outcome are done on the same cohort as the proteomics. To 
consolidate the findings, validation in an independent cohort would be valuable. Also, what is 
correlation between the MS data and the IHC validated markers? Are the MS protein levels also 
related to outcome? 
 
First part of the reviewer’s comment: Per the reviewer‟s request, we have now performed a 
validation of these IHC biomarkers on an independent set of 176 breast cancer cases with similar 
clinicopathological characteristics to the 08-13 cohort. Our analysis confirmed that high 
expression of HLA-DQA1 as a single biomarker had a significantly better survival (log-rank 
p=0.02) and a similar trend was seen with high TAP1 as a single biomarker (log-rank p=0.09). 
The findings further confirmed that tumors with IHC expression for both TAP1 and HLA-DQA1 
showed the most favorable survival, while the subgroup with low expression for both had the 
worst RFS (log-rank p=0.05) (Supplementary Fig. S9). 
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The results section page #14 has been updated with this information: 
“We subsequently confirmed our observations on an independent, clinically similar set of 
176 breast cancer cases and showed that high expression of HLA-DQA1 as a single biomarker 
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had a significantly better survival (log-rank p=0.02) and a trend was seen for high TAP1 as a 
single biomarker (log-rank p=0.09). These data also confirmed that tumors with high IHC 
expression for both TAP1 and HLA-DQA1 showed the most favorable survival, while the 
subgroup with low expression for both had the worst RFS (log-rank p=0.05) (Supplementary 
Table 3; Supplementary Fig. S9). 
The Supplementary methods in the Supplementary Information file page #27 and Supplementary 
Table 3 include information on the characteristics of this IHC validation cohort: 
“IHC validation cohort: A tissue microarray for an independent set of 176 breast cancer cases 
was used to validate observations on the 08-13 cohort for the key protein IHC biomarkers. This 
validation cohort had clinicopathological characteristics similar to the 08-13 cohort and was 
analyzed for IHC biomarker association with clinical outcomes. The median follow-up for the 
IHC validation cohort was 10 years and cases were treated in accordance with contemporary 
guidelines”. Characteristics of this cohort appear in the new updated Supplementary Table 3. 
 
Supplementary Table 3 
 

Characteristic IHC Validation cohort  
 (n=176) 

Age at diagnosis (median) 53 years 

Tumor size (median) 2 cm 

Tumor grade  

1, 2 44 (25%) 

3 127 (72%) 

Missing 5 (3%) 

Nodal status  

Negative 105 (60%) 

Positive 66 (37%) 

Missing 5 (3%) 

IHC subtype   

Luminal ([ER+ or PR+]) 69 (39%) 

ER-, PR-, HER2+ 32 (18%) 

ER-, PR-, HER2-  71 (40%) 

Missing 4 (3%) 

Disease specific death   

No  134 (76%) 

Yes 35 (20%) 

Missing 7 (4%) 

CD8 iTILs  

<1% 42 (24%) 

≥1% 129 (73%) 

Missing 5 (3%) 

TAP1/HLA-DQA1 IHC groups  

TAP1 high /HLA-DQA1 high 35 (20%) 

TAP1 low /HLA-DQA1 high 22 (13%) 

TAP1 high /HLA-DQA1 low 50 (28%) 

TAP1 low /HLA-DQA1 low 65 (37%) 

Missing 4 (2%) 

 
Good! 
 
Second part of the reviewer’s comment: The Spearman correlation between the MS data and the H score for the 
IHC validated markers was found to be 0.51 for TAP1 and S100A8, 0.31 for HLA-DQA1, and 0.11 for IFIT2 as shown 
in the figure below. Of note, the assessment of the validated markers by IHC was performed on the carcinoma cells.  
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This data should also be in the paper together with the same kind of analysis for ESR1 and PGR. 
Why do you think the correlations are weak? For TAP1 and HLA-DQA1 that performs well 
together, what is the difference in signal that is picked up by IHC and MS? Both are prognostic 
but show weak correlations indicating different signal/information that they pick up. 
 
Per the reviewer‟s request, this analysis has been added as a new Supplementary Figure S7.  
The analysis according to the IHC ER score with ESR1 proteomic abundance and the IHC PR score with PGR 
proteomic abundance is described in comment #2 and included in the manuscript under new Supplementary Figure 
S7. In addition, the results page #13 were updated accordingly: 
“When assessing the correlation between the MS data and the IHC scores for the validated biomarkers, a low-
moderate correlation was noted (Supplementary Fig. S7)”.  
  
Regarding the weak-moderate correlation between IHC and MS data, there are several explanations. Firstly, as 
explained in the methods section, the assessment of the validated markers by IHC was performed following practical 
and established IHC methodologies to assess their expression only on the invasive carcinoma cells and using the H 
score that in addition to positivity also takes into account the intensity when reporting the IHC expression. These 2 
components of positivity x intensity are multiplied to give the overall score. Importantly, for these biomarkers scores 
were reported for the cytoplasmic staining only that was observed in the invasive breast tumor cells, using a tissue 
microarray format with duplicate cores for each specimen. Intensity scores were reported as (0: none, 1: weak, 2: 
moderate, 3: strong) and the positivity proportion scores were reported as (1-100%) for each core. The averaged 
cytoplasmic H score between the duplicate cores per case was used for the scoring of the protein expression by IHC. 
Secondly, when analyzing tumor specimens by MS, the whole section is analyzed and the expression of specific 
proteins is not measured in the context of spatial expression on invasive carcinoma cells only and considering 
appropriate subcellular (cytoplasmic) expression only. Furthermore, the representative cores assessed on tissue 
microarray do not always represent the expression on the whole slide taken from the source block, but rather 
represent the expression of the relevant biomarker specifically in the most histologically-representative viable 
invasive carcinoma areas punched out as cores to construct these tissue microarrays. Thirdly, there are several 
analytical and preanalytical differences related to IHC as an antibody-based assay vs. MS that contribute to the 
correlations observed with these biomarkers. IHC is semi-quantitative due to the fact that it is antibody hybridization-
based (with the signal amplified using secondary antibodies and linked enzymatic chromogen activation) while the 
inference of the protein level in MS is based on the peptide level quantification that is more quantitative than IHC. 
Altogether, these are reasons why while MS-IHC data would be expected to show weak-moderate correlation, they 
could still both be prognostic. 

These reasons were briefly summarized and included in the discussion page #21. 

“Of note, the assessment of the validated markers by IHC was performed only on the carcinoma cells and using the H 
score that in addition to positivity, takes into account staining intensity when reporting the IHC expression. These 
variables along with using a TMA format and the differences related to IHC as a multi-step antibody-based assay vs. 
MS contribute to the weak-moderate correlations observed with these biomarkers”. 

Ok, 

Third part of the reviewer’s comment: The selection of the biomarkers for IHC validation was based on biology 
rather than clinical outcomes. In response to the reviewer‟s comment, we performed a Cox proportional-hazards 
analysis on the protein abundance (in MS data) and recurrence free survival for the protein candidates we assessed 
by IHC. MS protein levels are significantly correlated with improved outcome for TAP1 and IFIT2, while a trend is 
shown for HLA-DQA1 and S100A8 as follows: 
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Protein 
 

Survival analysis for RFS 
 HR (95% CI), P-value 
 

Adjusted P-value 

TAP1 0.34 (0.18-0.65), 0.001 0.04 

HLA-DQA1 0.87 (0.69-1.10), 0.24 0.71 

S100A8 0.87 (0.73-1.06), 0.16 0.62 

IFIT2 0.38 (0.18-0.80), 0.01 0.19 

 
Additional comments: 
9. From introduction: “This method can query large FFPE material cohorts linked to outcome 
data, enabling comprehensive quantification of protein expression from lower input quantities of 
routinely-available patient specimens, and employs a more highly efficient workflow than other 
MS-based methods for protein profiling of clinical FFPE tissues21,22. “ 
Based on the data, the MS workflow seems efficient, but there is really no data to comparing all 
other methods to support your claim of “more highly efficient workflow than other MS-based 
methods….”? Many of the large MS proteomics groups have published their versions of FFPE 
sample preparation methods. See for example Coscia 2020 Modern Pathology, Griesser 2020 
MCP, Marchione 2020 JPR, Zhu 2019 Molecular Oncology. 
We thank the reviewer for this comment. We have updated this sentence in the introduction page 
#5 accordingly: 
“This method can be used to query large FFPE material cohorts linked to outcome data, 
enabling comprehensive quantification of protein expression from lower input quantities of 
routinely-available patient specimens, and employing a more highly efficient workflow than 

other MS-based methods for protein profiling of clinical FFPE tissues
21,22

. 

Ok 
 
10. In the abstract and in figure one, 300 samples are mentioned as included in the study. The 
number is correct but it is bit misleading since it‟s divided up in 2 cohorts. The overview in 
Figure 1A is not useful since this collection of samples are not used together later on in the 
paper. The overview presented in fig S1A are much more useful since it gives an overview of the 
samples used together in each of the later analyses. Also the number of samples drop after QC 
and removal of replicates. To make it clearer for the reader I suggest you make a combination 
figure of fig S1A and S2H with the tumor characteristics and the numbers that make up each 
cohort used in the downstream analysis. Also include the info of how the TNBC cohort was 
made. This took time to figure out and with a figure outlining the 2 cohorts, it would be much 
clearer from the beginning for the readability of the entire paper. To make it even clearer one 
could add what type of analysis / aim you have with each 
cohort. There is also normal samples for which it is unclear of their purpose/how they are used. 
Did not find any comparison to the normal samples in the text? 
Per the reviewer‟s recommendation we have moved the original Figures S1A and S2H to Figure 
1. Now they appear as Fig. 1b and Fig. 1c. 
Given that normals were sourced from independent reduction mammoplasties, they are very 
biologically different from tumors and thus they are not helpful in the subtyping or performing 
direct comparisons with tumor samples. The normals were included in the UMAP plots where 
they form a clearly separated cluster from tumors, added to the heatmaps (Figures 2c and 5a) as a 
reference to illustrate that proteins and pathways of interest for the proteome clusters were not 
high in normals, and as a visual comparator for the expression of key breast cancer associated 
proteins in Supplementary Figure S6d. 
In addition, when we picked specific proteins of interest for validation in IHC, we used 
candidates that were not highly expressed in normals. We updated the text to include this specific 
information in page #12. 
“We selected four that were among the top differentially-expressed proteins between the immune 
hot cluster vs. others (Supplementary Data S2c), had available antibodies applicable to FFPE, 
and had a practical scoring methodology on carcinoma cells: TAP1 (MHC class I), HLA-DQA1 
(MHC class II), IFIT2 (type I interferon signaling) and S100A8 by IHC (Figs. 4b-4c). In 
addition, these proteins were not highly expressed in the normal reduction mammoplasty 
samples”. 
 
The authors have gone some way to make the paper clearer when it comes to the patient cohorts. 
However, the results section starts with: A cohort of 300 archival FFPE breast tumor primary 
tissues,…. All the samples are never used together as a cohort. So this sentence and fig 1A, B are 
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misleading and need to be changed. You need to make it clear in the figure texts and abstract that 
you are analyzing 2 different cohorts, not one with 300 samples. 
 
We thank the reviewer for this point. The design of this study was to include 300 total samples such that in sum they 
would represent 75 samples from each 4 main PAM50 subtype. Among the total 300 samples, luminals were mostly 
collected from an older cohort, so as to allow meaningful clinical outcomes that can only be captured by using long-
term follow-up for these clinically less-aggressive cases, as described in the first paragraph of the results section 
page #6. The original intent of the study design was to analyze the 300 samples as a single cohort and thus a mix of 
cases from “08-13” and “86-92” were spread across the 38 11-plexes when we ran the study. Thus, the MS data were 
collected as a single cohort design. However, as explained in detail in page #7, due to the batch effects observed we 
analyzed the total 300 cases as two separate cohorts.  
 
Per the reviewer‟s request, the paragraph in page #6 has been updated accordingly: 
 
A total of 300 archival FFPE breast tumor primary tissues, representing 75 from each of the RNA PAM50 subtypes

4
, 

and 38 normal reduction mammoplasty samples, were obtained (Fig. 1a-1b). Samples were assembled with an 
original aim to be analyzed as one cohort, thus the MS data were obtained per this design, from patients diagnosed 
with invasive breast cancer using tissue obtained prior to adjuvant systemic therapy in 2008-2013 (n=178; the 08-13 
cohort) and 1986-1992 (n=122; the 86-92 cohort). The 08-13 cohort included 75 basal-like, 62 Her2-Enriched, 30 
luminal B, and 11 luminal A PAM50 defined cases. The 86-92 cohort provided the long-term outcome data required to 
gather sufficient outcome events for luminal A breast cancers and included 64 luminal A, 45 luminal B, and 13 Her2-
Enriched PAM50 cases (Fig. 1b).  
 
Figure 1b shows the breakdown of the two cohorts included according to “time of collection” to indicate the difference 
between 08-13 vs. 86-92 cohorts that were analyzed separately. The word “cohort” and the description of the cohorts 
has been added to the x axis in Figure 1b for further clarity. In addition, per the reviewer‟s request, the legend for 
Figure 1 has been updated: 
 
Figure 1. Proteomic analysis of FFPE breast cancer tissue samples 
(a) The clinical features of the 300-tumor study cohort across the four PAM50 breast cancer subtypes. Samples 

were assembled from patients diagnosed with invasive breast cancer using tissue obtained prior to adjuvant 
systemic therapy in 2008-2013 (n=178; the 08-13 cohort) and 1986-1992 (n=122; the 86-92 cohort). While the 
MS data were obtained with the 08-13 and 86-92 samples intermixed (see Fig S1b batch design), these two 
cohorts were analyzed separately. Pathological primary tumor size is defined as (T1 <=2cm), (T2 2-5cm), (T3 
>5cm); recurrence, (local, regional, distant). The feature list is in Supplementary Data S1e. LVI, lympho-vascular 
invasion; TNBC, triple-negative breast cancer. 

(b) The distribution of the PAM50 subtypes for the 300 tumor samples described in (a) across the 86-92 and 08-13 
cohorts. The study also included 38 normal breast reduction mammoplasty samples. Within the 08-13 cohort, a 
set of 88 cases were classified as TNBC by IHC and were analyzed as a separate cohort. 

We further updated the abstract per the reviewer‟s request: 
 
“Despite advances in genomic classification of breast cancer, current clinical tests and treatment decisions are 
commonly based on protein level information. Formalin-fixed paraffin-embedded (FFPE) tissue specimens with 
extended clinical outcomes are widely available. We performed comprehensive proteomic profiling of 300 FFPE 
breast cancer surgical specimens, 75 of each PAM50 subtype, from patients diagnosed in 2008-2013 (n=178) and 
1986-1992 (n=122) with linked clinical outcomes. These two cohorts were analyzed separately and we quantified 
4214 proteins across all 300 samples….” 
Ok, good! 
 
11. PAM50 is defined both by RNA and by surrogate IHC markers in the manuscript. However, 
it is unclear when each definition is used in the manuscript, which makes it confusing to read at 
times. 
PAM50 per definition only refers to RNA not IHC as PAM50 is a RNA-based assay. There is no 
definition of PAM50 by IHC in the manuscript. We have however now added the word “”RNA-based”” 
before the word PAM50 in the section that included IHC data for further clarity. 
page #15: “We analyzed 88 IHC defined TNBC cases (profiled by RNA-based PAM50 as: 61 
basal-like, 22 Her2-Enriched, and 5 luminal B), all in the 08-13 cohort (Fig. 1b) 
Ok 
 
12. The authors use a new method denoted isodoping, with the aim to increase the overlap of 
identifications between TMT sets. The dynamic range in the orbitrap is max 3 orders of 
magnitude and the practical with TMT is closer to 2 orders of magnitude. To the pool of 
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samples, 4.26 pmol of each peptide is added as isodoping. What is the evidence that you have not 
added 2 orders of magnitude of your spike in peptide compared to the endogenous levels? 
Adding spike in peptide amounts in excess of 2 orders of magnitude would make the other TMT 
channels hover around background and lose quantitative accuracy. How is it checked that this 
don‟t affect the quantification used? Could the same scenario happen for the SuperMix channel? 
 
The reviewers make an astute point that issues with the dynamic quantification range can arise 
when implementing TMT. As shown in Supplementary Fig. S2f, when we compared the average 
S/N ratio, before normalization, across different sample types we detected an average difference 
of 3.7x between SuperMix and tumor samples, with all SuperMix samples showing an average 
S/N comparable to the tumor samples with higher signal. 
In Supplementary Fig. S2g, it is displayed that there is only a 3.2x difference between the 
average abundance of isoDoped peptides and endogenous peptides for isodoped proteins in the 
PIS+isoDoping channel. When comparing the average S/N of the isoDoping peptides in the 
tumor samples and the spiked in channel we detected an 8.6x difference, below the suggested 
limit of 20x (Cheung TK et al. “Defining the carrier proteome limit for single-cell proteomics” 
Nature Methods, 2021). 
 
Ok, I would be curries to see how the TMT profiles compare between isodoped and not isodoped 
peptides from the same protein. 
 
For the reviewer‟s request, the figure below shows the correlation between the protein abundance measured by 
isoDoped peptides only vs protein abundance measured by the endogenous peptides only (for the same proteins). 
The proteins shown on the plot are the ones from the 4214 set of proteins identified across all the samples for which 
at least 3 isoDoping and 3 endogenous peptides were included.  
Ok, there are some varying correlations but if you have multiple peptides for each protein the quantification should be 
fine.  
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13. The isodoping is presented in fig1. This to me indicates that it is one of the main concepts in 
the paper since if it comes in the first main figure. However, this is a technicality which the 
authors say that they are preparing a manuscript for and could be moved to supplementary. 
Per the reviewer‟s recommendation we have moved the isodoping performance to 
Supplementary Figure S2. 
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14. It is also unclear how the isodoping peptides were selected. Usually peptides are selected due 
to their good ionization capabilities which could explain much of the results in fig 1b? 
Figure 1C is unclear to me. How do you reach 74 isodoping dependent proteins? Can you update 
the figure legend or make a new clearer figure? 
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As elaborated on in the methods section, the set of synthetic peptides was selected to fulfill the 
following criteria: (i) include unique peptides for the protein, and (ii) peptides should be between 
6 and 20 amino acids long and/or (iii) have physiochemical properties amenable to MS detection. 
Our isoDoping methodology has been updated and improved in subsequent 
experiments for which we have a manuscript under review and can be made available upon 
request once it is in pre-print. We have also removed Figure 1C from the manuscript. 
Ok 
 
15. From results: “The cases in the 08-13 cohort were treated in accordance with contemporary 
guidelines and contained cases from all four PAM50 subtypes, including all 75 basal-like cases 
(Supplementary Figs. S1a, S2h, Supplementary Data S1d).” 
Which contemporary guidelines are you referring to? 
The contemporary guidelines refer to the updated recent guidelines recommended to treat breast 
cancer commonly used in practice. A reference (Cardoso F et al. Early breast cancer: ESMO 
Clinical Practice Guidelines for diagnosis, treatment and follow-up. Annals of Oncology 2019) 
has now been added to support this statement. 
Good 
 
16. LVI, lymphovascular invasion is mentioned. Don‟t find it in materials & methods. 
Lymphovascular invasion is found in the methods as part of the survival analysis section. The 
acronym (LVI) has been added to page #35 as well. 
Ok 
 
17. When the tumor groups are defined they are given numbers. However, when they are first 
introduced in figures (for example 2b & c, 5a, 7a) they are not in numerical order. It would 
maybe be much easier to follow if the clusters are renumbered in numerical order in the first 
figure where they appear. 
The assignment of numbers of the clusters in figures 2b,2c, 5a and 7a is not random and were not 
manually chosen, but derived from the consensus clustering algorithm we used. The numbers 
assigned for each cluster are based on the consensus clustering algorithm output and determined 
in an unsupervised manner by the ConsensusClusterPlus function. If we were to manually 
change the numbers in figure 2b to be in a numerical order, we would need to force changing the 
figure itself to follow that order. This will consequently result in changing the numerical order of 
the clusters in figure 2c again and the reader would not be able to match the cluster names with 
the consensus matrices plots present in Supplementary figures S5, S10 and S12. This is described 
in the consensus clustering algorithm of the ConsensusClusterPlus package where it makes 
cluster number decisions based on the purity of members in the clusters {Wilkerson MD; 
ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking. 
Bioinformatics 2010}. 
 
The lack of numerical order in multiple figures of clustering is confusing and makes the paper 
more difficult to read and understand. This will translate into fewer people understanding the 
paper and thus fewer citations etc.. 
If you want to make it easier for the reader, you can change the order of the clusters manually 
and just transfer that order between figures. It can all be done easily by a bioinformatician in the 
R-code. 
 
Per the reviewer‟s request, we have manually changed the order of the clusters and transferred that order between 
figures. Figure 2, Figure 5 and Figure 7 have been updated accordingly. 
 
Perfect! 
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18. The identification and quantification of 4214 proteins across all samples is a good result for 
MS analysis of FFPE samples. But could some of the results be explained by not reaching deep 
enough into the proteome, considering that there should be around 14000 proteins in a tissue 
according to ProteinAtlas. Could this be a reason for the grouping of Luminal A tumors with 
Her2 in fig 2b? In the Krug et al Cell 2020 paper their tumor grouping almost exclusively only 
mix luminal A and Bs. No HER2 based on 7679 proteins quantified across all 122 samples. Can 
the lum A mixing with Her2 be reproduced with the same proteins? Or is this an effect of FFPE? 
The composition of our 08-13 cohort is different from CPTAC as our cohort included only 11 
luminal A cases compared to 73 basal-like, 62 Her2-Enriched, and 28 luminal B. The 4 clusters 
displayed in Fig 2b were the best to segregate this cohort by consensus clustering and thus with 
only 11 cases, luminal A tumors were not found as a unique cluster, but grouped with clusters 1 
and 4 that included luminal B and Her2-Enriched in Fig 2b. In these clusters 1 and 4, luminal B 
and Her2-Enriched were often intermixed which is a commonly known phenomenon in breast 
cancer subtyping {Prat, A. et al. Molecular features and survival outcomes of the intrinsic 
subtypes within HER2-positive breast cancer. JNCI 2014} and is consistent with the proteomics 
breast cancer data in {Johansson et al. Nat Comm 2019}. 
The cluster membership of our cohort compared to the CPTAC breast cancer cohort was 
dependent on a different combination of cases and in turn our analysis of the 86-92 with more 
luminal A cases was more powered showing distinctions of two subgroups within the luminal A 
subtype including a unique luminal A “stromal enriched” cluster, and a cluster that was more a 
mix of luminal A and B. Thus, overall our results are driven by the biology and the composition 
of our 08-13 cohort rather than an artifact or a technical limitation. 
Ok 
 
19. In fig S3a, you refer to biological replicates. How is biological replicates defined in clinical 
samples? For the technical replicates, it would have been better if they were spread out in 
different TMT sets. 
The biological replicates refer to different specimens taken from the same patients. We 
acknowledge that technical replicates were in the same TMT set. 
We have added the definition of biological replicates to the text on page #7-8: 
“High reproducibility was observed between the biological replicates (referring to different 
specimens taken from the same patient) (mean r=0.71) and the technical replicates (mean 
r=0.88) (Supplementary Figs. S4a-S4b)”. 
Ok 
 
20. The PAM50 subtypes have got standard color code. See TCGA 2012 Nature or Krug et al 
Cell 2020. To avoid confusion I strongly recommended to use the same color code. 
As per the reviewers‟ request to make it easier for a reader to compare our results with recent 
breast cancer „omic studies we changed the colors to match the color code used in Johansson et 
al and Krug et al. 
 
21. In general the authors make a good job in describing their findings. But to make it easier to 
follow I would suggest to add ER, PR and HER2 status to fig 2C. For example in the text it says: 
“Most cases in Cluster-2 and -3 were associated with ER, PR and Her2 negativity by IHC 
clinical tests, high proliferation index (Ki67), and the “core basal” phenotype (defined as ER-, 
PR-, Her2- and [EGFR+ or CK5+])29 (Supplementary Table 1).” Adding the clinicopathological 
markers to the heatmap in fig 2c would make it easy to see this in addition to the table. But this is 
a matter of taste and you can ignore if you like. 
 
We thank the reviewer for this suggestion. Supplementary Table 1, Supplementary Table 2, 
Supplementary Data S1e and the “results” section describe and elaborate on the correlation 
between these clinicopathological variables and clusters. Figure 2c is already rich in information 
and different types of analysis and so we feel that the main emphasis for readers should be the 
PAM50 subtype membership in each proteome cluster. 
 
22. In fig 2c, 5a, there is a column called immune with 2 categories, Immune related and Other. 
How are they defined? Also, for the protein groups there are enrichments, how were the 
enrichments done? Specify in fig text how the terms were selected, representative/ cutoff? 
Immune related proteins were defined based on their protein function involvement in immuneresponse 
biological processes. Proteins belonging to any of these gene ontology (GO) categories 
were labeled as Immune: 
"GO_DEFENSE_RESPONSE_TO_VIRUS", "GO_RESPONSE_TO_VIRUS", 
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"GO_RESPONSE_TO_TYPE_I_INTERFERON", 
"GO_CELLULAR_RESPONSE_TO_INTERFERON_GAMMA", 
"GO_RESPONSE_TO_INTERFERON_GAMMA", 
"GO_REGULATION_OF_INNATE_IMMUNE_RESPONSE", 
"GO_CYTOKINE_MEDIATED_SIGNALING_PATHWAY", 
"GO_ANTIGEN_RECEPTOR_MEDIATED_SIGNALING_PATHWAY", 
"GO_IMMUNE_EFFECTOR_PROCESS", 
"GO_ACTIVATION_OF_INNATE_IMMUNE_RESPONSE", 
"GO_ANTIGEN_PROCESSING_AND_PRESENTATION_OF_PEPTIDE_ANTIGEN_VIA_M 
HC_CLASS_I" 
"GO_FC_EPSILON_RECEPTOR_SIGNALING_PATHWAY", 
"GO_POSITIVE_REGULATION_OF_INNATE_IMMUNE_RESPONSE" 
 
For each protein cluster, the most representative terms were selected based on gprofiler 
enrichment analysis with the following parameters: organism = "hsapiens" ,ordered_query = 
FALSE, multi_query = FALSE, significant = TRUE, exclude_iea = 
TRUE, measure_underrepresentation = FALSE, evcodes = TRUE, user_threshold = 0.05, 
correction_method = "g_SCS", domain_scope = "annotated", custom_bg = NULL, numeric_ns = 
"", sources = NULL, term_size<150 and source in GO:MF , GO:BP or REACTOME' 
Raudvere, U., Kolberg, L., Kuzmin, I., Arak, T., Adler, P., Peterson, H., & Vilo, J. (2019). 
Reference: g:Profiler: a web server for functional enrichment analysis and conversions of gene 
lists (2019 update). Nucleic Acids Research, 47(W1), W191–W198. 
https://doi.org/10.1093/nar/gkz369. 
The legends of figures 2c and 5a were updated to include this information. 
“Immune related is defined based on the protein function as involved in immune-response 
biological process and for each protein cluster, the most representative terms displayed on the 
heatmap were selected based on g:profiler4 enrichment analysis”. 
The methods section page #32 was updated to include information on the terms selected from the 
enrichment analysis. 
For each protein cluster, the most representative terms were selected and presented on heatmaps 
based on g:profiler77 enrichment analysis with the following parameters: organism = 
"hsapiens" ,ordered_query = FALSE, multi_query = FALSE, significant = TRUE, exclude_iea = 
TRUE, measure_underrepresentation = FALSE, evcodes = TRUE, user_threshold = 0.05, 
correction_method = "g_SCS", domain_scope = "annotated", custom_bg = NULL, numeric_ns 
= "", sources = NULL, term_size<150 and source in GO:MF , GO:BP or REACTOME'. 
Ok, good 
 
23. Fig 2a, is this using all or the most varying proteins? In 2b it does not say that the grouping is 
based on consensus clustering. 
UMAP in Fig 2a is based on using all proteins quantified in every sample (4214). The figure 
legend has been updated accordingly. 
The legend of Fig. 2b has been updated to show that the grouping of the different clusters is 
based on consensus clustering. 
(a) Uniform Manifold Approximation and Projection of the 08-13 cohort for the basal-like, 
luminal A, luminal B, and Her2-Enriched PAM50 subtypes based on all proteins quantified in 
every samples (4214). 
(b) Alluvial plot shows the relationship between PAM50 subtypes and the four proteomic 
consensus clusters in the 08-13 cohort. 
 
24. In figure S2b-c, the authors show number of peptides per protein. Bit unclear to what it refers 
to when mentioning peptide? Is that unique peptides? Nr of peptides per protein, is that the per 
set or total across all TMT sets or mean/median? 
It refers to the total number of peptides identified per protein across all TMT sets. The legends 
for these figures have been updated accordingly. 
(a) Percentage of the total number of proteins detected in different number of samples. 
(b and c) Number and percentages of proteins identified according to total number of peptides 
per protein. Yellow bars in the histogram show the number of proteins identified by different 
numbers of peptides per protein. Blue dots show the percentage of total proteins identified per 
minimal number of peptides per protein. 
 
In my version of suppl info it reads: Number and percentages of proteins identified according to 
number of peptides per protein. Not total. Mean nr across TMT sets would be more informative, 
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since some sets might have many peptides and some might have few peptides. 
 
We have updated this sentence in the Supplementary Fig. S2b-c legends with the correct definition.  
 
 “(b and c) Numbers and percentages of the total number of proteins detected in different number of samples 
according to number of peptides per protein”.  
 
A measure of the plex variability is given in Supplementary Figure S2d, showing the average number of PSM per plex 
that closely relates to the average number of peptides. 
Ok, 
 
25. The number of unique peptides per protein, nr of psm per protein and nr of psms/protein for 
TMT quantification is missing from the supplementary table with all MS data. Please add this, 
since it is important when it comes to judging the quantitative robustness. Having said that, must 
give all the credits for clear clinical information and that the authors include it in the same 
document so it is easy to access! 
We thank the reviewer for this point. As also requested in the reviewer‟s comment #1, we have 
added the total number of peptides for each protein, number of unique peptides per protein and 
number of PSMs used for quantification per protein to the Supplementary Data S1c. 
 
26. In figure 3e, the y-axis says abundance. Is this log2 ratio to the pool of samples? ESR1 is 
high in cluster 2 which is one of the basal enriched clusters, which is surprising. Could this be 
due to isodoping or poor quantification? KRT18 and FOXA1 on the other hand behave as 
expected. 
Protein abundance shown is based on a log2 ratio for PSM abundances divided by the relative 
PIS value in each TMT plex. Then for each protein, the median ratio of the 5 most abundant 
PSMs was used as relative abundance. This is explained in the methods section page #31 and has 
been added to the legend of Fig. 3e. 
“Protein abundance values are based on log2 ratio for PSMs abundances divided by the relative 
PIS value in each TMT plex. For each protein, the median ratio of the 5 most abundant PSMs 
was used as relative abundance”. 
The abundance for ESR1 was significantly lower in Cluster-3 than the mean against “all” while 
ESR1 was non-significantly high in Cluster-2. This could be due to challenges in quantifying 
ESR1 as endogenous peptides for this protein were only detected in less than 10% of the 
samples. Using isoDoping, 3 isoDoping peptides for ESR1 were detected in the majority of 
samples and thus challenges in ESR1 quantification might explain the non-significantly higher 
levels observed for Cluster-2. 
 
What is the justification for limiting ratio calculation to top 5 most abundant PSMs? Should you 
not obtain a more robust median with more values (if available)? How is abundance in this case 
defined? 
The unexpected behavior of ESR1 and PGR are concerning. How does the IHC data correlate to 
the proteomics data? 
 
Since the averaged S/N ratio is directly anti-correlated with the coefficient of variation on repeated measurements,  
we prioritized the PSMs with the highest S/N ratio in an attempt to reduce the quantification‟s background noise. 
Abundance is defined as the signal to noise ratio as reported in the methods section page #31.  
 
We added estrogen and progesterone receptor IHC and proteome measurement comparisons in the new 
Supplementary Fig. S7; explanations have been included in comment #2 and #8. 
Ok 
 
27. PECA is used for calculating p-values. Wonder if that inflates the p-values and makes them 
smaller just because you have a lot of peptides per protein? 
https://pubs.acs.org/doi/10.1021/acs.jproteome.5b00363 
PECA method leverages the number of peptides per protein to assign higher confidence to 
proteins with higher peptide coverage. While we agree that this method tends to drive the p-value 
of certain proteins with a particularly high number of peptides, we find it useful to separate 
proteins with a small number of peptides since these are the ones with lower confidence in 
quantification levels. We directly compared PECA performance to another differential 
expression algorithm (DEqMS, Zhu, Y., Orre, L. M., Zhou Tran, Y., Mermelekas, G., Johansson, 
H. J., Malyutina, A., Anders, S., & Lehtiö, J. (2020). DEqMS: A Method for Accurate Variance 
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Estimation in Differential Protein Expression Analysis. Molecular & Cellular Proteomics, 19(6), 
1047–1057. https://doi.org/10.1074/mcp.tir119.001646) on the first differential expression 
contrast (Cluster1 vs Cluster2-3-4). We found that the two methods give comparable results in 
terms of calling differentially expressed (DE) proteins (adjusted p-value < 0.05). We found an 
overall agreement by DE status on 86% of the proteins: 6% of the proteins differentially 
expressed in PECA and not in DEqMS, 9% of proteins differentially expressed in DEqMS and 
not PECA, 11% consistently identified as DE in both methods, and 75% consistently identified 
as not differentially expressed. 
While several differential expression analysis methods are routinely used in the proteomics 
field and their evaluation over multiple types of data and experiments would be of great interest, 
we believe that a technical evaluation of PECA and/or comparison with other methods are 
beyond the scope of this paper. 
Ok, this is a point that is good to include in the paper since the general breast cancer biologists 
reading the paper will not be aware of the inflated p-values and may draw wrong conclusions 
about the data. 
 
We note that while PECA can achieve improved or comparable overall performance with other differential expression 
methods [PMID:34373457], it tends to estimate particularly low p-values for proteins with a high number of quantified 
peptides.  
 
Ref: Kalxdorf, M., Müller, T., Stegle, O. et al. IceR improves proteome coverage and data completeness in global and 
single-cell proteomics. Nat Commun 12, 4787 (2021). https://doi.org/10.1038/s41467-021-25077-6 
 
To add clarity to the readers, we added this point to the methods section page #31: 
 
“While PECA can achieve improved or comparable overall performance with other differential expression methods 
[34373457], it can obtain very low p-values for proteins with a high number of quantified peptides”.  
Ok, 
 
28. Full credit for uploading the immunohistochemistry slides to http://www.gpec.ubc.ca/prot. 
But why limit to representative images. For the dataset to be useful, all images needs to be 
available. In addition, there should be an easy way to download all data for image analysis. 
Our IT team at the Genetic Pathology Evaluation Centre has diligently uploaded all images to 
http://www.gpec.ubc.ca/prot. This information has been updated under the section of “Data 
availability”, page #35, in the methods. 
“Images from immunohistochemistry slides of tissue microarrays used in the study coded as 
“11-012” and “14-004” are available for public access via the website of Genetic Pathology 
Evaluation Center (http://www.gpec.ubc.ca/prot). 
Data image analysis and clinical outcome data for the cases used in this study can be made 
available through the Genetic Pathology Evaluation Centre and Breast Cancer Outcomes Unit 
of BC Cancer Centre, upon completion of a Data Transfer Agreement and confirmation of 
ethical approval for qualified researchers”. 
Good 
 
29. To make the data analysis part transparent and reproducible, analysis code should be 
uploaded to Github or similar repository. 
“Code Availability” section has been added to the methods after the “Data Availability” section 
as requested. Code used for proteomics data analysis is available at GitHub 
https://github.com/glnegri/brca. 
Good, but the code seems to only cover basic functions and processing. You need to add the 
code for consensus clustering and the figures. Also, make sure that the input data is readily 
available/pointed to. 
 
The available code takes Proteome Discoverer search output data and performs all the steps for filtering and 
normalization that result in the data used throughout the manuscript. Clustering, differential expression analysis, 
survival analysis and all other downstream analyses have been performed with publicly available R packages using 
the parameters described in the methods section. The level of detail provided is sufficient to reproduce the analysis 
and is in line with several similar articles published recently by Nature Communications: 
 
Liu, W., Xie, L., He, YH. et al. Large-scale and high-resolution mass spectrometry-based proteomics profiling defines 
molecular subtypes of esophageal cancer for therapeutic targeting. Nat Commun 12, 4961 (2021). 
https://doi.org/10.1038/s41467-021-25202-5 

https://doi.org/10.1038/s41467-021-25077-6
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Franciosa, G., Smits, J.G.A., Minuzzo, S. et al. Proteomics of resistance to Notch1 inhibition in acute lymphoblastic 
leukemia reveals targetable kinase signatures. Nat Commun 12, 2507 (2021). https://doi.org/10.1038/s41467-021-
22787-9 
 
Satpathy, S., Jaehnig, E.J., Krug, K. et al. Microscaled proteogenomic methods for precision oncology. Nat Commun 
11, 532 (2020). https://doi.org/10.1038/s41467-020-14381-2 
 
Ok, then it is up to the editor if all figures should be reproducible by code in github or not. 
 
 
30. Orbitrap MS2 data was matched with 0.5 Daltons tolerance. This is a very large window that 
is usually used for iontrap data. For orbitrap MS2, the tolerance should be around 0.02 Dalton to 
reduce the risk of miss assigning transitions. Since you are also using methylation of lysine as a 
variable modification, this in combination with a large tolerance will increase your FDR. You 
should research at least parts of the data and compare the results to your present results to 
determine if all data needs to be researched. In relation to this, what is the protein FDR of the 
dataset, q-value, pep value for each protein? 
We thank the reviewer for this point. This was actually a typographical error in the text; the data 
were in fact searched with 0.05 Da tolerance. We have updated the “methods” page #30 
accordingly. The full parameters used for the Proteome Discoverer search, together with the 
results output are available at the PRIDE repository with the dataset identifier PXD024322. 
Ok 
 
31. From results: FFPE samples were macro-dissected from 3-6 sections to obtain >80% tumor 
content and analyzed using the SP3-CTP multiplex MS proteomics protocol24 (Supplementary 
Fig. S1b). 
Should it not be ref 19 instead of 24? 
Reference #24 {Hughes, C.S., et al. Single-pot, solid-phase-enhanced sample preparation for 
proteomics experiments. Nat Protoc 14, 68-85 (2019)} is a more detailed and up-to-date protocol 
for the methods used in this study when compared to Reference #19 {Hughes, C.S., et al. 
Quantitative Profiling of Single Formalin Fixed Tumour Sections: proteomics for translational 
research. Sci Rep 6, 34949 (2016)}. Given that Reference #19 included work done on FFPE (in 
ovarian cancer) we now include both references #19 and #24 to support our statement. 
Ok 
 
New questions based on the updated manuscript 
 
32. In the discussion the authors write: Furthermore, the 9088 total proteins identified is 
comparable to that achieved using fresh frozen materials (10,107 proteins) by the CPTAC breast 
cancer project15. The 4214 proteins quantified in every sample (n=342) across a large-scale 
breast cancer project using minimal tissue demonstrates the efficiency and high sensitivity of the 
SP3-CTP approach for FFPE cancer proteomics studies36-39. 
The total number of identifications are easily achievable in MS based proteomics. The 
difficulties are to achieve good overlap in quantification across samples. To make it a fair 
comparison you should also include the nr of overlapping proteins with quantification. You have 
also used Johansson et al dataset and should add that also in the comparison. 
 
Given that our study quantified 4214 proteins across a high number (n= 342) of FFPE samples, we did not compare 
the coverage across all samples to CPTAC and Johansson et al as those studies have a significantly smaller number 
of cases and are from fresh frozen samples. Given that the reviewer has mentioned that the total number of proteins 
identified is easily achievable, we have simply removed this sentence from our discussion to avoid any confusion. 
Ok, 
 
33. In the discussion the authors write: Our result is consistent with a proteomic profiling study 
of 2 “basal immune hot” cases vs. 7 “basal immune cold” cases using >10mg of frozen tissue16. 
For max TMT labelling, 100 μg of peptides are used. This usually equates to 1-2 mg wet weight 
of tissue. Not >10 mg. where in paper 16 did you find this statement? 
 
We thank the reviewer for this point. We reviewed the Johansson et al and we did not find that it used >10 mg. It was 
actually a mistake in the reference added to this sentence as the CPTAC paper is the one that mentioned the use of 
200 mg of material for analysis in their methods:  
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In Krug 2020 Cell the methods state: “Samples were qualified for the study if two or more tumor tissue core biopsies 
or surgical resection segments had a minimum mass of 200 mg and demonstrated greater than 60% tumor cell nuclei 
and less than 20% tumor necrosis on frozen tissue section review”. 
 
We decided it is best to remove this sentence from the discussion, as follows (page #19): 
“Our result is consistent with a proteomic profiling study of 2 “basal immune hot” cases vs. 7 “basal immune cold” 
cases using >10mg of frozen tissue

16
”. 

Ok, 
 
 
34. Many of the supplementary figures are a bite blurry, which needs to be fixed. 
 
The Supplementary Figures in the PDF files have been fixed and seem to be clear now. Hopefully, these will look OK 
to the reviewer when merged in the Nat. Commun journal submission system. All figure files used for the final 
publication will be in the Ai format for high resolution rendering as per Nat Commun requirements.  
 
35. Check panel labeling in fig S5. The word robust is mentioned multiple times here and in the 
paper in general. What do the authors mean by robust? What is the criteria(s) that needs to be 
meet to be called robust? 
 
The word “robust” has been mentioned multiple times when describing results based on the inspection of consensus 
matrix and delta plots examining the change in consensus cumulative distribution function (CDF) area to assign the 
number of consensus clusters to be used in the analysis.  

Based on the ConsensusClusterPlus package in R, Consensus Clustering provides quantitative and visual „stability‟ 
evidence derived from repeated subsampling and clustering. The Consensus Clustering reports a consensus of 
these repetitions (multiple iterations), which is robust relative to the resampling variability. Thus, the word “robust” 
has been used in this regard.  

Nevertheless, to avoid over-use and less specific uses of the term, the word “robust” page #8 has been removed:  

“An overview clustering of all the samples included in our study showed that the 38 SuperMix replicates had the 
highest correlation across the 38 plexes (range 0.68-0.81) when compared to the breast tumors and normal samples. 
(Supplementary Figs. S4c-S4d)”. 

Other “robust” wordings in a context other than the bioinformatic consensus cluster assignments as described above 
have been removed from the manuscript as follows: 

Discussion, page #20: 

“Thus, our outcome-linked proteomic data could aid the development of robust protein biomarkers for clinical tests to 
distinguish TNBC/basal-like patients with favorable versus poor prognosis that may benefit from therapies beyond 
standard chemotherapies”. 

Discussion, page #24: 

“The findings on immune distinctions, ECM, and lipid metabolism pathways are potentially clinically relevant as 
standard clinical tests do not yet interrogate this level of heterogeneity for breast cancer subtyping. Furthermore, this 
study identifies protein candidates for in-depth analysis of existing archived clinical trial FFPE specimens, providing a 
valuable resource to develop robust diagnostic and prognostic biomarkers in breast cancer”. 

Ok, 

Reviewer #2, expert in bioinformatics and subtype classification (Remarks to the Author): 
 
In this study, the authors carry out mass-spec proteomic profiling of 300 FFPE breast cancer surgical specimens. The 
specimens are separated into two cohorts based on batch effects. The 08-13 cohort included 75 basal-like, 62 Her2-
Enriched, 30 luminal B, and 11 luminal A PAM50 defined cases. The 86-92 cohort provided the long-term outcome 
data required for luminal cases and included 64 luminal A, 45 luminal B, and 13 Her2-Enriched PAM50 cases. The 
08-13 cohort was used for subtype discovery, both across all tumors and within the TNBC subset. ER+ subtypes 
examined in the 08-13 cohort were examined in the 86-92 cohort. 
 



 30 

Specific comments: 
1. Batch effects were found between the 08-13 and 86-92 cohorts, likely due to differences in collection techniques, 
pre-analytical handling, and fixation procedures. Could the authors try to harmonize the two datasets using Combat 
(https://rdrr.io/bioc/sva/man/ComBat.html)? In practice, Combat is very good at removing batch effect differences. 
Data from different platforms (RPPA, RNA-seq, DNA methylation) have been successfully processed with Combat, 
and the method is independent of nature of the batch effect. The PAM50 subtype could be used as the experimental 
group. There would be advantages in having one harmonized dataset of 300 samples. It seems worth a try. As 
currently written, the Abstract suggests that there is one dataset that was analyzed, rather than two separate cohorts.  
 
As has been shown before, ComBat can lead to overestimating ratios and many in the field believe should be 
avoided. (Methods that remove batch effects while retaining group differences may lead to exaggerated confidence in 
downstream analyses https://academic.oup.com/biostatistics/article/17/1/29/1744261), especially considering that the 
batch effect observed in our study is mostly driven by missed identification of peptides cleaved at lysines and not by 
artifacts on quantification, as shown in figures S3c and S3d. Furthermore, some of the subtypes are completely 
(basal-like) or almost completely (luminal A) confounded with the „cohort‟ batch effect. While Combat will always 
transform the data to minimize batch differences, we believe that for the reasons above, its application in this dataset 
would lead to serious artifacts in the data.  
 We would also like to note that the decision to include cases from the 86-92 cohort in our study design was 
based on clinical and translational considerations. In order for analysis to be meaningful for luminal cases, a long 
enough follow-up was necessary to obtain sufficient events for outcome analyses. Thus, the majority of luminal 
PAM50 cases were derived from patients diagnosed with invasive breast cancer in the period January 1986 to 
September 1992. Forcing the two cohorts to be lumped together for subtyping does not allow obtaining clinically-
relevant results for the subtypes found, and could compromise any clinical relevant observations.  
 
We have updated the abstract to highlight that for the 300 cases included there were 2 datasets analyzed rather than 
one.  
“We performed comprehensive proteomic profiling of 300 FFPE breast cancer surgical specimens, 75 of each PAM50 
subtype, from patients diagnosed in 2008-2013 (n=178) and 1986-1992 (n=122) with linked clinical outcomes”.  
 
2. Page 8: "Cluster-1 (n=34) consisted mostly of luminal B and Her2-Enriched PAM50 cases. Clusters-2 (n=50) was 
enriched for basal-like subtype, included few Her2-Enriched, but had no luminal cases. Cluster-3 (n=47) was primarily 
basal-like cases but included Her2-Enriched cases. Cluster-4 (n=43) was mostly Her2-Enriched but included luminal 
A and luminal B cases." It seems that actual numbers to reflect the noted associations would be helpful here, e.g. 
exactly how many basal-like cases and Her2 cases were in Cluster-3, and was Cluster-2 SIGNIFICANTLY enriched 
for basal-like.  
 
Cluster-2 is enriched for basal-like (pval<1.16e-11, Fisher‟s test), Cluster-3 is enriched for basal-like (pval<1.3e-4, 
Fisher‟s test), Cluster-4 is enriched for Her2-Enriched (pval<1.9e-4, Fisher‟s test). 
The numbers reflecting the breakdown for each PAM50 subtype within each proteome cluster as they appear in Fig. 
2b have also been added to the text, page #9. 
 
“Cluster-1 (n=34) consisted mostly of luminal B (n=18) and Her2-Enriched (n=13) PAM50 cases. Clusters-2 (n=50) 
was significantly enriched for basal-like subtype (n=41), included few Her2-Enriched, but had no luminal cases (p-
value<1.16e-11, Fisher’s test). Cluster-3 (n=47) was primarily basal-like cases (n=31) but included Her2-Enriched 
cases (n=14) (p-value<1.3e-4, Fisher’s test). Cluster-4 (n=43) was mostly Her2-Enriched (n=26) but included luminal 
A (n=8) and luminal B (n=8) cases (p-value<1.9e-4, Fisher’s test)”.  
 
3. In general, where the word "significantly" appears in the main text, it would be good to include a p-value and 
associated test to support the claim. The figures referred to likely include the test, but reflecting this in the main text 
as well would be helpful to the reader. For example, page 11: "The immune hot cluster also had significantly higher 
CD8+ TILs in the intratumoral compartment compared to other clusters (Fig. 4a)." by what p-value and test? 
 
The p-values and tests are now updated across the text where the word “significantly” appears. 
 
4. Wherever a p-value appears in the main text, the test used to derive that p-value should also be indicated. For 
example, page 12: "The subgroups with a high expression for only one of these biomarkers were characterized with 
intermediate RFS (Supplementary Fig. S5b). 70% (21/30) of the cases classified as (TAP1 high/HLA-DQA1 high) 
were in Cluster-3, while 90% (76/84) of (TAP1 low/HLA-DQA1 low) cases were in other clusters (p-value<0.00001) 
(Supplementary Table 1)." What test was used here (we can save the reader from having to go the Table for the 
answer)? 
 
The test used was the Chi-square test. The text in page #13 has been updated to include this information. 

https://rdrr.io/bioc/sva/man/ComBat.html
https://academic.oup.com/biostatistics/article/17/1/29/1744261
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“70% (21/30) of the cases classified as (TAP1 high/HLA-DQA1 high) were in Cluster-3, while 90% (76/84) of (TAP1 
low/HLA-DQA1 low) cases were in other clusters (Chi-square p-value<0.00001) (Supplementary Table 1)”. 
 
5. Page 15: "Multiple correction testing identified fatty acid-binding protein-7 (FABP7) as a candidate biomarker most 
significantly associated with >10-year RFS on tamoxifen treatment..." Was this the only protein that was significant? 
Were other proteins significant and using what statistical test and cutoff? 
 
The association between the continuous increase in each individual protein identified in the cohort 86-92 and the 
endpoint of 10-years RFS was tested using a Cox regression model and stratified log-rank test. This analysis is 
displayed in Supplementary Data S4f. Only protein biomarkers that had a significant log-rank p-value <0.05 when 
adjusted for multiplicity testing by the Benjamini-Hochberg test were selected. Only FABP7 protein was found to 
meet these criteria as displayed in Supplementary Data S4f.  
The relevant text for the 86-92 analysis page #18 has been updated to include this information. 
“Multiple correction testing identified fatty acid-binding protein-7 (FABP7) as the only candidate biomarker associated 
with >10-year RFS on tamoxifen treatment (log-rank BHadj p=0.00004) (Supplementary Data S4f, Supplementary 
Fig. S12e)”. 
 
6. Discussion, page 16. Many journals are uncomfortable with the phrase "(manuscript in preparation)." It seems that 
the method indicated should be described in sufficient detail in the Methods, if it isn't already.  
 
We believe that the methods regarding the isoDoping methodology are now described in sufficient detail in the 
methods section of this manuscript for the reader to be able to reproduce the experiment as was intended. While we 
are currently preparing an even more detailed and comprehensive description of the general isoDoping strategy for a 
separate primary methodology-oriented publication, to avoid confusion we have deleted the mention of a “manuscript 
in preparation.” From pages #6 and #18.  
 
7. In addition to making the raw data available on ProteomeXchange, it would be most helpful to include the 
processed proteinXsample tables as Supplementary Data with the published paper. CPTAC has done a similar thing 
with their past publications. 
 
The proteinXsample data are included in the original Supplementary Data S1c. As requested by reviewer #1, we 
have also added the peptides identified across the cohort to the Supplementary data S1 along with the total number 
of unique peptides per protein and number of PSMs used in quantification per protein (Supplementary Data S1c-
S1d).  
 
8. For boxplots in the figures, please define the ranges involved. 
 
Boxplot whiskers range extends to the most extreme data point which is no more than 1.5 times the interquartile 
range from the box. This definition has been added to the legends of Fig. 3e and Fig. 7b. 
 
Reviewer #3, expert in breast cancer subtypes (Remarks to the Author): 
 
1. The authors present their previously described highly sensitive MS-based methodology termed “Single-Pot, Solid-
Phase enhanced, Sample Preparation”-Clinical Tissue Proteomics (SP3-CTP). This technology has been shown to 
capture known and novel features in FFPE tumor samples. The authors have previously shown that this method can 
be applied on large FFPE material cohorts linked to outcome data. Comprehensive quantification of protein 
expression can be achieved even from lower input quantities of patient specimens such as small biopsies. Here is 
would have been useful to know how small? 
 
This is described in the methods section and supplementary Figure S1a. One to six unstained 10µm tissue sections 
were cut for each sample to obtain an aggregate total area of ~=1cm x 1cm x 10µm, with >80% tumor content. 
 
2. In this paper they have applied the method to 300 well-characterized archival FFPE breast cancer specimens in 
terms of clinical outcome, IHC, and PAM50 RNA-based intrinsic subtypes. The authors demonstrate that at the 
protein level one can identify groups characterized by high expression of immune-response proteins and favorable 
clinical outcomes. 
Doe this paper bring a sufficient novelty? While it is true that “classifications do not always guide therapeutic choices, 
due to the extensive heterogeneity that still characterizes breast cancers” can this be solved by adding one more, at 
the level of proteomics? 
 
As described in the introduction, we performed the current study because genomic classifications of breast cancer 
are inherently limited as clinical decisions are generally based on the protein level. The underlying technology‟s 
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application to FFPE breast cancer material is novel. To the extent that some of the findings overlap with genomic 
classifications, our study still provides an important verification at the protein level, where most drugs act.  
 
Q1. How do this extension to 300 cases add to what we know from Johansson at al Nat Comm, 2019? 
 

As highlighted in the introduction, Johansson et al. Nat Comm 2019 only profiled 9 tumor samples from each of the 
four main breast cancer PAM50 subtypes, a set which also lacked clinical outcome associations and was insufficient 
to characterize the biological heterogeneity of breast cancers in relation to clinical behavior and treatment response. 
In addition, their work required fresh-frozen tissues that are not routinely available from patients, unlike the FFPE 
clinical specimens we were able to use that can be accessed in larger numbers allowing meaningfully powered 
linkages to clinical outcomes.   

 
Q2. How does the heterogeneity described here match what is known from RNA based classification (basal also 
divided in several immune clusters) 

 
The PAM50 subtypes used in this study are an RNA-based classification and the associations of each proteome 
cluster membership with each PAM50 subtype are described in detail in the manuscript. Within the basal-like RNA-
based subtype, there are two distinct proteomic groups that differ in immune response. In the results section, we 
describe how the heterogeneity of triple negative breast cancer relates to what is known from RNA-based 
classifications by comparing our findings with those by Burstein M et al. CCR 2015, showing that our triple negative 
clusters were highly correlated with their corresponding RNA subtypes of „luminal-androgen receptor‟, 
„mesenchymal‟, „basal-immune suppressed‟ and „basal-immune activated‟.  
 
Q3. If the authors were to make biomarkers based on protein as they suggest, which ones would they chose? 
 
TAP1 and HLA-DQA1, as described in detail in the results and discussion sections. These choices are further 
supported by the supplementary validation work done in response to reviewer #1, comment #8 as described above 
(based on the data shown in Supplementary Figures S7 and the new figure S8). We do note that TAP1 and HLA-
DQA1 were chosen, in part, because of the availability of quality IHC grade antibodies; it remains possible that other 
proteins may perform better on IHC-based tests when quality antibodies are available. Indeed, this is one of the prime 
utilities of our results for the breast cancer community, to spur additional biomarker research using our data. 

The discussion page #21 has been updated with this information. 

“Other proteins elevated in the immune hot cluster with available quality antibodies could also be used and developed 
as candidate biomarkers”. 

 
Q4. An introduction of 5 pages and large number of references (81) makes it into a difficult read. This paper as 
rigorously performed and described, would benefit from some clarity and simplification, just highlighting the results 
that move the field forward. 
 

The original work was written in a way that fits the requirements of Nature Communications. The introduction here is 
2.5 pages double spaced rather than 5 pages as pointed out by the reviewer and the authors hold that this is 
adequate to succinctly review the pertinent literature, making it hard to remove any essential information from the 
introduction. As this research sits at a crossroads of breast cancer, bioinformatics, and analytical chemistry the 
authors believe it is important to provide key background information for scientists from a breadth of related and 
interested fields to fully appreciate the work. 84 references are merely supporting information for the interested reader 
to pursue, a number that complies with the Nature Communications guidelines (and we are aware of several detailed 
and comprehensive publications in Nature Communications that have a similar or even higher number of references 
used to properly cover the scientific data presented). 
 
 


