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Supplementary Information
Supplementary Note 1. Average brain responses to reading

When and where do textual sentences elicit brain activity? As expected [4, 3, 6, 7], average fMRI and MEG responses to
written words peak in a distributed and bilateral cortical network, including the primary visual cortex, the left fusiform
gyrus, the supra-marginal, and the superior temporal cortices, as well as the motor, premotor and infero-frontal areas
(Figure 2a). MEG source reconstruction, based on structural MRI and minimum norm estimates, further clarifies the
dynamics of this cortical network: on average, word onset elicits a series of brain responses originating in V1 around
⇡100 ms and continuing within the left posterior fusiform gyrus around 200 ms, the superior and middle temporal gyri,
as well as the pre-motor and infero-frontal cortices between 150 and 500 ms after word onset (Figure 2a, Supplementary
Movie 1).

Supplementary Note 2. Shared-response model (or noise ceilings)

Shared-response model (SRM) comparison (often referred to as “noise ceiling”), allows us to evaluate the extent to
which individual subjects’ brain responses can be explained with a model-free approach [1] and can serve as a proxy
for a signal-to-noise ratio analysis. For this, we fit, for each subject separately, an SRM model (or noise-ceiling): for
each recording of each subject and each sentence Ytrain, we fit a linear model W from the recordings of all other
subjects who read the same sentence Xtrain to predict each voxel and each MEG sensor at each time sample, separately.
Using a cross-validation scheme across sentences, we then evaluate the Pearson correlation R between (1) the true
brain responses of subject Ytest and (2) the predicted brain responses Ŷtest = W ·Xtest for each voxel and each MEG
sensor separately. This procedure can be thought of as approximating an optimal black box: i.e. evaluating a one-hot
encoder of brain responses is trained and evaluated on each element of a unique sentence. Noise ceiling peaks within
the expected language network [5] (Figure 1f-h). These estimates are relatively low: for example, fMRI noise ceilings
reach, on average, R = 0.129 (±0.004 SEM across subjects) in the superior temporal gyrus, whereas MEG noise
ceilings peak at R = 0.069± 0.001 (Supplementary Table 1).

Supplementary Note 3. Probe analysis of the language transformer

Middle layers better map onto brain responses than input and output layers. Why is there such a difference between
layers? To tackle the question, we measure the level to which the 32,400 transformer embeddings linearly predict
two types of linguistic features: part-of-speech (i.e a lexical feature), and the number of open and pending nodes (i.e
compositional syntactic features [8]). More precisely, we fit and evaluate an `2-penalized linear model to predict each
of these features given the transformer’s embedding and plot this decoding performance as a function of the language
performance of the model (Figure 2). While the word embedding and middle layers similarly predict word-level features
(word length and part-of-speech of the word), the two high-level syntactic features (number of open and pending nodes)
are better predicted by the middle layers of transformers. Finally, the decoding performance of the two syntactic features
varies with the layer and the performance, in a manner strikingly similar to the brain score. These analyses suggest that
middle layers are more brain-like than extremity layers because they learn to encode abstract linguistic properties like
syntax.

Supplementary Note 4. Definition of compositionality

Following a recently proposed taxonomy [2], we formally define “compositional” as the language representations that
cannot be explained by the linear combination of lexical representations.

This definition may not be fully aligned with the many definitions of compositionality proposed over the years [10].
Specifically, some linguists restrict compositionality to the limited, generally invertible, combinations of words that
follow the laws of syntax, and would consequently thus prefer the term “contextual”. We believe, however, that the
latter term does not clearly point to the representations that are more than the sum of their parts [9] which is critical to
the present analyses (Figure 3).
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Supplementary Figure 1: Correlation between the network’s performance and brain score. a-b. Standardized
beta coefficients between the language modeling performance of the network and its MEG (a) or fMRI (b) scores.
For each subject, the brain scores are first scaled (0-mean, 1-std). Then, a linear regression is fit to predict the brain
score (averaged across channels and time for MEG, across voxels for fMRI) of each layer of 100 networks (all 512-
dimensional, with 12 layers and 8 heads) given their language performance (top-1 accuracy). The beta coefficients of the
language performance are reported (y-axis). Results are consistent across 4-, 8-, and 12-layer transformers, trained on a
causal (top) or masked (bottom) language modeling task. Error bars are the standard error of the mean beta coefficients
across subjects. c. Pearson correlation between the performance of the 100 transformers (all 512-dimensional, with
12 layers and 8 heads) and the brain score of their word embedding (top) and ninth layer (bottom), for each voxel.
Correlation scores are computed for each (subject, voxel) pair, then averaged across subjects. Only significant voxels
are displayed, as assessed with a two-sided Wilcoxon test across subjects and corrected for multiple comparison using
false discovery rate across voxels (threshold: .001).
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Supplementary Figure 2: What linguistic information drives the brain score? a. From the stimulus, we compute
three linguistic features: the part-of-speech of the words (i) (as given by Spacy), and two higher-level syntactic features:
the number of pending nodes (ii) and open nodes (iii). These two syntactic features are derived from the constituency
trees of the sentences, following [8]. b-d. A `2-penalized linear regression is fit to predict the three linguistic features
from the word embeddings (green), and middle layers (red) of the causal models studied in Figure 4b. The decoding
performance is reported on the y-axis (accuracy at predicting the part-of-speech for b, r-squared for c, d and e). e.
MEG scores (averaged across sensors and time) of the embeddings given their language modeling performance (top-1
accuracy at predicting the next word, Figure 4b). f. MEG scores of the embeddings given their ability to predict the
number of open nodes.

Supplementary Figure 3: Permutation distribution. As a baseline, we compare the normal R scores (dark colors) to
those of a permutation distribution (light colors) for each of the visual, lexical and compositional embeddings introduced
in Figure 3. For each (subject, voxel) pair, we compute the mapping between the embeddings X and the fMRI of
the subject, either (i) shuffled across time samples or (ii) without shuffling. Above, we report scores averaged across
subjects and voxels. Error bars are standard-error of the mean across subjects (n=100).
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Supplementary Figure 4: Distribution of R scores across fMRI voxels (left) and MEG sources (right). We compute
the brain scores for the visual (blue), lexical (green) and compositional (red) embeddings introduced in Figure 3. We
average scores across voxels (resp. sources) and subjects, to obtain one single score per voxel (resp. source). Above,
the corresponding distribution of the R scores across voxels and sources.

Supplementary Figure 5: Comparison between two orthogonalization methods. In Figure 3, we report the
raw brain scores (without subtraction) for the visual (blue, XV ), lexical (green, XW ) and compositional (red, XC)
embeddings (“base method” on the left). On the right, for each level, we subtract the scores of the level below (e.g. red
scores RC = R(XC)�R(XW )). In the middle, we orthogonalize the predictors before computing the brain scores,
by“regressing ou” the effect of the lower level onto the current level. For the compositional score RC , we fit a ridge
regression model f (we use the RidgeCV implementation from scikit-learn, with 10 possible penalization values log
spaced between 10�3 and 108) to predict XC given the concatenation of the visual and word embeddings XV �XW .
Then, we compute the brain scores of the residuals X̃C = XC � f̂(XV �XW ). We proceed similarly for the lexical
residuals X̃W = XW XV . As we see, the subtraction method (right) is more conservative than the method with regress
out (middle).
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Supplementary Figure 6: Brain scores over time. a) Same as Figure 3c, but without subtracting the scores of the level
below. b) Same as Figure 3c without subtracting the scores.
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Fronto-polar cortex: 0.054± 0.003 p < 10�8

Fusiform: 0.120± 0.004 p < 10�8

Infero-frontal: 0.139± 0.005 p < 10�8

M1: 0.042± 0.003 p < 10�8

STG: 0.129± 0.004 p < 10�8

Supramarginal: 0.078± 0.003 p < 10�8

V1: 0.150± 0.006 p < 10�8

Supplementary Table 1: Average noise ceiling within each region-of-interest. Mean, standard error of the mean and
p-values across subjects.
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Task Dim Layers Heads Best perplexity Best accuracy

mlm 512 12 8 4.70 67.51
mlm 512 12 4 4.70 67.36
mlm 512 8 4 4.90 66.72
mlm 512 8 8 4.99 66.33
mlm 512 4 8 5.55 64.40
mlm 512 4 4 5.90 63.61
mlm 256 12 8 6.08 63.48
mlm 256 12 4 6.12 63.36
mlm 256 8 8 6.62 62.12
mlm 256 8 4 6.69 61.71
mlm 256 4 8 7.75 59.73
mlm 256 4 4 7.97 59.15
mlm 128 12 8 8.99 57.65
mlm 128 12 4 9.26 57.46
mlm 128 8 8 10.01 56.35
mlm 128 8 4 10.11 56.16
mlm 128 4 8 12.06 53.70
mlm 128 4 4 12.60 53.08
clm 512 12 8 15.00 46.47
clm 512 12 4 15.06 46.38
clm 512 8 4 15.49 46.01
clm 512 8 8 15.49 45.97
clm 512 4 8 16.75 44.93
clm 512 4 4 16.90 44.82
clm 256 12 4 17.85 44.28
clm 256 12 8 17.80 44.26
clm 256 8 8 18.69 43.68
clm 256 8 4 18.83 43.59
clm 256 4 4 20.67 42.53
clm 256 4 8 20.64 42.49
clm 128 12 4 23.26 41.47
clm 128 12 8 23.31 41.38
clm 128 8 4 24.45 40.83
clm 128 8 8 24.36 40.80
clm 128 4 4 27.11 39.61
clm 128 4 8 27.06 39.57

Supplementary Table 2: Performance of the 36 transformer architectures. Best perplexity (the lower the better) and
top-1 accuracy (the higher the better) of 36 transformer architectures, evaluated on a test test of ⇡180K words from
Wikipedia. Transformers are trained with a masked (‘mlm’) or causal (‘clm’) language modeling objective. They vary
in their dimensionality (‘Dim’), number of layers (‘Layers’) and number of attention heads (‘Heads’). The models
are trained on a set of ⇡280K words from Wikipedia (in Dutch). The training is stopped when the perplexity on a
validation set does not decrease for 5 epochs.
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