Supplementary Material for # Novel targets, treatments, and advanced models for intracerebral haemorrhage Marietta Zille¹, Tracy D. Farr², Richard F. Keep³, Christine Römer⁴, Guohua Xi³, Johannes Boltze⁵ ### Correspondence to: Marietta Zille, University of Vienna, Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, UZA II, Althanstr. 14, 1090 Vienna, Austria, email: marietta.zille@univie.ac.at Or Johannes Boltze, University of Warwick, School of Life Sciences, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom, email: johannes.boltze@warwick.ac.uk ## **Supplementary:** **Supplementary Table. Overview of interventional clinical trials for spontaneous ICH after 2010.** GOSE, Glasgow Outcome Scale Extended; MMP, matrix metalloproteinase; mRS, modified Rankin Scale; NIHSS, National Institute Health Stroke Scale; OR, odds ratio; rt-PA, recombinant tissue plasminogen activator. ¹ University of Vienna, Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, UZA II, Althanstr. 14, 1090 Vienna, Austria ² University of Nottingham, School of Life Sciences, Physiology, Pharmacology, and Neuroscience Division, Medical School, Nottingham NG7 2UH, UK ³ University of Michigan, Department of Neurosurgery, Ann Arbor, MI 48109-2200, USA ⁴ Max Delbrück Center for Molecular Medicine in the Helmholtz Association, The Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany ⁵ The University of Warwick, School of Life Sciences, Gibbet Hill Campus, Coventry CV4 7AL, UK **Supplementary Table. Overview of interventional clinical trials for spontaneous ICH after 2010.** GOSE, Glasgow Outcome Scale Extended; MMP, matrix metalloproteinase; mRS, modified Rankin Scale; NIHSS, National Institute Health Stroke Scale; OR, odds ratio; rt-PA, recombinant tissue plasminogen activator. | Study title (as listed in clinicaltrials.gov) | Identifier | Phase | Intervention | Target | Outcome (control vs. intervention) | |---|--|-------|---|---|---| | Rivaroxaban Versus Dabigatran or Warfarin in
Real-World Studies of Stroke Prevention in Atrial
Fibrillation | Systematic review
and meta-analysis
(17 studies) | N/A | Drug: rivaroxaban, dabigatran,
warfarin | Antiplatelet/
anticoagulation | Rivaroxaban similar risk of stroke/thromboembolism vs. dabigatran (hazard ratio 1.02) and reduced vs. warfarin (hazard ratio 0.75), increased major bleeding risk vs. dabigatran (hazard ratio 1.38) but similar to warfarin (hazard ratio 0.99) ¹ | | Apixaban After Anticoagulation-associated
Intracerebral Haemorrhage in Patients With Atrial
Fibrillation (APACHE-AF) | NCT02565693 | 2 | Drug: apixaban | Antiplatelet/
anticoagulation | No difference in non-fatal stroke or vascular death (24% vs. 26%) and serious adverse events (57% bs. 58%) over median follow-up of 1.9 years ² | | NOACs for Stroke Prevention in Patients With
Atrial Fibrillation and Previous ICH (NASPAF-
ICH) | NCT02998905 | 2 | Drug: non-vitamin K
antagonist oral anticoagulants
vs. acetylsalicylic acid | Antiplatelet/
anticoagulation | Completed, pending results | | Study of Antithrombotic Treatment After IntraCerebral Haemorrhage (STATICH) | NCT03186729 | 4 | Drug: antithrombotic agent | Antiplatelet/
anticoagulation | Recruiting | | Anticoagulation in ICH Survivors for Stroke
Prevention and Recovery (ASPIRE) | NCT03907046 | 3 | Drug: apixaban, acetylsalicylic acid | Antiplatelet/
anticoagulation | Recruiting | | PREvention of STroke in Intracerebral
haemorrhaGE Survivors With Atrial Fibrillation
(PRESTIGE-AF) | NCT03996772 | 3 | Drug: apixaban, dabigatran,
edoxaban, rivaroxaban | Antiplatelet/
anticoagulation | Recruiting | | Antiplatelet Secondary Prevention International
Randomised Trial After INtracerebral
haemorrhaGe (ASPIRING)-Pilot Phase | NCT04522102 | 3 | Drug: start antiplatelet monotherapy | Antiplatelet/
anticoagulation | Recruiting | | Avoiding Anticoagulation After IntraCerebral
Haemorrhage (A3ICH) | NCT03243175 | 3 | Drug: apixaban, device: left atrial appendage closure | Antiplatelet/
anticoagulation | Recruiting | | REstart or STop Antithrombotic Randomised Trial in France (RESTART-Fr) | NCT02966119 | 3 | Drug: clopidogrel or
acetylsalicylic acid and/or
Dypyridamole | Antiplatelet/
anticoagulation | Recruiting | | Early-Start Antiplatelet Treatment After
Neurosurgery in Patients With Spontaneous
Intracerebral Hemorrhage | NCT04820972 | N/A | Drug: antiplatelet agents | Antiplatelet/
anticoagulation | Recruiting | | Improving Platelet Activity for Cerebral
Hemorrhage Treatment - DDAVP Proof of
Concept (IMPACT) | NCT00961532 | 2 | Drug: desmopressin | Antiplatelet
reversal,
haematoma
expansion | Improved platelet activity, modest changes in haematoma growth ³ | | Desmopressin for Reversal of Antiplatelet Drugs
in Stroke Due to Haemorrhage (DASH) | NCT03696121 | 2 | Drug: desmopressin | Antiplatelet reversal, | Recruiting | | Study title (as listed in clinicaltrials.gov) | Identifier | Phase | Intervention | Target | Outcome (control vs. intervention) | |--|-------------|--------------------|--|------------------------|--| | | | | | haematoma
expansion | | | Antihypertensive Treatment of Acute Cerebral
Hemorrhage-II (ATACH-II) | NCT01176565 | 3 | Drug: intravenous nicardipine hydrochloride | Haematoma
expansion | Reduced rate of patients with haematoma expansion (24% vs. 19%), no difference in functional outcome mRS 0-3 (62% vs. 61%), or mortality (7% vs. 7%) at 90 days ⁴ | | The Second Intensive Blood Pressure Reduction in Acute Cerebral Haemorrhage Trial (INTERACT2) | NCT00716079 | 3 | Other: blood pressure
management policies
(routinely available drugs for
blood pressure lowering) | Haematoma
expansion | Reduced haematoma growth by 4.5% volume, improved functional outcome mRS 0-3 (61% vs. 64%), no difference in mortality (12% vs. 12%) ⁵ | | The Third, Intensive Care Bundle With Blood
Pressure Reduction in Acute Cerebral Hemorrhage
Trial (INTERACT3) | NCT03209258 | 4 phases / 3 steps | Other: care bundle of active
management (intensive blood
pressure lowering, glycemic
control, treatment of pyrexia,
reversal of anticoagulation) | Haematoma
expansion | Recruiting | | Intensive Ambulance-delivered Blood Pressure
Reduction in Hyper-Acute Stroke Trial
(INTERACT4) | NCT03790800 | 3 | Drug: urapidil | Haematoma
expansion | Recruiting | | Intracerebral Hemorrhage Acutely Decreasing
Arterial Pressure Trial (ICH ADAPT) | NCT00963976 | 2 | Drug: labetalol/ hydralazine/
enalapril | Haematoma
expansion | No difference in haematoma growth (0.71 vs. 0.67), 90-day mRS (4 vs 2.5), or 30-day mortality (11% vs. 18%) ⁶ | | The Intracerebral Hemorrhage Acutely Decreasing Arterial Pressure Trial II (ICH-ADAPT II) | NCT02281838 | 2 | Drug: labetalol/ hydralazine/
enalapril | Haematoma
expansion | Recruiting | | Clevidipine in the Treatment of Patients With
Acute Hypertension and Intracerebral Hemorrhage
(ACCELERATE) | NCT00666328 | 3 | Drug: clevidipine | Haematoma
expansion | Achieved systolic blood pressure reduction, small haematoma volume change (-2.9%) ⁷ | | Esmolol for the Treatment of Hypertension After Intracerebral Hemorrhage Study (ETHICHS) | NCT03743103 | 4 | Drug: brevibloc (esmolol hydrochloride), nitroprusside | Haematoma
expansion | Recruiting | | Triple Therapy Prevention of Recurrent
Intracerebral Disease EveNts Trial (TRIDENT) | NCT02699645 | 3 | Drug: telmisartan, amlodipine, and indapamide | Haematoma
expansion | Recruiting | | Regulating Blood Pressure During Recovery From Intracerebral Hemorrhage (REDUCE) | NCT04760717 | 2 | Drug: Spironolactone | Haematoma
expansion | Recruiting | | Analgesia-first Minimal Sedation for Spontaneous
Intracerebral Hemorrhage Early Antihypertensive
Treatment (ASSICHH) | NCT03207100 | N/A | Combination Product:
Analgesia-first minimal
sedation and antihypertensive
treatment | Haematoma
expansion | Completed, pending results | | Tranexamic Acid for Acute ICH Growth 3reatment by Spot Sign (TRAIGE) | NCT02625948 | 2 | Drug: tranexamic acid | Haematoma
expansion | Recruiting | | Study title (as listed in clinicaltrials.gov) | Identifier | Phase | Intervention | Target | Outcome (control vs. intervention) | |--|----------------|-------|--|-------------------------|---| | Treatment of Intracerebral Hemorrhage in Patients on Non-vitamin K Antagonist (TICH-NOAC) | NCT02866838 | 2/3 | Drug: tranexamic acid | Haematoma
expansion | Completed, pending results | | Tranexamic acid for hyperacute primary
IntraCerebral Haemorrhage (TICH-2) | ISRCTN93732214 | 3 | Drug: tranexamic acid | Haematoma
expansion | Reduced rate of patients with haematoma expansion (29% vs. 25%), no difference in favourable functional outcome mRS 0-3 (46% vs. 45%) and mortality (21% vs. 22%) at 90 days ⁸ | | Tranexamic Acid for Spontaneous Acute Cerebral
Hemorrhage Trial (TRANSACT) | NCT03044184 | 3 | Drug: tranexamic acid | Haematoma
expansion | Recruiting | | The Spot Sign and Tranexamic Acid On
Preventing ICH Growth – AUStralasia Trial
(STOP-AUST) | NCT01702636 | 2 | Drug: tranexamic acid | Haematoma
expansion | No difference in the rate of patients with haematoma expansion (52% vs. 44%), favourable functional outcome mRS 0-3 (46% vs. 56%) or death (16% vs. 26%) ⁹ | | Stopping Haemorrhage With Tranexamic Acid for
Hyperacute Onset Presentation Including Mobile
Stroke Units (STOP-MSU) | NCT03385928 | 2 | Drug: tranexamic acid | Haematoma
expansion | Recruiting | | Effectiveness of Intravenous Tranexamic Acid in
Primary Cerebral Hemorrhage for Prevention of
Hematoma Progression | NCT04742205 | 1 | Biological: recombinant activated factor VII | Haematoma
expansion | Not yet recruiting | | Factor VIIa in Acute Intracerebral Haemorrhage | NCT00266006 | 2 | Drug: eptacog alfa (activated) | Haematoma
expansion | Completed, pending results | | Recombinant Factor VIIa (rFVIIa) for
Hemorrhagic Stroke Trial (FASTEST) | NCT03496883 | 3 | Biological: recombinant activated factor VII | Haematoma
expansion | Recruiting | | Safety and Preliminary Efficacy of Activated
Recombinant Human Factor VII for Preventing
Early Hematoma Growth in Acute Intracerebral
Haemorrhage | NCT01563445 | 2 | Biological: activated recombinant human factor VII | Haematoma
expansion | Completed, pending results | | Safety and Preliminary Efficacy of Activated
Recombinant Human Factor VII in Acute
Intracerebral Haemorrhage | NCT01566786 | 2 | Biological: recombinant activated factor VII | Haematoma
expansion | Completed, pending results | | "Spot Sign" Selection of Intracerebral Hemorrhage
to Guide Hemostatic Therapy (SPOTLIGHT) | NCT01359202 | 2 | Biological: recombinant activated factor VII | Haematoma
expansion | No difference in haematoma growth (2.6 vs. 2.5 mL) at 24 hours, favourable functional outcome mRS 0-3 (32% vs. 37%), or mortality (21% vs. 20%) at 90 days ¹⁰ | | The Spot Sign for Predicting and Treating ICH Growth Study (STOP-IT) | NCT00810888 | 2 | Biological: recombinant activated factor VII | Haematoma
expansion | (2170 vs. 2070) at 90 days | | Clinical Study on the Treatment of Hypertensive
Intracerebral Hemorrhage With Panax
Notoginseng Saponin (CSTHIHPNS) | NCT02999048 | 4 | Drug: Panax notoginseng saponins | Haematoma
expansion | Completed, pending results | | Surgical trial in lobar intracerebral hemorrhage (STICH II) | ISRCTN22153967 | N/A | Surgical: craniotomy | Haematoma
evacuation | No difference in mortality (24% vs. 18%) or favourable functional outcome GOSE (38% vs. 41%) at 6-months ¹¹ | | Study title (as listed in clinicaltrials.gov) | Identifier | Phase | Intervention | Target | Outcome (control vs. intervention) | |---|-------------------------|-------|--|-------------------------|---| | Decompressive Hemicraniectomy in Intracerebral
Hemorrhage (SWITCH) | NCT02258919 | N/A | Surgical: decompressive craniectomy | Haematoma
evacuation | Recruiting | | Minimally invasive stereotactic puncture and thrombolysis therapy versus conventional craniotomy in the treatment of acute intracerebral hemorrhage | ACTRN126100009
45022 | N/A | Procedure: minimally invasive stereotactic puncture and thrombolysis therapy | Haematoma
evacuation | Improved functional outcome (mRS 3.9 vs. 2.2), no difference in mortality (24% vs. 19%) at 365 days ¹² | | The Minimally Invasive Endoscopic Surgery With
the Axonpen System for Spontaneous Intracerebral
Hemorrhage (MIECH) | NCT04839770 | N/A | Device: Axonpen system | Haematoma
evacuation | Recruiting | | Minimally invasive craniopuncture combined with urokinase infusion therapy | N/A | N/A | Surgical: minimally invasive craniopuncture therapy, Drug: urokinase | Haematoma
evacuation | No difference in functional outcome mRS 0-3 (19% vs. 14%) at 14 days, decreased mortality (25% vs. 15%) at 90 days ¹³ | | Minimally Invasive Surgery and rtPA for
Intracerebral Hemorrhage Evacuation (MISTIE) | NCT00224770 | 2 | Surgical: minimally invasive surgery, Biological: rt-PA | Haematoma
evacuation | No difference in favourable outcome mRS 0-3 (19% vs. 32%) and mortality (35.5% vs. 40%) at 365 days ¹⁴ | | Minimally invasive surgery plus rt-PA for ICH evacuation phase III (MISTIE-III) | NCT01827046 | 3 | Surgical: minimally invasive
surgery, Biological: rt-PA | Haematoma
evacuation | No difference in favourable functional outcome mRS 0-3 at 12-months for moderate to large ICH (42% vs. 44%), reduced mortality (26% vs. 19%), ¹⁵ patients with ≤15 mL end of treatment ICH volume or ≥70% volume reduction with favourable functional outcomes ¹⁶ | | Minimally-invasive Surgery Versus Craniotomy in Patients With Supratentorial Hypertensive Intracerebral Hemorrhage (MISICH) | NCT02811614 | N/A | Surgical: minimally invasive
surgery (endoscopic
evacuation or stereotactic
aspiration) | Haematoma
evacuation | Recruiting | | Early MiNimally-invasive Removal of
IntraCerebral Hemorrhage (ICH) (ENRICH) | NCT02880878 | N/A | Surgical: minimally invasive parafascicular surgery | Haematoma
evacuation | Recruiting | | Dutch Intracerebral Hemorrhage Surgery Trial
Pilot Study (DIST pilot) | NCT03608423 | 2 | Surgical: minimally-invasive endoscopy-guided surgery | Haematoma
evacuation | Active, not recruiting | | Early Minimally Invasive Image Guided
Endoscopic Evacuation of Intracerebral
Haemorrhage | NCT04805177 | Pilot | Surgical: minimally invasive image-guided endoscopic hematoma evacuation | Haematoma
evacuation | Recruiting | | INVEST Feasibility – Minimally Invasive
Endoscopic Surgery With Apollo in Patients With
Brain Hemorrhage | NCT02654015 | | Surgical: Apollo minimally invasive surgery | Haematoma
evacuation | Recruiting | | Artemis in the Removal of Intracerebral
Hemorrhage (MIND) | NCT03342664 | | Surgical: Artemis minimally invasive surgery | Haematoma
evacuation | Recruiting | | The MIRROR Registry: Minimally Invasive
IntRaceRebral HemORrhage Evacuation
(MIRROR) | NCT04494295 | | Surgical: Aurora Surgiscope
System minimally invasive
surgery | Haematoma
evacuation | Recruiting | | Study title (as listed in clinicaltrials.gov) | Identifier | Phase | Intervention | Target | Outcome (control vs. intervention) | |---|-------------|-------|---|---|---| | Ultra-Early, Minimally inVAsive intraCerebral
Haemorrhage evacUATion Versus Standard
trEatment (EVACUATE) | NCT04434807 | N/A | Surgical: minimally invasive hematoma evacuation | Haematoma
evacuation | Recruiting | | Minimal Invasive Surgical Intracerebral
Hemorrhage Removal (HEALME) | NCT05138341 | N/A | Surgical: minimally invasive hematoma evacuation | Haematoma
evacuation | Not yet recruiting | | Safety and Efficacy of Stereotactic Aspiration Plus
Urokinase in Deep Intracerebral Hemorrhage
Evacuation (STAPLE-dICH) | NCT04686877 | 2/3 | Procedure: stereotactic
aspiration plus urokinase
irrigation (STAPLE) | Haematoma
evacuation | Recruiting | | Robotic Assisted Evacuation of Sub-acute and
Chronic Hypertensive Cerebral Hemorrhage | NCT04957862 | N/A | Procedure: robotic assisted evacuation | Haematoma
evacuation | Not yet recruiting | | Active Removal of IntraCerebral Hematoma Via
Active Irrigation (ARCH) | NCT05118997 | N/A | Procedure: IRRAflow with
manual rt-PA administration
followed by Active Fluid
Exchange | Haematoma
evacuation | Recruiting | | Acute Hypertensive Cerebral Hemorrhage Surgery (NET-OCEAN) | NCT04957849 | N/A | Procedure: neuroendoscopic,
trans-occipital approach
combined with low-drainage
surgery | Haematoma
evacuation | Not yet recruiting | | Sterotactic Operation Integrating With
Thrombolysis in Basal Ganglion Hemorrhage
Evacuation (SOITBE) | NCT03957707 | N/A | Surgical: minimally invasive puncture aspiration plus rt-PA | Haematoma
evacuation | Recruiting | | Stereotactic Operation Integrating With
Thrombolysis in Basal Ganglion Hemorrhage
Evacuation II (SOITBE II) | NCT04172376 | N/A | Surgical: minimally invasive puncture aspiration plus rt-PA | Haematoma
evacuation | Not yet recruiting | | Intracavitary Injection of hUMSCs in Acute Basal
Ganglia Hematoma After Stereotactic Aspiration | NCT04074408 | 2 | Surgical: stereotactic
aspiration surgery, Biological:
human umbilical cord
mesenchymal stem cells | Haematoma
evacuation, stem
cell transplantation | Recruiting | | Use of Minocycline in Intracerebral Hemorrhage | NCT03040128 | 1/2 | Drug: minocycline | White matter injury, inflammation | Decreased MMP-9 levels, no difference in 90-days mRS (1 vs. 1) ¹⁷ | | A Pilot Study of Minocycline in Intracerebral
Hemorrhage Patients (MACH) | NCT01805895 | 1/2 | Drug: minocycline | White matter injury, inflammation | No difference in MMP-9 and interleukin 6 levels, no difference in 90-days mRS (3.7 vs. 3.5) ¹⁸ | | Fingolimod as a Treatment of Cerebral Edema
After Intracerebral Hemorrhage (FITCH) | NCT04088630 | 1 | Drug: fingolimod | White matter injury, immunosuppression | Recruiting | | Prevention of Hypertensive Injury to the Brain by Intensive Treatment in IntraCerebral Haemorrhage (PROHIBIT-ICH) | NCT03863665 | | Device: telemetric blood pressure monitoring | White matter injury, post-ICH cognitive impairment | Recruiting | | Study title (as listed in clinicaltrials.gov) | Identifier | Phase | Intervention | Target | Outcome (control vs. intervention) | |---|-------------|-------|---|--|--| | Intracerebral Hemorrhage Deferoxamine Trial (iDEF) | NCT02175225 | 2 | Drug: deferoxamine mesylate | Iron toxicity,
ferroptosis | Improved mRS 0-2 (36 vs. 45) and mRS 0-3 (68% vs. 72%), no difference in mortality (9% vs. 9%) at 180 days, ¹⁹ favourable outcome (mRS 0-2) for moderate hematoma volume (10-30 mL, 26% vs. 50%) at 90 days ²⁰ | | Clinical Study of Huperzine A in the Treatment of Patients With Hypertensive Cerebral Hemorrhage | NCT04509323 | 4 | Drug: huperzine A | Cell death | Not yet recruiting | | Edaravone Dexborneol for Treatment of
Hypertensive Intracerebral Hemorrhage (ED-ICH) | NCT04714177 | 2 | Drug: edaravone dexborneol | Cell death,
neuroinflammation | Not yet recruiting | | Feasibility Study of Transcranial Ultrasound
Stimulation (TUS) on Stroke Patients | NCT04877184 | N/A | Procedure: transcranial ultrasound stimulation and rehabilitation | Cell death,
neuroinflammation,
blood-brain barrier | Recruiting | | Feasibility of Improving Cerebral Autoregulation in Acute Intracerebral Haemorrhage (BREATHE-ICH) | NCT03324321 | N/A | Other: hypocapnia via
hyperventilation protocol | Cerebral
autoregulation | Improved autoregulatory index (4.8 pre-, 7.0 post-intervention) ²¹ | | Glibenclamide Advantage in Treating Edema After Intracerebral Hemorrhage (GATE-ICH) | NCT03741530 | N/A | Drug: glibenclamide | Perihaematomal oedema | Completed, pending results | | Dimethyl Fumarate for the Treatment of Intracerebral Hemorrhage | NCT04890379 | 2 | Drug: dimethyl fumarate | Perihaematomal oedema | Not yet recruiting | | Conivaptan for the Reduction of Cerebral Edema
in Intracerebral Hemorrhage- A Safety and
Tolerability Study | NCT03000283 | 1 | Drug: Conivaptan | Perihaematomal oedema | Safe and tolerable ²² | | Administration of Celecoxib for Treatment of
Intracerebral Hemorrhage: A Pilot Study (ACE-ICH) | NCT00526214 | Pilot | Drug: celecoxib medication | Perihaematomal
oedema, hematoma
expansion | Reduced expansion of perihaematomal oedema (91% vs. 44%) and hematoma (49% vs. 2%), improved functional outcome mRS 0-2 (38% vs. 60%) ²³ | | Remote Ischemic Conditioning for Intracerebral
Hemorrhage (RICH) | NCT03930940 | 1 | Procedure: remote ischaemic conditioning | Perihaematomal
oedema, hematoma
resolution | Increased haematoma resolution (42% vs. 49%) and relative perihaematomalo edema (2.02 vs. 1.77) at 7 days, no difference in favourable outcome mRS 0-3 (60% vs. 65%) ²⁴ | | Remote Ischemic Conditioning for the Treatment of Intracerebral Hemorrhage (RICH-2) | NCT04657133 | 3 | Procedure: remote ischaemic conditioning | Perihaematomal
oedema, hematoma
resolution | Recruiting | | Remote Ischemic Conditioning for Cerebral
Amyloid Angiopathy-related Intracerebral
Hemorrhage (RIC-CAAH) | NCT04757597 | N/A | Procedure: remote ischaemic conditioning | Perihaematomal
oedema, hematoma
resolution | Recruiting | | Remote Ischemic Conditioning in Patients With
Acute Stroke (RESIST) | NCT03481777 | N/A | Procedure: remote ischaemic conditioning | Perihaematomal
oedema, hematoma
resolution | Recruiting | | Study title (as listed in clinicaltrials.gov) | Identifier | Phase | Intervention | Target | Outcome (control vs. intervention) | |--|-------------|-------|---|--|---| | Safety and Efficacy of Remote Ischemic
Conditioning in Patients With Spontaneous
Intracerebral Hemorrhage (SERIC-sICH) | NCT03484936 | N/A | Procedure: remote ischaemic conditioning | Perihaematomal
oedema,
haematoma
resolution | Not yet recruiting | | Statin for Neuroprotection in Spontaneous
Intracerebral Hemorrhage (STATIC) | NCT04857632 | 2/3 | Drug: statin | Perihaematomal oedema, neuroinflammation | Recruiting | | Statins In Intracerbral Hemorrhage (SATURN) | NCT03936361 | 3 | Drug: statin | Perihaematomal oedema, neuroinflammation | Recruiting | | Systemic Normothermia in Intracerebral
Hemorrhage (ICH) (SNICH) | NCT02078037 | 1 | Device: Arctic Sun cooling device | Perihaematomal oedema, neuroinflammation | Completed, pending results | | Biomarker and Edema Attenuation in
IntraCerebral Hemorrhage (BEACH) | NCT05020535 | 2 | Drug: MW01-6-189WH | Perihaematomal oedema, neuroinflammation | Not yet recruiting | | Chinese Herbal Medicine in Acute INtracerebral
Haemorrhage (CHAIN) | NCT05066620 | 3 | Drug: Chinese herbal medicine
FYTF-919 | Perihaematomal oedema, neuroinflammation | Not yet recruiting | | Studying Anakinra to Reduce Secondary Brain
Damage After Spontaneous Haemorrhagic Stroke
(ACTION) | NCT04834388 | 2 | Drug: interleukin 1 receptor
antagonist Anakinra | Perihaematomal
oedema,
neuroinflammation,
blood-brain barrier | Not yet recruiting | | Interleukin-1 Receptor Antagonist in Intracerebral
Haemorrhage (BLOC-ICH) | NCT03737344 | 2 | Drug: interleukin 1 receptor antagonist Kineret | Perihaematomal
oedema,
neuroinflammation,
blood-brain barrier | Completed, pending results | | Safety of Pioglitazone for Hematoma Resolution
In Intracerebral Hemorrhage (SHRINC) | NCT00827892 | 2 | Drug: pioglitazone | Microglia,
hematoma
resolution | Completed, pending results | | Efficacy, Safety and Tolerability of BAF312
Compared to Placebo in Patients With
Intracerebral Hemorrhage (ICH) | NCT03338998 | 2 | Drug: BAF312 (Siponimod, a selective modulator of sphingosine 1-phosphate receptor 1 and 5) | Neuroinflammation | Completed, pending results | | A Proof of Concept Study to Evaluate CN-105 in ICH Patients (CATCH) | NCT03168581 | 2 | Drug: CN-105 | Neuroinflammation | Improved functional recovery mRS 0-3 (18% vs. 40%) at 30 days ²⁵ | | Evaluation of CN-105 in Subject With Acute
Supratentorial Intracerebral Hemorrhage (S-CATCH) | NCT03711903 | 2 | Drug: CN-105 | Neuroinflammation | Recruiting | | Study title (as listed in clinicaltrials.gov) | Identifier | Phase | Intervention | Target | Outcome (control vs. intervention) | |---|--|-------|--|---------------------------------|--| | Mesenchymal Stem Cells Therapy in Patients With Recent Intracerebral Hemorrhage | NCT03371329 | 1 | Biological: mesenchymal stem cells | Neuroinflammation, regeneration | Completed, pending results | | Clinical Evaluation of Removing Blood Stasis
Therapy in Treating Acute Cerebral Hemorrhage
Safety and Efficacy (CERBSTTSCH) | NCT03354026 | 4 | Drug: traditional Chinese
medicine (AICH-PXZY) | Gut microbiota | Not yet recruiting | | Life After STroke - the LAST Study (LAST) | NCT01467206 | N/A | Behavioural: Long-term
follow up by a coordinating
physiotherapist | Post-ICH motor recovery | No benefit on motor assessment or mRS (1.33 vs. 1.28) at 18 months ²⁶ | | A Very Early Rehabilitation Trial (AVERT) | ACTRN12606000
185561
NCT01846247 | 3 | Procedure: very early
mobilization vs. early
mobilization | Post-ICH motor recovery | Poor functional outcome for very early mobilization (OR 0.48 favours early mobilization) and death (OR 3.21 favours early mobilization) at 3 months ²⁷ | | Akershus Early Mobilisation in Stroke Study (AKEMIS) | NCT00832351 | 3 | Procedure: mobilization | Post-ICH motor recovery | Completed, pending results | | Clinical Curative Effect and safe Research on treatment of hemorrhagic stroke with stage acupuncture | ChiCTR-TRC-
08000225 | N/A | Procedure: acupuncture | Post-ICH motor recovery | Improved lower limb function Fugl-Mayer (7 vs. 13 points difference from baseline), but not lower limb function (20 vs. 20 points difference) at 90 days ²⁸ | | Can Acupuncture Benefit Surgical Patients With Haemorrhagic Stroke? | NCT01037894 | 1/2 | Procedure: acupuncture | Post-ICH motor recovery | Completed, pending results | | Biologic Mechanisms of Early Exercise After
Intracerebral Hemorrhage (BEACH) | NCT04027049 | N/A | Device: Supine cycle ergometry of the lower extremities | Post-ICH motor recovery | Recruiting | | Seizures Post Intracerebral Hemorrhage | NCT01115959 | 4 | Drug: valproic acid | Post-ICH seizures | Completed, pending results | | Effects of fluoxetine on functional outcomes after acute stroke (FOCUS) | ISRCTN83290762 | N/A | Drug: fluoxetine | Post-ICH
depression | No subgroup analysis for the haemorrhagic stroke patients only ²⁹ | | Assessment oF FluoxetINe In sTroke recoverY (AFFINITY) | ACTRN12611000
774921 | 3 | Drug: fluoxetine | Post-ICH
depression | No difference in shifts in mRS (OR 0.905) ³⁰ | | Safety and efficacy of fluoxetine on functional recovery after acute stroke (EFFECTS) | NCT02683213 | N/A | Drug: fluoxetine | Post-ICH
depression | No subgroup analysis for the haemorrhagic stroke patients only ³¹ | #### References - 1. Bai Y, Deng H, Shantsila A, Lip GY. Rivaroxaban Versus Dabigatran or Warfarin in Real-World Studies of Stroke Prevention in Atrial Fibrillation: Systematic Review and Meta-Analysis. Stroke. 2017;48(4):970-6. - 2. Schreuder F, van Nieuwenhuizen KM, Hofmeijer J, Vermeer SE, Kerkhoff H, Zock E, et al. Apixaban versus no anticoagulation after anticoagulation-associated intracerebral haemorrhage in patients with atrial fibrillation in the Netherlands (APACHE-AF): a randomised, open-label, phase 2 trial. The Lancet Neurology. 2021;20(11):907-16. - 3. Naidech AM, Maas MB, Levasseur-Franklin KE, Liotta EM, Guth JC, Berman M, et al. Desmopressin improves platelet activity in acute intracerebral hemorrhage. Stroke. 2014;45(8):2451-3. - 4. Qureshi AI, Palesch YY, Barsan WG, Hanley DF, Hsu CY, Martin RL, et al. Intensive Blood-Pressure Lowering in Patients with Acute Cerebral Hemorrhage. The New England journal of medicine. 2016;375(11):1033-43. - 5. Anderson CS, Heeley E, Huang Y, Wang J, Stapf C, Delcourt C, et al. Rapid blood-pressure lowering in patients with acute intracerebral hemorrhage. The New England journal of medicine. 2013;368(25):2355-65. - 6. Butcher KS, Jeerakathil T, Hill M, Demchuk AM, Dowlatshahi D, Coutts SB, et al. The Intracerebral Hemorrhage Acutely Decreasing Arterial Pressure Trial. Stroke. 2013;44(3):620-6. - 7. Graffagnino C, Bergese S, Love J, Schneider D, Lazaridis C, LaPointe M, et al. Clevidipine rapidly and safely reduces blood pressure in acute intracerebral hemorrhage: the ACCELERATE trial. Cerebrovascular diseases. 2013;36(3):173-80. - 8. Sprigg N, Flaherty K, Appleton JP, Al-Shahi Salman R, Bereczki D, Beridze M, et al. Tranexamic acid for hyperacute primary IntraCerebral Haemorrhage (TICH-2): an international randomised, placebo-controlled, phase 3 superiority trial. Lancet. 2018;391(10135):2107-15. - 9. Meretoja A, Yassi N, Wu TY, Churilov L, Sibolt G, Jeng JS, et al. Tranexamic acid in patients with intracerebral haemorrhage (STOP-AUST): a multicentre, randomised, placebo-controlled, phase 2 trial. The Lancet Neurology. 2020;19(12):980-7. - 10. Gladstone DJ, Aviv RI, Demchuk AM, Hill MD, Thorpe KE, Khoury JC, et al. Effect of Recombinant Activated Coagulation Factor VII on Hemorrhage Expansion Among Patients With Spot Sign-Positive Acute Intracerebral Hemorrhage: The SPOTLIGHT and STOP-IT Randomized Clinical Trials. JAMA neurology. 2019;76(12):1493-501. - 11. Mendelow AD, Gregson BA, Rowan EN, Murray GD, Gholkar A, Mitchell PM, et al. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial lobar intracerebral haematomas (STICH II): a randomised trial. Lancet. 2013;382(9890):397-408. - 12. Zhou H, Zhang Y, Liu L, Han X, Tao Y, Tang Y, et al. A prospective controlled study: minimally invasive stereotactic puncture therapy versus conventional craniotomy in the treatment of acute intracerebral hemorrhage. BMC neurology. 2011;11:76. - 13. Sun H, Liu H, Li D, Liu L, Yang J, Wang W. An effective treatment for cerebral hemorrhage: minimally invasive craniopuncture combined with urokinase infusion therapy. Neurological research. 2010;32(4):371-7. - 14. Hanley DF, Thompson RE, Muschelli J, Rosenblum M, McBee N, Lane K, et al. Safety and efficacy of minimally invasive surgery plus alteplase in intracerebral haemorrhage evacuation (MISTIE): a randomised, controlled, open-label, phase 2 trial. The Lancet Neurology. 2016;15(12):1228-37. - 15. Hanley DF, Thompson RE, Rosenblum M, Yenokyan G, Lane K, McBee N, et al. Efficacy and safety of minimally invasive surgery with thrombolysis in intracerebral haemorrhage evacuation (MISTIE III): a randomised, controlled, open-label, blinded endpoint phase 3 trial. Lancet. 2019;393(10175):1021-32. - 16. Awad IA, Polster SP, Carrion-Penagos J, Thompson RE, Cao Y, Stadnik A, et al. Surgical Performance Determines Functional Outcome Benefit in the Minimally Invasive Surgery Plus Recombinant Tissue Plasminogen Activator for Intracerebral Hemorrhage Evacuation (MISTIE) Procedure. Neurosurgery. 2019;84(6):1157-68. - 17. Chang JJ, Kim-Tenser M, Emanuel BA, Jones GM, Chapple K, Alikhani A, et al. Minocycline and matrix metalloproteinase inhibition in acute intracerebral hemorrhage: a pilot study. European journal of neurology. 2017;24(11):1384-91. - 18. Fouda AY, Newsome AS, Spellicy S, Waller JL, Zhi W, Hess DC, et al. Minocycline in Acute Cerebral Hemorrhage: An Early Phase Randomized Trial. Stroke. 2017;48(10):2885-7. - 19. Selim M, Foster LD, Moy CS, Xi G, Hill MD, Morgenstern LB, et al. Deferoxamine mesylate in patients with intracerebral haemorrhage (i-DEF): a multicentre, randomised, placebo-controlled, double-blind phase 2 trial. The Lancet Neurology. 2019;18(5):428-38. - 20. Wei C, Wang J, Foster LD, Yeatts SD, Moy C, Mocco J, et al. Effect of Deferoxamine on Outcome According to Baseline Hematoma Volume: A Post Hoc Analysis of the i-DEF Trial. Stroke. 2021:STROKEAHA121035421. - 21. Minhas JS, Panerai RB, Swienton D, Robinson TG. Feasibility of improving cerebral autoregulation in acute intracerebral hemorrhage (BREATHE-ICH) study: Results from an experimental interventional study. International journal of stroke: official journal of the International Stroke Society. 2020;15(6):627-37. - 22. Corry JJ, Asaithambi G, Shaik AM, Lassig JP, Marino EH, Ho BM, et al. Conivaptan for the Reduction of Cerebral Edema in Intracerebral Hemorrhage: A Safety and Tolerability Study. Clinical drug investigation. 2020;40(5):503-9. - 23. Lee SH, Park HK, Ryu WS, Lee JS, Bae HJ, Han MK, et al. Effects of celecoxib on hematoma and edema volumes in primary intracerebral hemorrhage: a multicenter randomized controlled trial. European journal of neurology. 2013;20(8):1161-9. - 24. Zhao W, Jiang F, Li S, Liu G, Wu C, Wang Y, et al. Safety and efficacy of remote ischemic conditioning for the treatment of intracerebral hemorrhage: A proof-of-concept randomized controlled trial. International journal of stroke: official journal of the International Stroke Society. 2021:17474930211006580. - 25. James ML, Troy J, Nowacki N, Komisarow J, Swisher CB, Tucker K, et al. CN-105 in Participants with Acute Supratentorial Intracerebral Hemorrhage (CATCH) Trial. Neurocritical care. 2021. - Askim T, Langhammer B, Ihle-Hansen H, Gunnes M, Lydersen S, Indredavik B, et al. Efficacy and Safety of Individualized Coaching After Stroke: the LAST Study (Life After Stroke): A Pragmatic Randomized Controlled Trial. Stroke. 2018;49(2):426-32. - 27. Langhorne P, Wu O, Rodgers H, Ashburn A, Bernhardt J. A Very Early Rehabilitation Trial after stroke (AVERT): a Phase III, multicentre, randomised controlled trial. Health technology assessment. 2017;21(54):1-120. - 28. Wang HQ, Hou M, Li H, Bao CL, Min L, Dong GR, et al. Effects of acupuncture treatment on motor function in patients with subacute hemorrhagic stroke: A randomized controlled study. Complementary therapies in medicine. 2020;49:102296. - 29. Collaboration FT. Effects of fluoxetine on functional outcomes after acute stroke (FOCUS): a pragmatic, double-blind, randomised, controlled trial. Lancet. 2019;393(10168):265-74. - 30. Collaboration AT. Safety and efficacy of fluoxetine on functional outcome after acute stroke (AFFINITY): a randomised, double-blind, placebo-controlled trial. The Lancet Neurology. 2020;19(8):651-60. - 31. Collaboration ET. Safety and efficacy of fluoxetine on functional recovery after acute stroke (EFFECTS): a randomised, double-blind, placebo-controlled trial. The Lancet Neurology. 2020;19(8):661-9.