iScience, Volume 25

Supplemental information

A positive feed-forward loop between *Fusobacterium*

nucleatum and ethanol metabolism reprogramming

drives laryngeal cancer progression and metastasis

Chi-Yao Hsueh, Qiang Huang, Hongli Gong, Yujie Shen, Ji Sun, Hui-Ching Lau, Duo Zhang, Di Tang, Chunping Wu, Yang Guo, Huiying Huang, Pengyu Cao, Lei Tao, Ming Zhang, and Liang Zhou

Figure S1. Ethanol promotes *F. nucleatum* proliferation, related to Figure 2.

(A) Representative data of *F. nucleatum* colony in 0.1%, 0.4% and 0.6% (v/v) ethanol by colony formation under different experimental conditions (n = 3 for each group).

(B) Statistical analysis of the number of *F. nucleatum* colony to different experimental conditions (n = 3 for each group) as assessed by the ordinary two-way ANOVA. Data are represented as mean \pm SD.

Figure S2. *E. coli* does not promote cell migration and invasion in LSCC, related to Figure 2.

(A) Transwell migration assays were performed in 3 LSCC cell lines cultured in the presence or absence of *E. coli strain DH5a* as calculated with the Student's unpaired t test.

(B) Transwell invasion assays were performed in 3 LSCC cell lines cultured in the presence or absence of *E. coli strain DH5a* as calculated with the Student's unpaired t test. Data are represented as mean \pm SD.

Figure S3. F. nucleatum inhibits ADH1B expression, related to Figure 2.

(A) Statistical analysis of the relative expression of 7 members of ADH family and CYP2E1 in 3 LSCC cell lines cultured in the presence or absence of *F. nucleatum* as assessed by Students unpaired t-test.

(B) Representative immunofluorescence was showed (40 \times magnification) on ADH1B expression in 3 LSCC cell lines in the presence or absence of *F. nucleatum*. Bar scale, 20 μ m.

(C) The ADH enzymatic activity was measured by ELISA assay in 3 LSCC cell lines with or without ADH1B-overexpressing lentiviral vector transduction and subsequently cultured with *F. nucleatum* as assessed by the ordinary one-way ANOVA. Data are represented as mean \pm SD.

Figure S4. *F. nucleatum* inhibits ADH1B and TGFBR2 expression, related to Figure

2, 3.

Western blotting was performed to assess ADH1B and TGFBR2 expression in 3 LSCC cell lines cultured with *F. nucleatum*.

Figure S5. *F. nucleatum* promotes EMT in LSCC, related to Figure 3.

(A) Statistical analysis of the relative expression of EMT-related genes (E-cadherin, N-cadherin, Vimentin, and ZEB-1) in 3 LSCC cell lines cultured in the presence or absence of *F. nucleatum* as assessed by Students unpaired t-test.

(B) Representative immunofluorescence was showed (40 × magnification) on E-cadherin, N-cadherin, Vimentin, and ZEB-1 expression in 3 LSCC cell lines in the presence or absence of *F. nucleatum*. Bar scale, 20 μ m. Data are represented as mean ± SD.

Figure S6. *F. nucleatum*-induced EMT in LSCC by suppressing TGFBR2 expression, related to Figure 3.

(A) Statistical analysis of the relative expression of TGFBR2 in 3 LSCC cell lines cultured with *F. nucleatum* or *E. coli* as calculated with Students unpaired t-test.

(B) Representative immunofluorescence was showed (40 × magnification) on TGFBR2 expression in 3 LSCC cell lines in the presence or absence of *F. nucleatum*. Bar scale, 20 μ m.

(C) Statistical analysis of the relative expression of EMT-related genes (E-cadherin, N-cadherin, Vimentin, and ZEB-1) in 3 LSCC cell lines with or without TGFBR2 overexpressed lentiviral vector transduction as calculated with Students unpaired t-test. Data are represented as mean \pm SD.

Figure S7. *F. nucleatum* inhibits ADH1B and TGFBR2 expression by increasing miR-155-5p and miR-205-5p, related to Figure 4.

(A) Statistical analysis of the relative expression of LSCC-related miRNAs in 3 LSCC cell lines transfected with miR-155-5p and miR-205-5p mimics or inhibitor and cultured in the presence or absence of *F. nucleatum* as calculated with Students unpaired t-test.

(B) Statistical analysis of the relative expression of miR-155-5p and miR-205-5p in 3 LSCC cell lines transfected with miR-155-5p and miR-205-5p mimics or inhibitor and cultured in the presence or absence of *F. nucleatum* as calculated with Students unpaired t-test.

(C) Dual-luciferase activity was measured in HEK293T cell line cultured treated with miR-155-5p & miR-205-5p mimics or control miRNA. Dual-luciferase reporters expressing wildtype (Wt) or mutant (Mut) 3'UTRs from human ADH1B and TGFBR2 mRNA were used. The dual-luciferase activity was normalized based on the control miRNA transfection as assessed by the ordinary one-way ANOVA.

(D) Statistical analysis of the relative expression of ADH1B and TGFBR2 in 3 LSCC cell lines transfected with miR-155-5p and miR-205-5p mimics or inhibitor and cultured in the presence or absence of *F. nucleatum* as calculated with Students unpaired t-test. Data are represented as mean \pm SD.

(A) Statistical analysis of the relative expression of TLR4 and MYD88 in 3 LSCC cell lines cultured in the presence or absence of *F. nucleatum* as assessed by Students unpaired t-test.

(B) Representative immunofluorescence was showed (40 × magnification) on TLR4 and MYD88 expression in 3 LSCC cell lines in the presence or absence of *F. nucleatum*. Bar scale, 20 μ m.

(C) Statistical analysis of the relative expression of miR-155-5p and miR-205-5p in 3 LSCC cell lines transfected with TLR4 and MYD88 siRNAs and cultured in the presence or absence of *F. nucleatum* as calculated with Students unpaired t-test.

(D) Statistical analysis of the relative expression of ADH1B and TGFBR2 in 3 LSCC cell lines transfected with TLR4 and MYD88 siRNAs and cultured in the presence or absence of *F. nucleatum* as calculated with Students unpaired t-test. Data are represented as mean \pm SD.

Characteristics	Total n	<i>F. nucleatum</i> amount (-ΔCt)	P
Characteristics	rotai, n	(mean ± SD)	
Age, years			0.1430
≥ 60	95	-7.7938 ± 4.8223	
< 60	36	-9.0972 ± 4.3039	
Sex			0.8450
Male	128	-8.1428 ± 4.7559	
Female	3	-8.5411 ± 1.6662	
Smoking history			0.4429
Yes	120	-8.2583 ± 4.6641	
No	11	-6.9917 ± 5.2320	
Drinking history			0.0421
Yes	79	-7.3842 ± 5.1911	
Νο	52	-9.3183 ± 3.5956	
Hypertension			0.3141
Yes	37	-7.5016 ± 5.3059	
No	94	-8.4078 ± 4.4520	
Diabetes			0.8050
Yes	15	-8.6199 ± 5.3399	
No	116	-8.0914 ± 4.6398	
Tumor subsite			0.6989
Supraglottic	52	-8.1244 ± 4.2122	
Glottic & Subglottic	79	-8.1701 ± 5.0302	
pT stage			0.0029

Table S1. The Correlation of *F. nucleatum* content (- Δ Ct) and clinicopathologic factors in Cohort 1, related to Figure 1.

T1 - T2	54	-9.4000 ± 5.4448	
T3-T4	77	-7.2767 ± 3.9141	
pN stage			0.3283
N0	90	-8.4682 ± 4.7903	
N+	41	-7.4577 ± 4.4933	
pTNM stage [*]			0.0167
I - II	41	-9.7544 ± 5.0619	
III - IV	90	-7.4220 ± 4.3711	
Pathological differentiation			0.1051
Moderate & Poor	91	-8.5776 ± 4.8884	
Well	40	-7.1835 ± 4.1569	
Tumor diameter			0.0168
> 3cm	58	-7.0433 ± 4.4707	
≤ 3cm	73	-9.0328 ± 4.7308	

*According to the 8th American Joint Committee on cancer (AJCC) stage system.

Table S2. Multiple linear regression method with *F. nucleatum* content (- Δ Ct) as the dependent variable, related to Figure 1.

Linear regression	В	<i>P</i> value	95% CI
Drinking index	0.4053	< 0.0001	0.0004 - 0.0009
pTNM stage*	0.2752	0.0011	0.5662 - 2.2058
Age	0.1093	0.1859	-0.0320 - 0.1631
Hypertension	0.0285	0.7291	-1.398 - 1.9926
Smoking index	-0.0166	0.8374	-0.0009 - 0.0007
Sex	-0.0126	0.8795	-5.3130 - 4.5556
Diabetes	0.0103	0.9003	-2.2428 - 2.5466

Drinking index: the average gram of alcohol intaked per day × years spent drinking; Smoking index: the number of cigarettes smoked per day × years spent smoking. *According to the 8th American Joint Committee on cancer (AJCC) stage system.

		F. nucleatum	amount (-ACt)	
Characteristics	Total, n	Low, n, %	High, n, %	Р
All cases, n	40	20 (50.00%)	20 (50.00%)	
Age, years				0.3332
≥ 60	24	14 (70.00%)	10 (50.00%)	
< 60	16	6 (30.00%)	10 (50.00%)	
Smoking history				> 0.9999
Yes	27	13 (65.00%)	14 (70.00%)	
No	13	7 (35.00%)	6 (30.00%)	
Drinking history				0.0225
Yes	23	8 (40.00%)	16 (80.00%)	
No	17	12 (60.00%)	4 (20.00%)	
Hypertension				> 0.9999
Yes	15	8 (40.00%)	7 (35.00%)	
No	25	12 (60.00%)	13 (65.00%)	
Diabetes				0.4872
Yes	2	2 (10.00%)	0 (0.00%)	
No	38	18 (90.00%)	20 (100.00%)	
Tumor subsite				> 0.9999
Supraglottic	16	8 (40.00%)	8 (40.00%)	
Glottic	24	12 (60.00%)	12 (60.00%)	
pT stage				0.7512
T1 - T2	18	10 (50.00%)	8 (40.00%)	
T3 - T4	22	10 (50.00%)	12 (60.00%)	

Table S3. The correlation of *F. nucleatum* content (- Δ Ct) and clinicopathologic factors in Cohort 2, related to Figure 1.

pN stage				> 0.9999
N0	23	11 (55.00%)	12 (60.00%)	
N+	17	9 (45.00%)	8 (40.00%)	
pTNM stage*				0.4801
I - II	11	7 (35.00%)	4 (20.00%)	
III - IV	29	13 (65.00%)	16 (80.00%)	
Pathological differentiation				> 0.9999
Well	6	3 (15.00%)	3 (15.00%)	
Moderate	34	17 (85.00%)	17 (85.00%)	
Tumor diameter				> 0.9999
> 3cm	13	7 (35.00%)	6 (30.00%)	
≤ 3cm	27	13 (65.00%)	14 (70.00%)	
Recurrence				0.0011
Yes	17	3 (15.00%)	14 (70.00%)	
No	23	17 (85.00%)	6 (30.00%)	
Cancer-specific death				
Yes	11	2 (10.00%)	9 (45.00%)	0.0310
No	29	18 (90.00%)	11 (55.00%)	

*According to the 8th American Joint Committee on cancer (AJCC) stage system.

Characteristics	Total n	F. nucleatum	amount (-ΔCt)	
Characteristics	Total, fi	Low, n, %	High, n, %	P
All cases, n	74	41 (55.41%)	33 (44.59%)	
Age, years				0.2436
≥ 60	41	20 (48.78%)	21 (63.64%)	
< 60	33	21 (51.22%)	12 (36.36%)	
Sex				0.5826
Male	71	40 (97.56%)	31 (93.94%)	
Female	3	1 (2.44%)	2 (6.06%)	
Smoking history				0.6301
Yes	46	24 (58.54%)	22 (66.67%)	
No	28	17 (41.46%)	11 (33.33%)	
Drinking history				0.0182
Yes	42	18 (43.90%)	24 (72.73%)	
No	32	23 (56.10%)	9 (27.27%)	
Hypertension				0.6301
Yes	28	17 (41.46%)	11 (33.33%)	
No	46	24 (58.43)	22 (66.67%)	
Diabetes				0.7439
Yes	10	5 (12.20%)	5 (15.15%)	
No	64	36 (87.80%)	28 (84.85%)	
Tumor subsite				0.6194
Supraglottic	24	12 (29.27%)	12 (36.36%)	
Glottic	50	29 (70.73%)	21 (63.64%)	

Table S4. The correlation of *F. nucleatum* content (- Δ Ct) and clinicopathologic factors in Cohort 3, related to Figure 6.

pT stage				0.0187
T1 - T2	37	26 (63.41%)	11 (33.33%)	
T3 - T4	37	15 (36.59%)	22 (66.67%)	
pN stage				0.5635
N0	59	34 (82.93%)	25 (75.76%)	
N+	15	7 (17.07%)	8 (24.24%)	
pTNM stage [*]				0.0182
I - II	32	23 (56.10%)	9 (27.27%)	
III - IV	42	18 (43.90%)	24 (72.73%)	
Pathological differentiation				0.7989
Well	21	11 (26.83%)	10 (30.30%)	
Moderate & Poor	53	30 (73.17%)	23 (69.70%)	
Tumor diameter				0.4597
> 3cm	25	12 (29.27%)	13 (39.39%)	
≤ 3cm	49	29 (70.73%)	20 (60.61%)	
Recurrence				0.0009
Yes	33	11 (26.83%)	22 (66.67%)	
Νο	41	30 (73.17%)	11 (33.33%)	
Cancer-specific death				0.0255
Yes	25	9 (21.95%)	16 (48.48%)	
Νο	49	32 (78.05%)	17 (51.52%)	

*According to the 8th American Joint Committee on cancer (AJCC) stage system.

Preimers	Forward primer (5' to 3')	Reverse primer (5' to 3')	Propose
E pueleotum	CAACCATTACTTTAACTC	GTTGACTTTACAGAAGGAGAT	
r. nucleatum	TACCATGTTCA	TATGTAAAAATC	YPCK
	CTTGTAGTT	N1/A	
FU3004	CCGC(C/T)TACCTC	N/A	гізп
	GCTGCCTCCCGTAGGAG	N1/A	
EUB338	Т	N/A	FISH
has-miR-155-	AACCCCTATCACGATTAG	N1/A	
5р	CATTAA	N/A	FISH
has-miR-205-	CAGACTCCGGTGGAATG	N1/A	
5р	AAGGA	N/A	FISH
has-miR-155-	CGCTTAATGCTAATCGTG	N1/A	- DOD
5р	ATAGGGGTT	N/A	qpc R
has-miR-205-	TCCTTCATTCCACCGGAG	N1/A	~DOD
5р	ТСТ	N/A	YPCK
DOT	ATCCCCAAAGCACCTGG	AGAGGCCAAGATAGTCCTGGT	
PGI	ТТТ	AA	qpc R
	GTGCTCGCTTCGGCAGC	N1/A	~DOD
Ub	ACAT	N/A	qpc R
	TGTAGTTGAGGTCAATGA		~DOD
GAPDH	AGGG	ACATCGCTCAGACACCATG	qpc R
TOFRES	GTAGCTCTGATGAGTGC		
IGFDKZ	AATGAC	CAGATATGGCAACTCCCAGTG	YFCK
	GGATGAGGACTGGGTAA		
1 LN4	GGAATGA	AGUGGUTUTGGATGAAGTGU	4rur

Table 55. Filler sequences used for gRT-FCR and FISH, related to STAR Method	able S5. Primer se	quences used for a	RT-PCR and FISH	, related to STAR Methods
--	--------------------	--------------------	-----------------	---------------------------

	GCCGCCGGATGGTGGTG	TTGGTGCAGGGGTTGGTGTA	
	GTTGT	GTCG	YFUN
	ATTTTTCCCTCGACACCC		~000
E-cadnerin	GAT	TUUUAGGUGTAGAUUAAGA	qPCR
N. codborio	TGCGGTACAGTGTAACT		~000
IN-Caunenn	GGG	GAAACUGGGUTATUTGUTUG	qPCR
Vimentia	AGTCCACTGAGTACCGG		
vimenun	AGAC	CATTICALGCATCTGGCGTTC	qPCR
	GATGATGAATGCGAGTC		
ZED-1	AGATGC	ACAGCAGIGICIIGIIGIIGI	4PCK
	AGTCATCCCACTCGCTAT		
Αυπτά	TCC	GICCCIGAGGATIGCITACA	ЧРСК
	GCTGGGGAATTGAAGCC	CAGCATGTGTATGTTCAGGGC	
ADHID			YPCK
	AACA	AAG	
	AACA TGCTACTGACTGGACGC	AAG CAGCCACAAGTTTGGGGACA	
ADH1C	AACA TGCTACTGACTGGACGC ACG	AAG CAGCCACAAGTTTGGGGACA GAT	qPCR
ADH1C	AACA TGCTACTGACTGGACGC ACG AGTTCGCATTCAGATCAT	AAG CAGCCACAAGTTTGGGGACA GAT	qPCR
ADH1C ADH4	AACA TGCTACTGACTGGACGC ACG AGTTCGCATTCAGATCAT TGCT	AAG CAGCCACAAGTTTGGGGACA GAT CTGGCCCAATACTTTCCACAA	qPCR qPCR
ADH1C ADH4	AACA TGCTACTGACTGGACGC ACG AGTTCGCATTCAGATCAT TGCT ATGGCGAACGAGGTTAT	AAG CAGCCACAAGTTTGGGGACA GAT CTGGCCCAATACTTTCCACAA CATGTCCCAAGATCACTGGAA	qPCR qPCR
ADH1C ADH4 ADH5	AACA TGCTACTGACTGGACGC ACG AGTTCGCATTCAGATCAT TGCT ATGGCGAACGAGGTTAT CAAG	AAG CAGCCACAAGTTTGGGGACA GAT CTGGCCCAATACTTTCCACAA CATGTCCCAAGATCACTGGAA AA	qPCR qPCR qPCR
ADH1C ADH4 ADH5	AACA TGCTACTGACTGGACGC ACG AGTTCGCATTCAGATCAT TGCT ATGGCGAACGAGGTTAT CAAG ACAGGCCAAGTCATCAG	AAG CAGCCACAAGTTTGGGGACA GAT CTGGCCCAATACTTTCCACAA CATGTCCCAAGATCACTGGAA AA CCACAACCTTTATGCGAACTT	qPCR qPCR qPCR
ADH1C ADH4 ADH5 ADH6	AACA TGCTACTGACTGGACGC ACG AGTTCGCATTCAGATCAT TGCT ATGGCGAACGAGGTTAT CAAG ACAGGCCAAGTCATCAG	AAG CAGCCACAAGTTTGGGGACA GAT CTGGCCCAATACTTTCCACAA CATGTCCCAAGATCACTGGAA AA CCACAACCTTTATGCGAACTT CC	qPCR qPCR qPCR qPCR
ADH1C ADH4 ADH5 ADH6	AACA TGCTACTGACTGGACGC ACG AGTTCGCATTCAGATCAT TGCT ATGGCGAACGAGGTTAT CAAG ACAGGCCAAGTCATCAG ATGC	AAG CAGCCACAAGTTTGGGGACA GAT CTGGCCCAATACTTTCCACAA CATGTCCCAAGATCACTGGAA AA CCACAACCTTTATGCGAACTT CC CATTGCATTCTCTACATTGTG	qPCR qPCR qPCR qPCR
ADH1C ADH4 ADH5 ADH6 ADH7	AACA TGCTACTGACTGGACGC ACG AGTTCGCATTCAGATCAT TGCT ATGGCGAACGAGGTTAT CAAG ACAGGCCAAGTCATCAG ATGC ACATGAGGCAACTGGGA TTGT	AAG CAGCCACAAGTTTGGGGACA GAT CTGGCCCAATACTTTCCACAA CATGTCCCAAGATCACTGGAA AA CCACAACCTTTATGCGAACTT CC CATTGCATTCTCTACATTGTG GC	qPCR qPCR qPCR qPCR
ADH1C ADH4 ADH5 ADH6 ADH7	AACA TGCTACTGACTGGACGC ACG AGTTCGCATTCAGATCAT TGCT ATGGCGAACGAGGTTAT CAAG ACAGGCCAAGTCATCAG ATGC ACATGAGGCAACTGGGA TTGT GTGATGCACGGCTACAA	AAG CAGCCACAAGTTTGGGGACA GAT CTGGCCCAATACTTTCCACAA CATGTCCCAAGATCACTGGAA AA CCACAACCTTTATGCGAACTT CC CATTGCATTCTCTACATTGTG GC	qPCR qPCR qPCR qPCR
ADH1C ADH4 ADH5 ADH6 ADH7	AACA TGCTACTGACTGGACGC ACG AGTTCGCATTCAGATCAT TGCT ATGGCGAACGAGGTTAT CAAG ACAGGCCAAGTCATCAG ATGC ACATGAGGCAACTGGGA TTGT GTGATGCACGGCTACAA	AAG CAGCCACAAGTTTGGGGACA GAT CTGGCCCAATACTTTCCACAA CATGTCCCAAGATCACTGGAA AA CCACAACCTTTATGCGAACTT CC CATTGCATTCTCTACATTGTG GC GGGTGGTCAGGGAAAACCG	qPCR qPCR qPCR qPCR qPCR