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Mean-Field Model Equations of Cortical Electrodynamics The mean excitatory and inhibitory

potentials Ve and Vi of each simulated neural population in the mean-field model, positioned at a

location −→r = (x, y), are described by:

τb
δVb(
−→r , t)
δt

=V rest
b + ∆V rest

b − Vb(−→r , t)

+ [ρeψeb(
−→r , t)Φeb(

−→r , t) + ρiψib(
−→r , t)Φib(

−→r , t)]

+D2
bbVb(
−→r , t)

(1)

where presynaptic to postsynaptic directionality is indicated by the right arrow, the subscript e in-

dicates a presynaptic excitatory neural population, the subscript i indicates a presynaptic inhibitory

neural population, and the subscript b indicates either a postsynaptic excitatory or postsynaptic in-

hibitory neural population. The bracketed term in Eq. 1 represents voltage inputs via chemical

synapses, and the final term in Eq. 1 represents voltage inputs from diffusive gap junction cou-

pling. 2 is the 2D Laplacian operator. Dbb represents the strength of diffusive gap junction coupling

between adjacent neurons, such that Dee is gap junction coupling between excitatory populations

and Dii is gap junction coupling between inhibitory populations. Because there is far more abun-

dant gap-junction coupling between inhibitory interneurons than excitatory neurons 1, Dee is set to

Dii/100. Dii is one of the key biological parameters we vary. For a given excitatory or inhibitory

neural population, V rest
b is the mean resting potential, τb is the soma time constant, and ρb is the

strength of chemical synapse coupling, which is scaled by the following reversal-potential function

ψab:

ψab(
−→r , t) =

V rev
a − Vb(−→r , t)
V rev
a − V rest

b

(2)
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which equals one when a neuron is at its resting potential and equals 0 when the membrane poten-

tial equals the reversal potential. For excitatory AMPA receptors, V rev
e = 0 mV, and for inhibitory

GABA receptors, V rev
i = -70 mV. The Φab functions in Eq. 1 describe postsynaptic spike-rate

fluxes:

(
δ

δt
+ γe

)2

Φeb(
−→r , t) =γ2e [N

α
ebφ

α
eb(
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+ φsc
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−→r , t) + φα,heteb (−→r , t)],

(3)
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−→r , t) = γ2iN

β
ibQi(

−→r , t) (4)

where the α superscript corresponds to inputs from long-range myelinated axons: Nα
eb is the num-

ber of axonal inputs to a population and φαeb is long-range spike-rate flux. The β superscript corre-

sponds to inputs from short-range chemical synapses, such thatNβ
eb is the number of local chemical

synapses in a neural population. Qe,i is the local spike-rate flux, and φα,heteb is a heterogeneous flux

input. φsc
eb is white noise, taken to represent random inputs to the cortex from subcortical sources

(e.g. sensory inputs); note that the inclusion of a noise term means that the above equations are

stochastic differential equations, and that analyses of the ground-truth chaoticity of the model (i.e.

its largest Lyapunov exponent) are performed exclusively using the non-stochastic components of

the model equations; estimates of chaoticity using the 0-1 test (see below) are performed with

the model’s noise input turned on, so as to better assess the viability of detecting changing levels

of chaoticity in real cortical recordings. γi is the inhibitory rate constant and γe is the excitatory

rate constant, which we vary so as to the study the effect of excitation and inhibition on chaos in

the model. See Steyn-Ross, Steyn-Ross, and Sleigh 2 for more details on the model equations.

Other than the inhibitory gap-junction coupling strength Dii, the excitatory rate constant γe, and

the inhibitory rate constant γi (all of which we vary in our parameter sweep), all parameters in our
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simulations are unchanged from the original model, and are taken from the empirical literature 2.

Dii was varied from 0.1 to 0.7 in steps of 0.2, and both γe and γi were varied from 0.945 to 1.05

in steps of 0.005. Of the 1,936 resulting simulations, 1,160 yielded flat, non-oscillatory activity,

likely reflecting stable fixed points of the model; these fixed point solutions were excluded from all

analyses, because these non-oscillatory solutions would likely yield high estimates of Lempel-Ziv

complexity simply due to the information-richness of the noise perturbations rather than of the un-

derlying system dynamics. This left 776 unique model simulations of oscillatory behavior. Based

on prior work 2, the waking conscious simulation corresponded to γe = 1, γi = 1, andDii = 0.7. The

anesthesia simulation corresponded to γe = 1, γi = 1.015, and Dii = 0.5, and the seizure simulation

corresponded to γe = 1, γi = 1, andDii = 0.1. The nearest-to-criticality and maximally information-

rich state of the model (see SI Appendix, Figs. S2, S4) corresponded to γe = 1.04, γi = 1, and Dii

= 0.5. The model equations were integrated using a forward time center spaced first-order Euler

method, with an integration step of 0.2 ms. Simulated electrodynamics were then downsampled to

a sampling frequency of 500 Hz, and the final 10 seconds (i.e. 5,000 time-points) were extracted

from the downsampled data, so as to perfectly match the length and sampling frequency of the

ECoG and MEG datasets analyzed in this paper.

Calculating Largest Lyapunov Exponents in the Mean-Field Model The ground-truth chaotic-

ity of a system is determined by its largest Lyapunov exponent, which is the rate of divergence

between initially similar trajectories in a system’s phase space. A positive largest Lyapunov expo-

nent means that a system is chaotic, because it indicates exponential divergence of initially similar

system states. A negative largest Lyapunov exponent indicates periodicity, because it indicates

exponentially fast convergence of initially similar states. A largest Lyapunov exponent near 0

corresponds to edge-of-chaos criticality, and near-0 exponents indicate that a system is near the

edge-of-chaos critical point. The larger the largest Lyapunov exponent, the more strongly chaotic

the system is. Following Steyn-Ross, Steyn-Ross, and Sleigh 2, we estimate the largest Lyapunov

exponent of the mean-field model by simulating two runs of its deterministic component (i.e., with
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its noise inputs turned off), with slightly different initial conditions. The divergence between the

excitatory firing rate of run 1 Q(1)
e and run 2 Q(2)

e is estimated as their summed squared-difference

ε(t) down the midline of the simulated cortical grid:

ε(t) =
Nx∑
i=1

(Q(1)
e (xi, t)−Q(2)

e (xi, t))
2/εmax (5)

where εmax is a normalization parameter, which equals the maximum possible difference between

the two runs:

εmax = Nx

(
max(Q(1)

e )−min(Q(2)
e )
)2

(6)

where Nx=120, i.e. the number of simulated neural populations in the cortical sheet. The rate of

divergence between the two runs ε(t) is directly related to the largest Lyapunov exponent Λ of the

system:

ε(t) = ε(0)exp(Λt) (7)

where ε(0) is the distance between the two runs at t = 0. The largest Lyapunov exponent can

therefore be estimated by measuring the slope of lnε(t)-versus-t. A positive slope indicates a

positive largest Lyapunov exponent (and therefore chaotic dynamics), a negative slope indicates

periodicity, and a flat slope indicates edge-of-chaos criticality.
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Modified 0-1 chaos test The modified 0-1 test takes a univariate time-series φ, and uses that

time-series to drive the following two-dimensional system:

p(n+ 1) = p(n) + φ(n)coscn

q(n+ 1) = q(n) + φ(n)sincn
(8)

where c is a uniformly distributed random variable bounded between 0 and 2π. For a given c, the

solution to Eq. 1 yields:

pc(n) =
n∑
j=1

φ(j)cosjc

qc(n) =
n∑
j=1

φ(j)sinjc

(9)

If the time-series φ is periodic, the motion of p and q is bounded, while if the time-series φ is

chaotic, p and q display asymptotic Brownian motion. The time-averaged mean square displace-

ment of p and q is

Mc(n) =
1

N

N∑
j=1

([pc(j + n)− pc(j)]2 + [qc(j + n)− qc(j)]2) + σηn. (10)

where ηn is a uniformly distributed random variable between [−1
2
, 1
2
] and σ controls the amplitude

of the added random variable ηn. We set σ to 0.5 and normalized the standard deviation of all

signals to 0.5, based on our previously published analyses 3 of the effect of different parameter

values for 0-1 test performance across diverse datasets. To compute the degree of chaos using a

single statistic K, the 0-1 test calculates the growth rate of the mean squared displacement of the

two-dimensional system in Eq. 5 using a correlation coefficient:

Kc = corr(n,Mc(n)) (11)
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K is computed for 100 different values of c, uniformly randomly sampled between 0 and 2π, and

the output of the test is the median K across different values of c. For both our real and simulated

cortical activity, we calculated K for every channel in a trial, and estimated that trial’s level of

chaoticity as the median K-statistic across all channels in that trial.

Epilepsy data Surface ECoG data from nine epilepsy patients were downloaded from the Euro-

pean Epilepsy Database 4. Of these, only two subjects experienced fully generalized seizures (in

both cases, seizures were focal with secondary generalizations). Subject 1 was a 42 year old male

with epilepsy caused by right cortical dysplasia, and who was receiving the anticonvulsant medi-

cation lamotrigine. The subject had six intracranial electrode strips (26 electrodes in total) placed

over right lateral temporal cortex to monitor seizure focus. Subject 2 was a 14 year old female with

cryptogenic epilepsy (i.e. unknown cause) who was receiving the anticonvulsant medications val-

proate and topiramate; the subject had one grid and six electrode strips (96 electrodes total) placed

over left temporal and lateral left temporal cortex to monitor seizure focus. Signals from both

subjects were recorded at a sampling rate of 1024 Hz. Data were demeaned, detrended, and band-

stop filtered at 50 Hz and harmonics (the line noise frequency in Europe). Data were resampled to

500 Hz, divided into 10-second trials, and re-referenced to the common average. For the seizure

state, we only included trials for which seizures were fully generalized across all channels for the

entire trial duration. The data were then visually inspected for artifacts. Data from electrodes with

consistent motion or drift artifacts were removed, and 10-second trials with large motion artifacts

spanning multiple electrodes were removed.

Additionally, a magnetoencephalograpy (MEG) recording of one patient’s generalized ab-

sence seizure, previously published by Dominguez and colleagues 5, was re-analyzed. Data were

provided by D.M.M. Note that MEG datasets were recorded for two other epilepsy patients by

Dominguez and colleagues, but that these were for tonic seizures; the muscle convulsions during

these tonic episodes produced large motion artifacts in the MEG data, which rendered analysis of
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low-frequency periodicity impossible. These datasets were therefore not analyzed. The patient

whose data were re-analyzed in the present paper (Seizure Subject 3 in SI Appendix, Figs. S2-4)

was an 18 year-old female who was receiving a low dose of valproate, and with no reported struc-

tural abnormalities or prior brain surgery. Data from this patient were recorded at 625 Hz using

a CTF Omega 151 channel whole-head system (CTF Systems, Port Coquitlam, British Columbia,

Canada). Data were split into 10-second trials, demeaned, detrended, and bandstop filtered at 60

Hz and harmonics (the line noise frequency in Canada, where data were collected). Data were then

visually inspected. Consistently motion or drift artifact-affected channels were removed, and trials

with large motion artifacts across channels were removed. Data were then downsampled to 500

Hz. We then ran an independent components analysis on the data, and removed components that

corresponded to ocular or cardiac artifacts. See SI Appendix, Fig. S15 for 10-second time-traces

of these subjects’ cortical electrodynamics during generalized seizures.

Human Anesthesia Data Electrode placement for our human anesthesia subjects was determined

only by clinical criteria (Ad-Tech, SEEG: 5 mm inter-electrode spacing; Integra, Grids: 1 cm, 5 or

4 mm spacing). ECoG data were recorded using a Nihon Kohden recording system (256 channel

amplifier, model JE120A), analogue-filtered above 0.01 Hz and digitally sampled at 5 kHz.

Patient 1 (Human Anesthesia Subject 1 in SI Appendix, Figs. S2-4) was a right-handed 25

year-old female with a diffuse lesion in the right supplementary motor area. The patient had one

8x8 grid placed over the right frontal lobe, and two 2x5 anterior interhemisphere bilateral grids

and two 2x8 posterior interhemisphere bilateral grids, for a total of 116 cortical contacts. See

SI Appendix, Fig. S16 for MRI scans with Patient 1’s cortical grids. The patient received 100

mg of propofol and 100 mcg of fentanyl prior to surgical resection of their epileptic focus. Their

“waking conscious” data consisted of the twenty minutes prior to anesthetic induction, and their

“anesthesia” data consisted of the twenty minutes following the loss of responsiveness to verbal

commands.
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Patient 2 (Human Anesthesia Subject 2 in SI Appendix, Figs. S2-4) was a 46 year-old, right-

handed female with a lesion in the left supplemantary motor area. The patient had one 8x8 grid

placed over the left frontal lobe, one 2x8 strip placed over left medial cortex, and one 2x8 strip

placed over right medial cortex, for a total of 96 contacts. See SI Appendix, Fig. S16 for MRI scans

with Patient 2’s cortical grids. The patient received 140 mg of propofol and 50 mcg of fentanyl

prior to surgery; at loss of consciousness, the patient received 50 mg of the muscle relaxant rocuro-

nium; four minutes after loss of consciousness, the patient began receiving sevoflurane (another

GABAergic anesthetic) for maintenance of anesthesia; note that the predictions of the mean-field

model regarding the anesthesia state still hold for a combination of propofol and sevoflurane, as the

model predictions should pertain to any GABAergic anesthetic. The patient’s “waking conscious”

data consisted of the 19 minutes prior to anesthetic induction, and their “anesthesia” data consisted

of the 16.8 minutes following the loss of responsiveness to verbal commands.

Patient 3 (Human Anesthesia Subject 3 in SI Appendix, Figs. S2-4) was a 20 year-old right-

handed female who had previously received a left temporal lobectomy. The patient had one 4x8

grid placed over left frontal cortex, another 4x4 grid over left frontal cortex, a 2x6 grid over the

temporal lobe, and one 8x8 grid with contacts over parts of parietal, temporal, and occipital cor-

tices, for a total of 124 surface electrodes. See SI Appendix, Fig. S16 for MRI scans with Patient

3’s ECoG grids. The patient received 150 mg of propofol and 100 mcg of fentanyl prior to surgical

resection of their epileptic focus. Their “waking conscious” data consisted of the eight minutes

prior to anesthetic induction, and their “anesthesia” data consisted of the 10.17 minutes following

the loss of responsiveness to verbal commands.

Signals for all three patients were recorded at a sampling rate of 1,000 Hz. Epileptic activity

was assessed by an experienced neurologist (R.T.K) and removed. Data were split into 10-second

trials, demeaned, band-stop filtered at 60 Hz and harmonics (the line noise frequency in the United

States, where data were collected), detrended, downsampled to 500 Hz, and re-referenced to the
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common average. Data were then visually inspected for artifacts. Data from electrodes with con-

sistent drift or motion artifacts were removed, and 10-second trials with large motion artifacts

spanning multiple electrodes were removed.

Macaque Anesthesia Data Open-source ECoG recordings spanning the left cortices (including

occipital, parietal, temporal, and frontal lobes) of two male macaques were downloaded from

Neurotycho.org 6. See SI Appendix, Fig. S16 for an MRI scan showing the electrode placement of

Macaques 1 and 2. Data were collected during awake/resting and propofol anesthesia states. The

macaques were seated with head and arm movement restricted. Macaque 1 (Macaque Anesthesia

Subject 1 in SI Appendix, Figs. S2-4) was intravenously administered 5.2 mg/kg of propofol,

and Macaque 2 (Macaque Anesthesia Subject 2 in SI Appendix, Figs. S2-4) was intravenously

administered 5 mg/kg of propofol. Loss of consciousness was determined by the emergence of low-

frequency oscillations and the cessation of responses to physical stimuli. All data for the propofol

condition are from the macaques’ unconscious state, and all data from the awake condition are from

the macaques’ eyes-open state (i.e., data for which the eyes were covered were excluded). Signals

were recorded at a sampling rate of 1,000 Hz. Data were split into 10-second trials, demeaned,

band-stop filtered at 50 Hz and harmonics (the line noise frequency in Japan, where data were

collected), detrended, downsampled to 500 Hz, and re-referenced to the common average. Data

were then visually inspected for motion artifacts. Data from electrodes with consistent artifacts

were removed, and 10-second trials with artifacts spanning multiple electrodes were removed.

Human Lysergic Acid Diethylamide Data Previously published 7 MEG recordings of nineteen

humans following intravenous administration of either 75 µg of lysergic acid diethylamide (LSD)

or a saline placebo were re-analyzed. These data were provided by S.M. and R.C. Data from three

subjects were excluded because of persistent motion or drift artifacts in their MEG signal across

most trials. Of the sixteen remaining subjects, three were females, and the average age was 32.06

(with a standard deviation of 7.71 years). Due to the slow pharmacodynamics of LSD, MEG data
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were recorded four hours after drug administration. Subjects lay in a supine position during data

acquisition. MEG signals were recorded using a CTF 275-channel radial gradiometer system with

a sampling frequency of 1200 Hz. After the MEG recordings were collected, visual analogue scale

ratings of the intensity of the LSD experience (on a scale from 0 to 20 in increments of 1) were

presented to subjects on a projection screen visible from inside the scanner, which the subjects

completed via button press (see Carhart-Harrris et al 7 for more details). MEG data were split into

10-second trials, demeaned, detrended, and bandstop filtered at 50 Hz and harmonics (the line noise

frequency in the United Kingdom, where data were collected). Data were then visually inspected.

Consistently motion or drift artifact-affected channels were removed, and trials with large motion

artifacts across channels were removed. Data were then downsampled to 500 Hz. We then ran

an independent components analysis on the data, and removed components that corresponded to

ocular or cardiac artifacts.

Clinical DOC data Data were collected from four traumatic brain injury (TBI) patients admitted

at the UCLA Ronald Reagan University Medical Center intensive care unit (ICU). Several criteria

were applied for participation in the study in order to limit the investigation to those patients re-

covering from unconsciousness. Inclusion criteria: Glasgow Coma Scale (GCS) score ≤ 8 or an

admission GCS score of 9-14 with computed tomography (CT) evidence of intracranial bleeding.

Exclusion criteria: GCS> 14 with non-significant head CT, history of neurological disease or TBI,

and brain death. The UCLA institutional review board approved the study. Informed consent was

obtained according to local regulations. To manage symptoms and/or reduce cerebral metabolism,

medications were administered to patients as needed, noted on a daily basis and sorted into appro-

priate categories: propofol, barbiturates, benzodiazepines, opioids, and dissociative anesthetics.

Behavioral assessments were performed several times daily in the ICU and used the GCS to assess

patients’ conscious state. EEG data were recorded continuously (Cz reference) at a sampling rate

of 250 Hz for several days or longer while patients were in the ICU. After data acquisition with

Persyst software (Persyst Development Corporation, Solana Beach, CA, USA), data were exported
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in EDF format to MATLAB (The MathWorks, Inc., Natick, MA, USA) for analysis.

To analyze patients during periods of both high responsiveness (conscious) and minimal

responsiveness (unconscious), we extracted 60 minutes of EEG from 13 channels common to all

patients (Fp1, Fp2, F7, F8, T3, C3, Cz, C4, T4, T5, O1, O2, T6) at timepoints corresponding to

consciousness, defined as GCS motor score≥ 5 or GCS verbal score≥ 4 8, 9, and unconsciousness.

EEG sections were spaced a minimum of 12 hours apart according to the following procedure,

applied separately for conscious and unconscious data: 1) sorting each patient’s GCS scores from

or high to low (conscious) or low to high (unconscious), 2) appending the highest (conscious)

or lowest (unconscious) score to a second list, and 3) crawling down the first list of GCS scores

and adding each timepoint that was at least 12 hours from any timepoint on the second list to

the second list. 60-minute EEG sections were then extracted from the second list’s timepoints

in order to sample the desired periods of consciousness and unconsciousness. Data were split

into 10-second trials, demeaned, detrended, and re-referenced to the common average. Data were

then visually inspected for artifacts. Data from electrodes with consistent drift or motion artifacts

were removed, and 10-second trials with large motion artifacts spanning multiple electrodes were

removed. We then ran an independent components analysis on the data to remove ocular or cardiac

artifacts.
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SUPPLEMENTARY FIGURES
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Fig. S1: (Caption on the following page.)
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Fig. S1: To our knowledge, the relationship between Lempel-Ziv complexity and edge-of-chaos
criticality (i.e., a largest Lyapunov exponent of zero) has not previously been studied in any dy-
namical system. Most prior information-theoretic analyses of dynamics at this critical point have
utilized Shannon entropy, mutual information, or transfer entropy; we instead chose to use Lempel-
Ziv complexity because of its well-validated ability to track conscious level in multiple species
(see Introduction). Therefore, in order to ensure that the simulated behavior we plotted in Fig.
2 is generalizable to other systems, we studied the behavior of Lempel-Ziv complexity in three
other noise-driven dynamical systems for which (deterministic) largest Lyapunov exponents can
be estimated with far greater accuracy than is possible in the high-dimensional mean-field model
of cortical electrodynamics analyzed here. The first system we studied is the noise-driven logistic
map (top left), whose behavior is governed by the equation xi+1 = 1 − rxi(1 − xi)2 + µε, where
r is a parameter, εn is white noise with mean 0 and standard deviation 1, and µ is a parameter
which controls the amplitude of the noise. The largest Lyapunov exponent of the logistic map
equals lim

n→∞
1
n

∑n−1
i=1 |2axi|, and can be precisely estimated using the iterative method. We varied

the parameter r from 1.5 to 2 in steps of 0.001 in order to produce dynamics on both sides of the
edge-of-chaos critical point. The second system we studied is the noise-driven tent map (top right),
which is a discrete-time system governed by the following equation:

xn+1 =

{
rxn + µε xn <

1
2

r(1− xn) + µε xn ≥ 1
2

(13)

where r is a parameter, εn is white noise with mean 0 and standard deviation 1, and µ is a parameter
which controls the amplitude of the noise. The deterministic largest Lyapunov exponent of the tent
map is precisely ln(r), and can thus be calculated with perfect accuracy. We varied r from 0.5 to
1.5 in steps of 0.01 to produce dynamics in both the periodic and chaotic phases. The third system
we studied is the noise-driven Lorenz system, which is a continuous-time three-dimensional system
governed by the following equations: dx

dt
= σ(y − x) + µε, dy

dt
= x(ρ− z)− y, and dz

dt
= xy − βz,

where σ, ρ, and β are parameters, and where εn is again white noise with mean 0 and standard
deviation 1 and µ is a parameter which controls the amplitude of the noise. These equations were
integrated using the Fourth Order Runge-Kutta method with an integration step of 0.01. We set
σ = 10, β = 8

3
, and varied ρ from 23 to 25 in steps of 0.001. As was the case for both the

logistic and tent maps, we chose this parameter range because it produces dynamics on both sides
of the edge-of-chaos critical point. To get a single time-series from the model, we took a linear
combination of all three variables. Ground-truth Lyapunov exponents of the Lorenz oscillator were
estimated using Ramasubramanian’s algorithm10. For all three systems, we set the noise amplitude
µ to 0.001. We found that univariate Lempel-Ziv complexity clearly peaked near the edge-of-
chaos critical point (largest Lyapunov exponent of zero) in all three systems, consistent with what
we observed in the mean-field model of low-frequency cortical electrodynamics (Fig. 2).
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Fig. S2: (Caption on the following page.)
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Fig. S2: We here plot the low-frequency power spectra of our real and simulated cortical electrody-
namics in different states. For simulated data, we plot the median power spectrum across simulated
cortical populations, and for empirical data, we plot the cross-channel median of each channel’s
cross-trial median power spectrum. Note that we here focus on 1-6 Hz, because the mean-field
model only simulates oscillations intrinsic to the cortex in this range (without, for example, incor-
porating thalamic inputs, which are thought to underlie oscillations in the 8-12 Hz range). This
was also the range over which we used the FOOOF algorithm to search for the frequencies of slow
oscillations in our data. Note that the use of different datasets and imaging modalities led to wide
variation in spectral power (for e.g., note that the spectral power of the MEG datasets was far lower
than the spectral power of the ECoG datasets). In both the mean-field model and ECoG data, we
see an increase in power and a steepening of spectral slope in the anesthesia state. Note that the
model appears to have a peak at 4 Hz in the waking state that is absent in the real data, but that this
apparent absence in real data is likely an artifact induced by averaging over channels whose slow
oscillations extend over a range of frequencies (Figs. S3-S4). For the generalized seizure state,
we see clear peaks between 3-4 Hz for both the model and real data. Though the model spectrum
also includes a peak at 2 Hz that is apparently absent in the empirical data, note that this absence
may again be an artifact of averaging over diverse channels (Figs. S3-S4). Finally, we compared
power spectra in the LSD state to the power spectrum of the most information-rich and nearest-to-
criticality state of the model (i.e., the only model parameter configuration that produced dynamics
with a normalized Lempel-Ziv complexity greater than 0.99 for all three variants of Lempel-Ziv
complexity as well as an absolute largest Lyapunov exponent less than 0.1). Like the LSD state,
this parameter configuration - which corresponded to an increase in cortical excitability coupled
with a slight decrease in the strength of gap junction coupling between inhibitory interneurons -
resulted in reduced low-frequency power relative to the waking state. The similarities between
the critical, maximally information-rich state of the model and the LSD state suggest possible
follow-up work regarding potential molecular mechanisms of psychedelics - see Supplementary
Note 2.
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Fig. S3: (Caption on the following page.)
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Fig. S3: The mean-field model used in this paper simulates the electrodynamics of a homoge-
neous patch of cortex, and as such produces electrodynamic oscillations with similar frequencies.
Reflecting this, the FOOOF algorithm (as described in our Materials and Methods) identifies a
relatively narrow range of slowest oscillation frequencies in the waking state of the model between
1-6 Hz (left). Our empirical recordings of cortical electrodynamics, however, were collected across
heterogenous parts of cortex, and it is known that different parts of cortex produce electrodynamic
oscillations at varying frequencies, which is one of the motivations behind the development of
the FOOOF algorithm11. Thus, as expected, the FOOOF algorithm identified a broader range of
slowest oscillation frequencies during normal waking states across the cortex of each one of our
subjects (right). Therefore, in Fig. S4, we repeated the cross-state comparisons of power spectra
as reported in Fig. S2, but looking exclusively at channels whose slowest oscillation frequencies
during normal waking states were close to those of the waking state of the mean-field model.



21

Fig. S4: (Caption on the following page.)
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Fig. S4: To compare the power spectra of channels whose oscillatory behavior during normal
waking states more closely matched that of the waking state of the mean-field model, we iden-
tified channels whose cross-trial median slowest oscillation frequencies during wake states (Fig.
S3, right) were within ±10% of the median of the slowest oscillation frequencies of the waking
state of the model (Fig. S2, left), which was 4.3 Hz. In other words, we only looked at channels
whose slowest oscillation fell between 3.87 and 4.73 Hz. Note that several subjects had no chan-
nels whose slowest identified oscillation frequencies were within this range, and so are not plotted
here. For each subject whose results are plotted here, we additionally indicate the percentage of
their cortical channels that fell within this frequency range during normal waking states. Look-
ing at just these channels, we found a 3-4 Hz rise above the background power spectrum during
waking states for most subjects, which better matches the mean-field model, and also observed
spectral changes during altered states (i.e., anesthesia, generalized seizures, and LSD) that like-
wise matched both the model and what we observed for the median across all channels (Fig. S2).
We also found that the power spectrum of Seizure Subject 3’s generalized seizure more closely
matched the power spectrum of the simulated seizure. Note that in all other analyses in this pa-
per, we included all channels for which any oscillation was identified in the 1-6 Hz range when
estimating low-frequency chaoticity, rather than the far narrower range of 3.87-4.73 Hz analyzed
in this figure; this analysis is only meant to illustrate that some of the minor apparent mismatches
between empirical neural power spectra and the model’s power spectra in Fig. S2 are due to av-
eraging across patches of cortex with heterogeneous electrodynamic oscillation frequencies (as in
Fig S2).
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Fig. S5: (Caption on the following page.)
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Fig. S5: A. We applied the modified 0-1 chaos test and three variants of Lempel-Ziv complexity
to surface ECoG recordings from two human epilepsy patients (subjects 1 2) and to magnetoen-
cephalography (MEG) recordings from another human epilepsy patient (subject 3) experiencing
generalized seizures. Circles indicate the median estimated values across all trials per condi-
tion for a single subject, and errorbars indicate standard error of the median (estimated by tak-
ing the standard deviation of a bootstrap distribution of sample medians). Differences between
conditions were tested using a left-tailed overlapping block bootstrap test (which controls for the
non-independence of successive datapoints by preserving local time-series autocorrelations) with a
block size of three trials (30 seconds of recording), to test against the null hypothesis that there is no
decrease in the median K-statistic or Lempel-Ziv complexity during generalized seizures. The de-
creased chaoticity during generalized seizures was significant for both Subjects 1 and 2. Note that
Subject 3 had only one ∼10 second generalized seizure during the duration of the recording, and
so statistical comparison across trials was not possible - see B for statistical analysis of Subject 3’s
seizure on the level of individual MEG channels, rather than trials. Median information-richness,
as measured by three different variants of Lempel-Ziv complexity, dropped significantly during
generalized seizures for Seizure Subjects 1 and 2, with the exception of joint Lempel-Ziv com-
plexity for Subject 2. Note again that no statistical analysis was performed for Seizure Subject 3
because the subject had only one generalized seizure; see B for analysis of the univariate Lempel-
Ziv complexity of their individual channels across brain states. B. Here, we show the median and
standard error of the median chaoticity (left) and univariate Lempel-Ziv complexity (right) across
all channels during seizure subject 3’s seizure trial and across their nine waking baseline trials.
As was the case for the cross-trial comparisons (A), cross-channel differences between conditions
were tested using left-tailed overlapping block bootstrap tests. The drop in the estimated chaoticity
and information-richness of this subject’s cortical electrodynamics was significant, consistent with
the hypothesis that the dynamics of generalized seizures are information-poor and periodic/stable.
C. We applied the modified 0-1 chaos test and the three variants of Lempel-Ziv complexity to sur-
face ECoG recordings from three human subjects and two macaques under GABAergic anesthesia.
Circles indicate the median values across all trials, per condition, and errorbars indicate standard
error of the median. Differences in chaoticity between conditions were tested using a right-tailed
overlapping block bootstrap test, to test against the null hypothesis of no increase in the median
K-statistic under GABAergic anesthesia, and differences in information-richness were assessed
using a left-tailed overlapping block bootstrap test, to specifically test against the null hypothesis
that there is no decrease in Lempel-Ziv complexity during GABAergic anesthesia. The increased
chaoticity under GABAergic anesthesia was significant for all subjects; the decrease in all mea-
sures of Lempel-Ziv complexity during anesthesia was significant for all subjects except Human
Anesthesia Subject 2. D. We applied the modified 0-1 chaos test and Lempel-Ziv complexity al-
gorithm to cortical MEG recordings from 16 human subjects following intravenous administration
of either 75 µg of LSD or a saline placebo. Differences in chaoticity between conditions were
tested using left-tailed overlapping block bootstrap tests, to test against the null hypothesis of no
decrease in the median K-statistic during the psychedelic state relative to placebo, and differences
in information-richness were assessed using a right-tailed overlapping block bootstrap test, to test
against the null hypothesis of no increase in Lempel-Ziv complexity during the psychedelic state.
The decreased chaoticity during the psychedelic state was significant for 13/16 subjects, univariate
Lempel-Ziv complexity increased significantly for 15/16 subjects, joint Lempel-Ziv complexity
increased significantly for 15/16 subjects, and concatenated Lempel-Ziv complexity increased sig-
nificantly for 14/16 subjects. ∗ p<0.05, ∗∗ p<0.01, ∗ ∗ ∗ p<0.001.
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Fig. S6: We here display the un-normalized chaoticity estimates (K-statistic) for each subject in
each brain state. There was little overlap across conditions, with the exception of partial over-
lap between normal waking and LSD states, which is unsurprising given that slow cortical elec-
trodynamics are predicted to be near-critical in both states, with LSD tuning cortical dynamics
slightly closer to edge-of-chaos criticality. Despite this partial overlap, un-normalized chaoticity
estimates were significantly lower in the LSD state than they were both across all subjects’ normal
waking states (p=8.35e-05, right-tailed Wilcoxon rank-sum test, Bonferroni-corrected) and across
the 16 LSD subjects’ placebo state (p=0.0024, right-tailed Wilcoxon rank-sum test, Bonferroni-
corrected). See Table S2 for an ANCOVA analysis of these un-normalized chaoticity estimates
across brain states.
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Fig. S7: We here repeated our analysis in Figure 3A, using a fixed frequency cutoff to low-pass fil-
ter all signals across all species, brain states, and data sets, rather than using the FOOOF algorithm
to identify channel-specific oscillation frequencies. Because we are interested in low-frequency
oscillations, we set the fixed frequency cutoffs to 3 Hz and 4 Hz, which are variably used as the
upper limit of slow/delta oscillations, as well 3.27 Hz, which was the mean frequency cutoff se-
lected by the FOOOF algorithm across all datasets. While using fixed frequency cutoffs preserved
the general inverse-U shape between chaoticity estimates and the information-richness of cortical
electrodynamics (normalized to each subject’s own normal waking baseline), there was greater
variability within specific brain states. Note that all channels were included in this analysis.
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Fig. S8: Our new time-series estimate c of proximity to edge-of-chaos criticality, based on a nonlin-
ear transformation of theK-statistic outputted by the modified 0-1 chaos test, includes a parameter
α, which must be set between zero and one (see Materials and Methods). To explore the optimal
range of α values for which c might be useful as a clinical index of consciousness, we converted
the cross-trial, state-specific medians of chaoticity estimates (un-normalized K-statistics) of 12
subjects for whom data were available from both conscious and unconscious states (namely five
anesthesia subjects, three generalized seizure subjects, and four DOC patients) into our criticality
measure c, using 19 unique values of α. For each value of α, we performed a right-tailed Wilcoxon
rank sum test between the 12 values of c from conscious states and the 12 values of c from un-
conscious states, to test against the null hypothesis that there is no increase in median estimates
of criticality during conscious states. We here plot the uncorrected p-values of these tests, for
each value of α assessed. After conservative Bonferroni correction, the difference in c at α=0.85
between conscious and unconscious states remained significant, suggesting that α should be set
around this value when exploring the potential utility of our new criticality measure c as a poten-
tial correlate of conscious level. We therefore set α to 0.85 in all subsequent analyses using our
measure c in both the main body of the paper and SI Appendix.
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Fig. S9: We here plot all estimated criticality values from Figure 4 against the raw K-statistic
values from which those criticality estimates were derived. Note that, by design, our criticality
estimate peaks at whatever value α is set to, which here is 0.85, based on our analysis in Fig. S8.
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Fig. S10: A As was the case for univariate Lempel-Ziv complexity (Fig. 4B), concatenated
Lempel-Ziv was significantly higher during conscious states than during unconscious states for
the 12 subjects for whom data were available from both conscious and unconscious states (five
anesthesia subjects, three generalized seizure subjects, and four DOC patients). Each dot repre-
sents the cross-trial median across a single subject’s trials in either their unconscious or conscious
state. Significance was assessed across subjects using a right-tailed Wilcoxon rank-sum test. B
A cross-subject right-tailed Wilcoxon rank-sum test did not reveal a significant difference in joint
Lempel-Ziv complexity across conscious vs. unconscious states. C As was the case for univariate
Lempel-Ziv complexity (Fig. 4C), concatenated Lempel-Ziv complexity was significantly corre-
lated with our criticality measure c at α=0.85 across subjects and states (partial correlation ρ=0.66,
p< 10−4 , controlling for median frequency at which signals were low-pass filtered). D Joint
Lempel-Ziv complexity was not significantly correlated with our criticality measure.
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Fig. S11: We applied the modified 0-1 chaos test and the three variants of Lempel-Ziv complexity
to clinical EEG recordings of the cortical electrodynamics of four human patients who recovered
consciousness after going into a coma, following a traumatic brain injury. Circles indicate the
median estimated chaoticity across all trials, per condition, and errorbars indicate standard error
of the median. Differences in estimated chaoticity between conditions were tested using a two-
tailed overlapping block bootstrap test (the test was two-tailed, rather than one-tailed, because we
had no a priori prediction as to whether chaoticity would increase or decrease during unconscious
relative to conscious states). Differences in information-richness were assessed using a left-tailed
overlapping block bootstrap test, to specifically test against the null hypothesis that there is no
decrease in Lempel-Ziv complexity in DOC. We found that estimated chaoticity (top left) was
significantly higher in unconscious than conscious states for three out of four of the patients, similar
to what we observed for GABAergic anesthesia (SI Appendix, Fig. S5C), but was significantly
lower in the fourth patient, similar to what we observed for generalized seizures (SI Appendix, Fig.
5A-B). Univariate Lempel-Ziv complexity (top right) was significantly lower during unconscious
than conscious states for all patients, recapitulating what we observed for both anesthesia and
generalized seizures (SI Appendix, Fig. S5), while results with both measures of multivariate
Lempel-Ziv complexity were inconsistent across patients (bottom).
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Fig. S12: (Caption on the following page.)
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Fig. S12: A. To ensure that our processing pipeline produces estimates of chaoticity that are both
accurate and stable, we ran 100 simulations of the mean-field model in its seizure (periodic), wak-
ing (near-critical), and anesthetized (chaotic) states. Each simulation included unique noise inputs.
Thus, the deterministic component of all 100 simulations in a given state had the same ground-
truth largest Lyapunov exponent (i.e. level of chaoticity), but the actual time-series produced in
each simulation would be unique, due to the unique noise inputs. As in Table S6, we compared
results using four low-pass filtering methods (namely, where the low-pass filter frequency was de-
termined either by the FOOOF algorithm or set at 2, 4, or 6 Hz) and two different methods for
time-discretization (namely, downsampling or taking the local minima and maxima) of the low-
pass filtered signal. Results were generally stable in both the seizure (periodic) and anesthesia
(chaotic) states. Though results were less stable for the waking (near-critical) state, they were
comparably stable (compared to other methods) when taking the local minima and maxima of a
time-series that was low-pass filtered at a frequency determined using the FOOOF algorithm. Im-
portantly, this method also produced the most accurate chaoticity estimates (Tables S6-S7). Thus,
given both the accuracy and relative stability of chaoticity estimates using this method, the chaotic-
ity of all empirical time-series in this paper was estimated using the local minima and maxima of
signals low-pass filtered using the FOOOF algorithm. B. To assess whether there was any system-
atic relationship between the stability of chaoticity estimates using this method and ground-truth
chaoticity, we ran 10 simulations of each of the 776 parameter configurations of the mean-field
model assessed in this paper. (Note that we ran 10 rather than 100 simulations, as in A, because of
the long computation times involved). For each run, we estimated the chaoticity of the simulated
time-series using the local minima and maxima of signals low-pass filtered using the FOOOF algo-
rithm, and calculated the variance of the median K-statistic across those 10 runs for each parameter
configuration. Because variance was low for all parameter configurations, we plotted the results
on a log-scale, which revealed a slight but consistent increase in the variance of the K-statistic near
criticality.
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Fig. S13: We here plot the behavior of three previously validated correlates of anesthetic depth:
1) relative delta power12, 13, here calculated as total power between 1 and 4 Hz divided by to-
tal power between 1 and 45 Hz, 2) multiscale sample entropy14, using the parameters described
in Costa et al15,which have been shown to robustly track sevoflurane effect site concentration14

(namely, segment length m=2, tolerance r=0.15, and time scale τ=1), and 3) spectral slope16, 17

(using the automated spectral slope calculation of the FOOOF algorithm11). Although prior analy-
ses of spectral slope during anesthesia assessed slope between 30 and 45 or 50 Hz, the mean-field
model analyzed here only explicitly simulates low-frequency dynamics, and so we assessed spec-
tral slope from 0.1 to 45 Hz. Consistent with prior empirical work, we found a clear rise in relative
delta power, reduction of multiscale entropy, and steepening of spectral slope in the chaotic phase
of the model more generally, and in the simulated anesthesia state more specifically. Moreover, we
found that, like Lempel-Ziv complexity (Fig. 2), multiscale entropy displayed its highest values
near the edge-of-chaos critical point, with reductions in both the periodic and chaotic phases.
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Fig. S14: In order to compare the amount of non-redundant information in different signals,
Lempel-Ziv complexity is typically normalized to lie roughly between 0 and 1. We here test
several different normalization approaches by applying them to noise signals with different spec-
tral slopes; this is important in comparing Lempel-Ziv complexity across different brain states, as
the spectral profiles of brain signals can vary significantly across different brain states. The x-axes
here refer to multivariate noise signals with increasingly negative spectral slopes: f 2 (violet) noise,
f (blue) noise, 1/f (pink) noise, and 1/f 2 (red) noise. All of these signals are entirely random (and
thus contain entirely non-redundant information), and vary only by their spectral properties; thus,
a properly normalized measure of Lempel-Ziv complexity should be constant (and approaching
the ceiling of 1) for each of these random processes. The first column (“No Norm.”) shows the
behavior of our three measures of Lempel-Ziv complexity as a function of the spectral profile of
the noise signals; note the drop as the power spectrum steepens from pink (1/f ) noise to red (1/f 2)
noise. The second column, “String Length,” shows the behavior of the three complexity measures
normalized by T/log2T , where T is the length of the binary string being compressed; note that this
form of normalized Lempel-Ziv complexity likewise varies as a function of the spectral slope of the
random signals. The third column, “RP (binarized),” shows the alternative normalization scheme
used by Schartner and colleagues18, 19, which divides the Lempel-Ziv complexity of a signal (after
it has been binarized) by the Lempel-Ziv complexity of a random shuffle of the binarized form
of the signal; this likewise is affected by spectral slope. The fourth column, “RP (raw)” is simi-
lar, but instead divides the Lempel-Ziv complexity of a signal by the Lempel-Ziv complexity of a
random shuffle of that continuous signal (i.e., Lempel-Ziv complexity is calculated for a binarized
version of the original signal, and for a binarized version of the shuffled signal, and the former is
normalized by the latter). The final three columns show the behavior of Lempel-Ziv complexity
of a signal divided by the Lempel-Ziv complexity of a phase-randomized surrogate of that signal,
following the methodology of Brito and colleagues20. A phase-randomized surrogate preserves the
spectral properties of the original signal but is otherwise random. We used three phase-randomized
surrogate algorithms: Fourier transform surrogates (“FT”), amplitude adjusted Fourier transform
surrogates (“AAFT”) and iterative amplitude adjusted Fourier transform surrogates (“iAAFT”).
Normalizing by the Lempel-Ziv complexity of surrogates generated by any of these three algo-
rithms produced desirable behavior - namely, a consistent normalization to near one for any noise
signal, regardless of its spectral properties - but the least variance as a function of spectral slope
was produced by Fourier transform surrogates (“FT”), and so we used this algorithm throughout
the rest of this paper to create surrogates by which to normalize Lempel-Ziv complexity.
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Fig. S15: 10-second time-traces from 10 sample channels during generalized seizures from our
three seizure subjects. The subject numbers match those in Figs. S2-S4.
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Fig. S16: Surface electrocorticography (ECoG) electrode placement for our anesthesia subjects.
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Table S1: As described in the main body of the paper, we did not estimate chaoticity from any
channel, in a given trial, for which the FOOOF algorithm failed to identify an oscillatory peak
within the 1-6 Hz range. We here enumerate the (rounded) percentage of channels(x)trials that
were thus excluded from our chaoticity analysis. Note that, in general, only a minority of channels
were thus excluded, and that there were no clear differences in the number of excluded channels
in different brain states (which we confirm statistically in Tables S2-S3)

.

Percentage of channels(x)trials
excluded from chaos analysis

Subject Normal waking Altered state
Anesthesia Subject 1 (ECoG, human) 9% 14%
Anesthesia Subject 2 (ECoG, human) 18% 21%
Anesthesia Subject 3 (ECoG, human) 14% 16%
Anesthesia Subject 4 (ECoG, macaque) 10% 11%
Anesthesia Subject 5 (ECoG, macaque) 7% 18%
Seizure Subject 1 (ECoG, human) 23% 21%
Seizure Subject 2 (ECoG, human) 9% 1%
Seizure Subject 3 (MEG, human) 22% 0%
LSD Subject 1 (MEG, human) 29% 32%
LSD Subject 2 (MEG, human) 14% 20%
LSD Subject 3 (MEG, human) 21% 25%
LSD Subject 4 (MEG, human) 31% 27%
LSD Subject 5 (MEG, human) 7% 11%
LSD Subject 6 (MEG, human) 24% 25%
LSD Subject 7 (MEG, human) 13% 13%
LSD Subject 8 (MEG, human) 23% 28%
LSD Subject 9 (MEG, human) 27% 27%
LSD Subject 10 (MEG, human) 26% 32%
LSD Subject 11 (MEG, human) 23% 22%
LSD Subject 12 (MEG, human) 22% 30%
LSD Subject 13 (MEG, human) 15% 17%
LSD Subject 14 (MEG, human) 28% 28%
LSD Subject 15 (MEG, human) 18% 14%
LSD Subject 16 (MEG, human) 23% 31%
DOC patient 1 (EEG, human) 1% 0%
DOC patient 2 (EEG, human) 18% 32%
DOC patient 3 (EEG, human) 35% 27%
DOC patient 4 (EEG, human) 23% 21%
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Table S2: We tested whether observed differences in estimated chaoticity across brain states were
potentially driven by the frequency at which signals were low-pass filtered, and/or the relative
spectral power of activity beneath that frequency cutoff (calculated as total power under the low-
pass filter frequency divided by total spectral power under 45 Hz), and/or the number of channels
that were excluded from chaoticity estimates (owing to the failure of the FOOOF algorithm to
identify an oscillation in the 1-6 Hz range in those channels - see Materials and Methods). To do
so, we used a permutation-based nonparametric ANCOVA with 1,000 permutations, following the
method described by Petraitis and colleagues21. We set the median K-statistic as the response
variable, brain state (i.e. normal waking, generalized seizure, anesthesia, or LSD) as the group
label, and set the covariates to 1) the median frequency at which signals were low-pass filtered,
2) the median relative spectral power beneath that frequency, and 3) the percentage of channels
that were excluded from each subject’s chaoticity estimates. We found that only brain state
significantly explained the observed variance across subjects in the estimated chaoticity of slow
cortical electrodynamics, with no significant effect of the covariates or their interactions with
brain state.

Variable F-statistic p-value
Brain State 43.477 0.001
Slow frequency cutoff 0.512 0.475
Slow frequency power 0.074 0.786
Percent channels excluded 0.574 0.444
Brain state*slow frequency cutoff 0 1
Brain state*slow frequency power 0.479 0.492
Brain state*percent channels excluded 0.893 0.369
Brain state*all covariates 0.382 0.542
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Table S3: We repeated our nonparametric, permutation-based ANCOVA from Table S1, using
K-statistic values normalized to each subject’s normal waking baseline (as reported in Figure 3A)
rather than raw K-statistic values. We again found that only brain state significantly explained the
observed variance in the estimated chaoticity of slow cortical electrodynamics, with no significant
effect of either the covariates or their interactions with brain state, though percentage of excluded
channels bordered on significance as a covariate.

Variable F-statistic p-value
Brain State 90.644 0.001
Slow frequency cutoff 2.817 0.076
Slow frequency power 0.007 0.946
Percent channels excluded 4.316 0.05
Brain state*slow frequency cutoff 0 1
Brain state*slow frequency power 0.023 0.912
Brain state*percent channels excluded 0.252 0.710
Brain state*all covariates 0.027 0.911

Table S4: We previously described3 a test to determine whether a signal is generated by a predom-
inantly deterministic system (linear or nonlinear). The test compares the permutation entropy of a
signal to the permutation entropies of 1,000 amplitude adjusted Fourier transform surrogates and
1,000 cyclic phase permutation surrogates of that signal. If the permutation entropy of the origi-
nal signal falls within either surrogate distribution, then the signal is classified as predominantly
or “operationally” stochastic. We identified a failure case of this method, which is that for short,
noise-free signals sampled at a high frequency from deterministic, continuous-time systems, the
cyclic phase permutation algorithm generates surrogates with identical permutation entropies. This
in turn can lead to misclassifications of deterministic processes as stochastic. We here modify our
original test to catch this edge case: if the cyclic phase permutation algorithm fails to generate sur-
rogates with at least 500 unique permutation entropy values, then jitter in the form of 2.5% white
noise is incrementally added to the original signal until this failure case is broken. We here tested
the accuracy of both our original and modified test on a broad range of dynamical systems, the code
for which is included alongside our previously described Chaos Decision Tree Algorithm (see our
prior work for model equations and parameters3). Note that SNA stands for “strange nonchaotic
attractor.” We excluded one system described in our previous work, namely the noise-driven sine
map, because it is unclear whether its dynamics are in fact predomoninantly stochastic, or whether
they are better characterized as noise-induced tunneling between quasi-stable, deterministic attrac-
tor states3. We also applied both our original and modified stochasticity test to all 120 nodes of the
mean-field model studied here, with its noise inputs turned off (so its dynamics are fully determin-
istic), in its seizure, waking, and anesthesia states. We found that our modified stochasticity test
performed as well as the original test for all systems described in our previous work, and markedly
outperformed the original test for the mean-field simulations of low-frequency cortical activity. We
therefore applied this modified test to our real cortical recordings (Table S5). Table on next page.
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Original Stochasticity
Test Accuracy

Modified Stochasticity
Test Accuracy

ARMA process (linear stochastic) 67/100 (67%) 71/100 (71%)
Bounded random walk (nonlinear stochastic) 100/100 (100%) 100/100 (100%)
Cubic Map (chaotic) 100/100 (100%) 100/100 (100%)
Cubic Map (Heagey-Hammel SNA) 100/100 (100%) 100/100 (100%)
Cubic Map (periodic-doubled) 100/100 (100%) 100/100 (100%)
Cubic Map (periodic) 100/100 (100%) 100/100 (100%)
Cubic Map (type-3 intermittency SNA) 100/100 (100%) 100/100 (100%)
Cyclostationary process (linear stochastic) 98/100 (98%) 98/100 (98%)
Freitas map (nonlinear stochastic) 99/100 (99%) 99/100 (99%)
Generalized Hénon Map (hyperchaotic) 100/100 (100%) 100/100 (100%)
GOPY map (SNA) 100/100 (100%) 100/100 (100%)
Granulocyte levels (chaotic) 100/100 (100%) 100/100 (100%)
Granulocyte levels (periodic) 100/100 (100%) 100/100 (100%)
Hénon map (periodic) 100/100 (100%) 100/100 (100%)
Ikeda map (chaotic) 100/100 (100%) 100/100 (100%)
Logistic map (chaotic) 100/100 (100%) 100/100 (100%)
Logistic map (periodic) 100/100 (100%) 100/100 (100%)
Lorenz system (chaotic) 100/100 (100%) 100/100 (100%)
Poincaré oscillator (chaotic) 100/100 (100%) 100/100 (100%)
Poincaré oscillator (periodic) 100/100 (100%) 100/100 (100%)
Poincaré oscillator (quasi-periodic) 100/100 (100%) 100/100 (100%)
Random walk (linear stochastic) 100/100 (100%) 100/100 (100%)
Rössler oscillator (chaotic) 100/100 (100%) 100/100 (100%)
Simulated anesthesia state (chaotic) 0/120 (0%) 117/120 (98%)
Simulated seizure (periodic) 0/120 (0%) 120/120 (100%)
Simulated waking state (chaotic, near-critical) 1/120 (1%) 98/120 (82%)
Spiking Izhikevich neuron (chaotic) 100/100 (100%) 100/100 (100%)
Trended random walk (linear stochastic) 100/100 (100%) 99/100 (99%)
Unfiltered blue noise (linear stochastic) 100/100 (100%) 100/100 (100%)
Unfiltered pink noise (linear stochastic) 100/100 (100%) 100/100 (100%)
Unfiltered red noise (linear stochastic) 100/100 (100%) 100/100 (100%)
Unfiltered violet noise (linear stochastic) 100/100 (100%) 100/100 (100%)
Unfiltered white noise (linear stochastic) 100/100 (100%) 100/100 (100%)
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Table S5: To test whether low-frequency cortical electrodynamics are predominantly deterministic
(which is an important assumption of the 0-1 chaos test), as well as to test against the possibil-
ity that our results were potentially driven by changing levels of stochasticity in low-frequency
cortical dynamics rather than by changing levels of chaoticity, we applied the modified test of
signal stochasticity described in Table S4 to all of our empirical datasets. Specifically, we ap-
plied the test to all data (channels x trials) low-pass filtered using the FOOOF algorithm (i.e.,
the data for which we assessed low-frequency chaoticity using the 0-1 test). We found that low-
frequency dynamics from a majority (75%) of channels(x)trials were classified as predominantly
deterministic. Moreover, a cross-subject, two-tailed Wilcoxon rank-sum test comparing percentage
of channels(x)trials classified as stochastic in normal waking versus altered states revealed no sig-
nificant difference between conditions (p=0.2446). Additionally, there was no correlation between
the change in each subject’s median K-statistic across conditions and the change in the percentage
of their channels(x)trials that were classified as stochastic (Pearson correlation r=-0.304, p=0.116;
partial correlation ρ=-0.189, p=0.346, controlling for change in median frequency at which signals
were low-pass filtered). To further test against the possibility that these findings were potentially
driven by our low-pass filtering method, we generated 100 simulations of 5,000 time-points of
violet, blue, white, pink, and red noise, and applied this stochasticity test to these simulated noise
samples after low-pass filtering in the 1-6 Hz range using the FOOOF algorithm (note that, as was
the case for the empirical data, a simulated noise signal was excluded if the FOOOF algorithm
did not identify an oscillation in this frequency range). Although our stochasticity test performed
with perfect accuracy in classifying unfiltered noise as stochastic (Table S4), performance did drop
for low-pass filtered noise. That said, we note that performance was very high for both filtered
pink and red noise, whose power spectra ( 1

f
and 1

f2
, respectively) more closely match that of real

neural electrodynamics11 than do those of other noise colors. Taken together, these results suggest
that low-frequency cortical electrodynamics are predominantly deterministic, and that observed
changes in the K-statistic across brain states result from changing levels of chaoticity in those
electrodynamics, as predicted, rather than changing levels of stochasticity. Table on next page.
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Fraction of channels(x)trials
classified as stochastic (low-frequency)

Subject Normal waking Altered state
Anesthesia Subject 1 (ECoG, human) 3770/5421 (70%) 5499/6522 (84%)
Anesthesia Subject 2 (ECoG, human) 8538/11178 (76%) 9121/10853 (84%)
Anesthesia Subject 3 (ECoG, human) 5070/10041 (50%) 4423/8030 (55%)
Anesthesia Subject 4 (ECoG, macaque) 264/11948 (2%) 0/13528 (0%)
Anesthesia Subject 5 (ECoG, macaque) 226/11772 (2%) 4/10249 (0%)
Seizure Subject 1 (ECoG, human) 9/1539 (1%) 0/225 (0%)
Seizure Subject 2 (ECoG, human) 0/1385 (0%) 0/1128 (0%)
Seizure Subject 3 (MEG, human) 208/1007 (21%) 54/143 (38%)
LSD Subject 1 (MEG, human) 2245/8677 (26%) 1445/9870 (15%)
LSD Subject 2 (MEG, human) 2689/10081 (27%) 768/6548 (12%)
LSD Subject 3 (MEG, human) 2616/12679 (21%) 2128/12017 (18%)
LSD Subject 4 (MEG, human) 2674/13300 (20%) 1036/13732 (8%)
LSD Subject 5 (MEG, human) 1644/6265 (26%) 2226/6343 (35%)
LSD Subject 6 (MEG, human) 1854/7448 (25%) 1230/10564 (12%)
LSD Subject 7 (MEG, human) 2532/10526 (24%) 1843/10549 (17%)
LSD Subject 8 (MEG, human) 2658/10412 (26%) 2236/9667 (23%)
LSD Subject 9 (MEG, human) 795/3193 (25%) 558/2824 (20%)
LSD Subject 10 (MEG, human) 486/6344 (8%) 376/5946 (6%)
LSD Subject 11 (MEG, human) 3118/12201 (26%) 3059/13317 (23%)
LSD Subject 12 (MEG, human) 1545/8818 (18%) 1406/8866 (16%)
LSD Subject 13 (MEG, human) 63/1018 (6%) 54/939 (6%)
LSD Subject 14 (MEG, human) 1964/8765 (22%) 1432/7688 (19%)
LSD Subject 15 (MEG, human) 2806/9350 (30%) 1438/10028 (14%)
LSD Subject 16 (MEG, human) 1310/7855 (17%) 1132/6439 (18%)
DOC patient 1 (EEG, human) 360/3230 (11%) 1481/11914 (12%)
DOC patient 2 (EEG, human) 6187/12138 (51%) 1643/3904 (42%)
DOC patient 3 (EEG, human) 221/416 (53%) 12538/28752 (44%)
DOC patient 4 (EEG, human) 1174/2565 (46%) 869/2199 (40%)
Filtered violet noise 82/83 (99%)
Filtered blue noise 61/94 (65%)
Filtered white noise 33/88 (38%)
Filtered pink noise 65/93 (70%)
Filtered red noise 91/92 (99%)
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Table S6: We here compare different time-series analysis methods for tracking changing levels of
chaoticity in a system. To do so, we assessed the Pearson correlation r and associated p-values
(Bonferroni-corrected) between the ground-truth largest Lyapunov exponent of the mean-field
cortical model studied in this paper (calculated with the noise input turned off) and the K-statistic
of the 0-1 chaos test, applied to the time-discretized, low-frequency component of the simulated
dynamics of the model (with the noise input turned on, so as to better assess their ability to
track changing chaoticity in real cortical dynamics). Low-frequency dynamics were extracted
using EEGLAB’s two-way least-squares FIR low-pass filtering, as described in the Materials and
Methods. Cutoff frequencies for low-pass filtering were determined in a data-driven manner using
the FOOOF algorithm, or were set at 2 Hz, 4 Hz, or 6 Hz. Once data were low-pass filtered,
they were time-discretized using either the iterative downsampling method described in our prior
work3, or by taking all local minima and maxima of the simulated signals22. We further tested
the ability of these analysis methods to track varying degrees of chaos in the presence of very
high levels of either white or pink (1/f) measurement noise, where the noise amplitude equaled
half (50%) the standard deviation of the underlying signal. Overall, we found that the K-statistic,
when applied to low-frequency activity extracted using the FOOOF algorithm and discretized
using the local minima/maxima method (bolded), outperformed all other methods in tracking the
ground-truth chaoticity of the model, and was unaffected by even large amounts of measurement
noise. This method also produced stable estimates of chaoticity across unique model simulations
(Fig. S12). We therefore used this method to track changing levels of chaoticity in our real cortical
recordings.

Noise-free 50% White Noise 50% Pink (1/f) Noise
r p-value r p-value r p-value

FOOOF, minima/maxima 0.84 <10e-4 0.84 <10e-4 0.83 <10e-4
FOOOF, downsampling 0.72 <10e-4 0.72 <10e-4 0.73 <10e-4
2 Hz, minima/maxima 0.75 <10e-4 0.72 <10e-4 0.38 <10e-4
2 Hz, downsampling 0.16 <10e-4 0.1 n.s. 0.06 n.s.
4 Hz, minima/maxima 0.74 <10e-4 0.74 <10e-4 0.75 <10e-4
4 Hz, downsampling 0.73 <10e-4 0.73 <10e-4 0.67 <10e-4
6 Hz, minima/maxima -0.20 <10e-4 -0.22 <10e-4 -0.39 <10e-4
6 Hz, downsampling 0.73 <10e-4 0.72 <10e-4 0.47 <10e-4
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Table S7: Because the FOOOF algorithm picks a unique frequency at which to low-pass filter data
for each channel and trial, we here calculated the partial correlation ρ (and Bonferroni-corrected
p-values) between the ground-truth largest Lyapunov exponents of the mean-field model and the
K-statistic calculated using the FOOOF algorithm as described above, controlling for the low-pass
filter frequency selected by the FOOOF algorithm. We found that even when controlling for
the frequency selected by the FOOOF algorithm for low-pass filtering, the method identified in
Table S6 as superior to all alternatives - namely, applying the 0-1 chaos test to the local minima
and maxima of a signal low-pass filtered at a frequency identified by the FOOOF algorithm
- robustly tracks ground-truth chaoticity. We moreover note that, unlike the minima/maxima
time-discretization method, controlling for frequency markedly reduced the correlation between
ground-truth largest Lyapunov exponents and the K-statistic calculated using the iterative down-
sampling method.

Noise-free 50% White Noise 50% Pink (1/f) Noise
ρ p-value ρ p-value ρ p-value

FOOOF, minima/maxima 0.82 <10e-4 0.81 <10e-4 0.82 <10e-4
FOOOF, downsampling 0.56 <10e-4 0.57 <10e-4 0.59 <10e-4

Table S8: All four DOC patients whose EEG recordings were analyzed in this paper received
painkillers and anesthetics as part of their treatment protocol. Unfortunately, it was not possible
to determine the exact timing of drug administration relative to behavioral assessment using the
Glasgow Coma Scale (GCS) and corresponding EEG recordings, and so our results for these
patients could be confounded by the effects of these drugs. Here, we list the drugs that were
administered to each patient on the same day as GCS scoring and corresponding EEG recordings,
which are the only data that are available regarding the relative timing of drug administration and
GCS assessment.

Subjects Unconscious Conscious

1 Propofol, ketamine, dexmedetomidine none

2
Propofol, opioids, ketamine, dexmedetomidine,

benzodiazepines
none

3
Propofol, opioids, ketamine, dexmedetomidine,

barbituates, benzodiazepines

Propofol, opioids, ketamine, dexmedetomidine,

benzodiazepines

4
Propofol, opioids, ketamine, dexmedetomidine,

barbituates

Propofol, opioids, ketamine, dexmedetomidine,

barbituates
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Supplementary Note 1

While “chaos” and “disorder” have often been used interchangeably in the literature on neural

criticality, this is in fact misleading: counter-intuitively, chaos is in fact the “ordered” phase of a

dynamical system with respect to edge-of-chaos criticality23, 24. This is because a phase is consid-

ered “ordered” with respect to a critical point if it is characterized by whatever symmetry is broken

at that critical point, and it is known that the topological or de-Rham supersymmetry of dynamical

systems is broken at the periodic-to-chaotic transition23–30. A more intuitive example of this is ice

water, which is “ordered” because it lacks the translational and rotational symmetry that makes

liquid water “disordered.” In other words, because liquid water is disordered, any rotation or trans-

lation (along any axis) would preserve the shape of the water, meaning that it has both translational

and rotational symmetry; in contrast, because ice water has a regular crystalline lattice structure,

that structure will only be preserved for a limited number of rotations or translations, which means

that ice water lacks translational and rotational symmetry. This lack of symmetry is what makes

ice water “ordered.” Similarly, because periodic systems are topologically symmetric and because

this symmetry is broken at the edge-of-chaos critical point, chaos is in fact the “ordered” phase of

dynamical systems. Moreover, it is important to note that this topological or de-Rham supersym-

metry can be broken either by the non-integrability of a dynamical system (which is the classic

definition of chaos in the deterministic sense) or by noise-induced tunneling between attractors

(which extends the notion of chaos to stochastic dynamical systems)23–30. Thus, our finding that

low-frequency cortical electrodynamics are weakly chaotic during conscious states is both fully

consistent (if counter-intuitively so) with the proposal that waking cortical dynamics operate on

the ordered side of a critical point, and with the presence of dynamic noise in cortical networks.

Supplementary Note 2

We suggest a follow-up experiment to a result reported here, which is that the mean-field model of
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cortical electrodynamics exhibited its maximally information-rich, nearest-to-criticality behavior

when there was a moderate reduction in the strength of gap junction coupling between inhibitory

interneurons, as well as an increase in postsynaptic excitability - a parameter change which led

to reduced spectral power at low frequencies (Fig. S2, S4), recapitulating results observed for

the MEG recordings from humans following administration of LSD (Fig. S2, S4). This poten-

tially points to an as-yet-unstudied molecular effect of psychedelics. It is already known that

psychedelics induce a marked increase in the frequency and amplitude of spontaneous glutamater-

gic excitatory postsynaptic potentials in cortical layer V pyramidal cells31–34, which leads to re-

duced low-frequency local field potential35 and MEG power36, and that an increase in cortical

excitability in mean-field models can recreate many of the effects of psychedelics on macro-scale

cortical dynamics36, 37. But, there is currently no published research on the effect of psychedelics

on cortical gap junction coupling38. That said, in light of both our simulation-based results and

prior empirical findings, we predict an inhibitory effect of psychedelics on gap junction cou-

pling. To begin, it is already known that serotonin and other 5-HT2A receptor agonists suppress

gap junction coupling, and that 5-HT2A receptor antagonists attenuate this effect39. Addition-

ally, the antipsychotic drugs clozapine and haloperidol, which both diminish or block the effects

of psychedelics40–42, have been shown to increase the strength of gap junction coupling43. Fi-

nally, psychedelics are known to bear a number of striking resemblances to the antimalarial drug

mefloquine, which, like psychedelics, is a potent agonist of the 5-HT2a receptor38, reduces low-

frequency electroencephalography power44, and can induce hallucinations and other psychiatric

events45; importantly, mefloquine is also known to block several connexins46–48 and is used to

block gap junction coupling in experimental settings49. Thus, based on both our mean-field mod-

eling results and prior empirical literature, we predict that psychedelics moderately block cortical

gap junction coupling - a prediction that will need to be tested in future work.
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