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Supporting Information Text14

Model description15

Our motivation is to develop and apply a phenomenological model that allows us to define a statistic that quantifies the16

influence of the mutation spectrum on the spectrum of adaptive substitutions. We focus on the most general and widely17

available data on adaptive genetic change: Single-nucleotide changes that alter amino acids, i.e., single-nucleotide missense18

changes. The standard genetic code specifies a set of 354 different types of single-nucleotide missense changes defined by a19

starting codon and an ending amino acid. For genomes that use the standard genetic code, any given episode of adaptation20

involving missense changes induces a distribution of adaptive substitution events over these 354 types, which we refer to as the21

spectrum of adaptive substitutions.22

Because our goal is to model the observed number of counts for each type of adaptive substitution, we use negative binomial23

regression (1), which is a type of generalized linear model that is often employed for modeling count data. It is appropriate24

because the 354 mutational types are discrete and the substitution events that correspond to each type occur independently of25

one another. The general form of the model is26

logE[Y |x] = β0 + log(exposure) + βx,

where Y is a vector of response variables, x are the explanatory variables, β0 is the logarithm of the constant of proportionality,27

and exposure quantifies differences in the potential to observe each type of response. In our case, Y is the number of substitution28

events of each type, x is the logarithm of the mutation rate, and the exposure is given by codon frequency, which controls for29

the number of times each codon appears in protein-coding regions of the genome. Our model then takes the form30

logE[n(c, a)| log(µ(c, a))] = β0 + log(f(c)) + β logµ(c, a),

where n is the spectrum of adaptive substitutions (i.e., n(c, a) is the number of substitution events from codon c to amino acid31

a), µ(c, a) is the mutation rate from codon c to amino acid a, and f(c) is the frequency of codon c in the genome. The coefficient32

β is a single statistic that captures the influence of the mutation spectrum on the spectrum of adaptive substitutions. The33

expected range of β is from 0 to 1: If β = 0, the mutation spectrum has no influence on the spectrum of adaptive substitutions.34

If β = 1, the mutation spectrum has a proportional influence on the spectrum of adaptive substitutions. Values of β between 035

and 1 represent an intermediate influence.36

The above model only describes the expected number of counts for each type of substitution, however to fit the parameters37

of the model by maximum likelihood we must specify a full distribution for n(c, a). One common choice would be to assume38

that these counts are Poisson distributed (i.e. Poisson regression). However, Poisson regression assumes that the variance in the39

counts data is equal to the mean. In our data, we instead observe overdispersion, i.e. that the variance is larger than the mean.40

Such overdispersion is a common problem in Poisson regression. The standard solution is to instead use negative binomial41

regression, a more general model that allows the variance to be different from the mean (1). In the main text, we therefore use42

negative binomial regression to model the influence of the mutation spectrum on the spectrum of adaptive substitutions.43

Meaning of key terms44

Several important terms used in our study, such as “mutation”, have meanings that are interpreted differently in different parts45

of the scientific community (2). Moreover, our study design requires additional precision in being able to describe genetic and46

evolutionary changes, for example distinguishing a possible beneficial change to the genome of an organism from a realized47

instance where a heritable change of that type arises in a particular individual. In order to avoid any terminological ambiguity,48

we therefore provide formal definitions for these key terms below.49

adaptive substitution An adaptive substitution is an evolutionary change in a population or sub-population, where each50

adaptive substitution is understood (in the present context) to result from an event of mutational introduction and an51

episode of selective enrichment that raises the mutant allele to a frequency close to 1.52

event An instance of change, having a particular time and place of occurrence, is an event. Compare to path or type. Here we53

assume that events occur independently from each other, and distinguish e.g. the number of times a particular mutational54

variant is observed from the number of distinct mutational events that introduced that variant into the population.55

missense (nonsynonymous) In the literature of molecular evolution, codon changes that alter the amino acid are missense56

changes, and this class of change is often called “non-synonymous” (e.g., in the dN / dS literature) although technically57

non-synonymous changes include both missense and nonsense changes.58

mutation A mutation is a heritable change to the genetic material in an individual lineage. The process of such change is also59

called mutation. The product of a mutational change is also called “a mutation” or a “mutant allele,” and in population60

genetics this kind of usage is often extended to refer generally to derived alleles, e.g., the “concurrent mutations” regime61

refers to mutant alleles segregating concurrently in a population.62
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mutational type An event of evolutionary or mutational change can be assigned to a variety of mutational types or categories63

defined by a class of starting states (e.g., ATG codons) and a class of ending states (e.g., TTG codons). Here we are64

mainly focused on the 6 (reversible) nucleotide-to-nucleotide types and the 354 codon-to-amino-acid types. We use “path”65

for a specific kind of mutational type (see path).66

path For the purposes of describing observed data sets for specific organisms, a path is a mutational type defined by a specific67

genomic site and a codon-to-amino-acid change. Parallel or recurrent events within a dataset are events that take place68

along the same path.69

spectrum A set of intensities or frequencies over some space of possibilities (e.g. a collection of different types of mutations)70

is a spectrum.71
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Data Neg. binomial regression Prediction model Spectrum elements
Study Paths Events β pβ Correlation pcorr Non-zero elements Entropy

Basel (3) 126 2319 0.83 ± 0.27 0.002 0.15 0.005 78 0.53
Manson (4) 168 2094 0.84 ± 0.27 0.001 0.17 0.002 80 0.52

Table S1. Separately analyzing the adaptive events from the two meta-analyses of antibiotic resistance substitutions in M. tuberculosis yields
qualitatively similar results to analyzing them together. Shown are the observed numbers of paths and events, the mutation coefficient β
(with standard error) and its p-value, the Pearson’s correlation between observed and predicted spectra of adaptive substitutions and its
p-value, as well as the number of non-zero elements of the spectrum of adaptive substitutions and the entropy of the spectrum of adaptive
substitutions.
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Influence of ti/tv ratio Influence of rest of mutation spectrum Model comparison
Species βti/tv 95% CI pβti/tv βrest 95% CI pβrest log likelihood pLRT

S. cerevisiae
0.79 ± 0.13 [0.53, 1.05] < 10−8 −1266.15

< 10−16
0.85 ± 0.11 [0.63, 1.07] < 10−16 1.25 ± 0.11 [1.03, 1.47] < 10−16 −1156.48

E. coli
0.80 ± 0.17 [0.46, 1.14] < 10−5 −1109.90

< 10−6
0.85 ± 0.17 [0.51, 1.19] < 10−6 1.28 ± 0.26 [0.77, 1.80] < 10−6 −1083.80

M. tuberculosis
0.84 ± 0.33 [0.19, 1.50] 0.01 −1233.32 0.030.89 ± 0.32 [0.26, 1.52] 0.01 0.80 ± 0.36 [0.09, 1.51] 0.02 −1228.67

Table S2. The entire mutation spectrum provides better model fits than just the transition-transversion ratio. Shown are the regression coef-
ficient of the transition-transversion ratio βti/tv (with standard error), its 95% confidence interval and its p-value, the regression coefficient
associated to the rest of the mutation spectrum βrest (with standard error), its 95% confidence interval and its p-value, as well as the p-value
of the likelihood ratio test comparing both models pLRT, which indicates that the more complex model including the full mutation spectrum
provides a significantly better fit than the simpler model that only includes the transition-transversion ratio.
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Only codon frequencies Complete model
Species Correlation [CI] pcorr Correlation [CI] pcorr

S. cerevisiae 0.36 [0.25, 0.44] < 10−11 0.68 [0.62, 0.73] < 10−16

E. coli 0.31 [0.22, 0.40] < 10−9 0.41 [0.31, 0.49] < 10−14

M. tuberculosis 0.10 [−0.0004, 0.2059] 0.05 0.16 [0.05, 0.26] 0.003
Table S3. A model using codon frequencies and the mutation spectrum provides better predictions than a model using only codon frequencies
(β = 0). Shown are the correlation coefficients for the two models, with 95 % confidence intervals and p-values.
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Fig. S1. Empirical mutation spectra and codon frequencies. (a) Bar plots of the empirical mutation spectra for S. cerevisiae, E. coli, and M. tuberculosis. Bar color indicates
the species; see legend. (b-d) Relative difference in mutation rates per mutation type, Relat diff(b, a) = b/a. Bar color indicates the species with the higher mutation rate
for each mutation type. The vertical axis is logarithmically scaled for visual clarity. (e-g) Bar plots of the empirical codon frequencies for (e) S. cerevisiae, (f) E. coli, and (g)
M. tuberculosis.
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Fig. S2. The correlation between predicted and simulated spectra of adaptive substitutions depends on mutational target size, even under origin-fixation dynam-
ics. The distribution of correlations between predicted and simulated spectra of adaptive substitutions using the codon frequencies, mutation spectra, and number of non-zero
elements in the spectrum of adaptive substitutions are shown for S. cerevisiae, E. coli, and M. tuberculosis. Data pertain to 103 simulations. Triangles show the correlations
reported in Table 1, for reference.
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Fig. S3. High mutation supply diminishes the influence of mutation bias on adaptive evolution. The a) average p-value and b) standard error of the mutation coefficient
β, and c) the average p-value of the correlation between predicted and simulated spectra of adaptive substitutions are shown in relation to mutation supply Nµ. Data pertain to
those shown in Figs. 4a-c.
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Fig. S4. Contamination analysis supports the influence of mutation bias on adaptation. (a) Fraction of simulated data sets in which the confidence interval includes
β = 1. (b) Inferred mutation coefficients β, (c) p-values of the regression coefficients β, (d) Pearson’s correlation coefficients between observed and predicted spectra of
adaptive substitutions, and (e) the p-values of the correlation coefficients, are all shown in relation to the percentage of substitutions randomly removed from the data sets of
adaptive substitutions.
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Fig. S5. Distributions of fitness effects. Representative distributions of fitness effects used in the evolutionary simulations for five different proportions of beneficial mutations
B.
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