Supplementary Information Guide

1. **Supplementary Methods**. Additional Methods including a Primer Table providing all oligo sequences and a Transgenic Line Table providing names and references for all transgenic lines used or created.

2. **Supplementary Data File**. Nucleotide sequences of all NTR variants tested, vectors created, and transgenes created.

3. Supplementary Table 1. Statistical analysis of graphed components of Fig. 3.

4. Supplementary Table 2. Statistical analysis of graphed components of Fig. 4.

5. Supplementary Table 3. Statistical analysis of graphed components of Fig. 5.

6. Supplementary Table 4. Statistical analysis of graphed components of Fig. 6.

7. Supplementary Table 5. Statistical analysis of graphed components of Extended Data Fig. 4.

Supplementary Methods

NTR variants - sequence information

The protein accession numbers for the native NTRs used in this study are: NfsB_Ec = WP_000351487.1; NfsB_Vv = WP_011081872.1; NfsB_St = WP_000355874.1; NfsB_Ck = WP_047458272.1; NfsB_Kp = WP_004178896.1; NfsB_Pp = WP_010953384.1; NfsB_Cs = WP_004384956.1; FraseI_Vf = P46072.3; NfsB_Vh = WP_005435698.1; YfkO_Bs = ADE73858.1; YdgI_Bs = WP_003225379.1.

DNA sequences and corresponding protein sequences of all engineered NTRs used in this study have been deposited with GenBank. Nucleotide sequences of all NTR variants tested here, as well as vectors created, and transgenes used to create new lines are provided in Supplementary Data File 1.

NTR variants - sequence comparisons

Amino acid sequence identity cladograms of the eleven NfsB orthologs, grouped according to percent shared amino acid identity with NfsB_Ec, were generated using the ClustalW2 tool with default settings (<u>http://www.ebi.ac.uk/Tools/msa/clustalw2/</u>). Protein alignments were performed using Clustal Omega sequence alignment tool (default settings; <u>http://www.ebi.ac.uk/Tools/msa/clustalo</u>).

NTR variants – cloning

Native NTR candidates were PCR amplified and cloned into the *Nde*I and *Sal*I sites of two plasmids: pUCX (Addgene #60681), for bacterial overexpression assays, and pET28a(+) (Addgene #69864-3), for His₆-tag protein purification. Engineered gene variants were synthesized as fragments by Twist Bioscience (San Francisco, CA, USA).

For expression in human cells, NTR genes were PhusionTM PCR amplified using primers that introduced a mammalian Kozak consensus sequence, a TAG stop codon and GatewayTM

(Invitrogen) BP recombination sites. PCR fragments were then recombined into the pDONR221TM vector (Invitrogen) using BP ClonaseTM II enzyme mix (Thermo Fisher Scientific), and subsequently into the F279-V5 mammalian expression destination vector (a GatewayTM compatible plasmid which expresses inserted genes from a constitutive CMV promoter and has suppressor read through capabilities to incorporate a V5 epitope at the C-terminus)⁵⁹ using LR ClonaseTM II enzyme mix (Thermo Fisher Scientific).

For expression in zebrafish, NTR genes were PCR amplified from the pET28a(+) vector using primers NfsB_Vv pTOL2_Fw and NfsB_Vv_Rv, digested with *Xma*I and *Sal*I and cloned into the *Xma*I and *Xho*I (an isoschizomer of *Sal*I) sites of a pTol2-5xUAS-GAP-tagYFP-P2A*nfsB_*Ec vector, to swap out the parental *nfsB_*Ec for the new NTR variants. Note, the P2A element allows equimolar co-expression of the YFP reporter and NTR variants from a single transgene⁶⁰, avoiding possible loss of NTR activity caused by fusion protein oligomerization; the GAP element is a 20 bp dual palmitoylation sequence from the zebrafish *gap43* gene used to target reporters to the plasma membrane.

The pTol2 5xUAS:GAP-ECFP,he:GAP-ECFP plasmid was created by cutting ECFP from a 14xUAS:GAP-ECFP plasmid with *XmaI* and *Bsr*GI and cloning it into the same sites to replace the 5' EYFP reporter in a pTol2-5xUAS:GAP-EYFP,he:GAP-EYFP vector⁶¹. Similarly, the hatching enzyme promoter (he) driven ECFP "marker" reporter was cut from pTol2-1xUAS-GAP-tagBFP2gi,he:GAP-tagBFP2 with *ClaI* and *Eco*RV and cloned into the same sites to replace the 3' EYFP of the same parent vector⁶¹. Note, hatching enzyme (*he*) promoter driven "marker" reporters provide a means of tracking germline transmission of UAS and QUAS reporter/effector transgenes in the absence of a Gal4 or QF driver, respectively. Marker reporters are strongly expressed in the hatching gland from 1-3 dpf, then fade since the hatching gland is a temporary structure⁶¹.

The rho:GAP-tagYFP-P2A-nfsB_Vv F70A/F108Y plasmid was generated by PCR amplifying the 3.7 kb rhodopsin promoter from the rho:YFP-NTR plasmid using primers rho_promoter_F2 and rho_promoter_R, and cloning it into the FseI and SnaBI sites of pTOL2-5xUAS-GAP-tagYFP-P2A-NfsB_Vv F70A-F108Y.

The pTol2 5xUAS:GAP-tagYFP-P2A-nfsB_Vv F70A/F108Y,he:GAP-tagBFP2 plasmid was generated by cutting the he:GAP-tagBFP2 element from pTol2-1xUAS-GAP-tagBFP2gi,he:GAP-tagBFP2 with *Hpa*I and *Eco*RV, and cloning it into the same sites downstream of the NTR 2.0 polyA in the vector pTol2 5xUAS:GAP-tagYFP-P2A-NfsB_Vv F70A/F108Y. The mCherry version, pTol2 5xUAS:GAP-mCherry-P2A-NfsB_Vv F70A/F108Y,he:GAP-tagBFP2, was generated by cloning the *Bsm*BI flanked portion of pTol2-5xUAS-GAP-mCherry-P2A-NTRmut,he:TagRFP into the same sites in the pTol2 5xUAS:GAP-tagYFP-P2A-NfsB_Vv F70A/F108Y,he:GAP-tagBFP2 vector. The EGFP version, pTol2 5xUAS:GAP-EGFP-P2A-NfsB_Vv F70A/F108Y,he:GAP-tagBFP2 was generated by using overlap extension PCR to fuse EGFP amplified with primers *Sbf*I-GFP_FOR and GFP_REV (from -6ascl1a:EGFP plasmid, kind gift of Dr. Dan Goldman) and 2A-NTR2.0 amplified by FW-P2A and KfII-Bglobin_REV (from the pTol2 5xUAS:GAP-tagYFP-P2A-NfsB_Vv F70A/F108Y,he:GAP-tagBFP2 vector), cutting the product with *Sbf*I and *Kf*II and cloning it into the same sites within the pTol2 5xUAS:GAP-tagYFP-P2A-NfsB_Vv F70A/F108Y,he:GAP-tagBFP2 vector.

The pTol2 5xQUAS:GAP-tagYFP-P2A-NfsB_Vv F70A/F108Y,he:ECFP vector was created by amplifying the tagYFP to *he* promoter section of the UAS vector with the *Mlu*I-YFP_FOR and *AvrII*-He1Pro_REV primers, digesting with *Mlu*I and *AvrII* and cloning into the same restriction sites within the pDestT2 QUAS-nls-mApple,he:ECFP plasmid (kindly provided by Marnie Halpern). All relevant primers are listed in the Primer Table below.

Zebrafish husbandry and transgenic resources

Zebrafish were maintained under standard growth conditions at 28.5 °C in a 10 h dark / 14 h light cycle. All zebrafish were treated in accordance with approved protocols reviewed by the Johns Hopkins Animal Care and Use Committee. Unless otherwise noted, all zebrafish were in the *roy orbison (roy; mpv17^{a9/a9})* mutant background and treated with 200 nM phenylthiourea (PTU) at 16-24 hours post-fertilization (hpf) to facilitate live imaging and quantification of fluorescent reporters. New zebrafish transgenic lines were created by co-injecting miniTol2-based expression plasmids and 25 pg of Tol2 mRNA into one-cell stage zebrafish embryos and screening for germline transmission. UAS reporter lines, $Tg(5xUAS:GAP-tagYFP-P2A-nfsB_Vv F70A/F108Y)jh513$ and Tg(5xUAS:GAP-ECFP,he:GAP-ECFP)gmc1913, were created by injecting into eggs from the Et(2xNRSE-fos:KALTA4)gmc617 driver line to allow visualization of reporter expression. The $Tg(rho:GAP-tagYFP-P2A-nfsB_Vv F70A/F108Y)jh405$ line was created by injecting into $roy^{a9/a9}$ eggs. A full list of all zebrafish transgenic lines used or created here, as well as abbreviations used herein, delineation of NTR variant, and references are provided in Transgenic Line Table below.

Primer Name	Sequence $(5' \rightarrow 3')$				
Primers for insertion of n	Primers for insertion of nitroreductase genes into vectors pUCX and pET28a+				
NfsB_Vv Fw	GGGG <u>CATATG</u> ACTATTGTTCAAGCT				
NfsB_Vv Rv	GGG <u>GTCGAC</u> TTAGATTTCGGTAAAAACAG				
NfsB_Ec Fw	GGG <u>CATATG</u> GATATCATTTCTG				
NfsB_Ec Rv	GGG <u>GAATTC</u> TTACACTTCGGTTAAG				
NfsB_Kp_Fw	GGGG <u>CATATG</u> GATATCGTATCGGTC				
NfsB_Kp_Rv	GGGG <u>CTCGAG</u> TTAAATCTCGGTAATGGT				
NfsB_Pp_Fw	GGGG <u>CATATG</u> GATACCGTATCGCTG				
NfsB_Pp_Rv	GGGG <u>CTCGAG</u> TCAGAGGAAGGTGAACACTT				
NfsB_St_Fw	GGGG <u>CATATG</u> GATATCGTTTCTGTC				
NfsB_St_Rv	GGGG <u>GTCGAC</u> TTAGACTTCCGTCAGTG				
NfsB_Ck_Fw	CCCC <u>CATATG</u> GATATCGTTTCTGTCGC				
NfsB_Ck_Rv	CCC <u>GTCGAC</u> TCAGACTTCCGTCAGGGTG				
FraseI_Vf Fw	GGGG <u>CATATG</u> ACGCATCCAATTATTCA				
FraseI_Vf Rv	GGGG <u>GTCGAC</u> CTAAAGAATGGTAATTAC				
NfsB_Vh_Fw	CCCC <u>CATATG</u> TCTCATCAAATCATTACAGAC				
NfsB_Vh_Rv	CCC <u>CTCGAG</u> TTAAAGAGTAGTAATTACGTC				
YfkO_Bs_Fw	GGGG <u>CATATG</u> GCAGATCTAAAGACACA				
YfkO_Bs_Rv	CTAG <u>GTCGAC</u> TTAAACCCACTTCACAACAT				
YdgI_Bs_Fw	GGGG <u>CATATG</u> ATCAAAACAAACGATTTTATGG				
YdgI_Bs_Rv	GGGG <u>GTCGAC</u> TTATTTCCATTCTGCAATTG				
NfsB_Cs_Fw	CCCC <u>CATATG</u> AACCTTAATGAGATCATTCGC				
NfsB_Cs_Rv	CCC <u>GTCGAC</u> TCAGAGCTGCGTGATCAC				

Primer Table | Primers used in this study

Primers for insertion of nitroreductase genes into vector F279-V5				
NfsB_Vv GW_Fw	GGGG <u>ACAAGTTTGTACAAAAAAGCAGGCT</u> TCGAAGGAGATAGAACCATGG			
	GCACTATTGTTCAAGCT			
NfsB_Vv GW_Rv	GGGG <u>ACCACTTTGTACAAGAAAGCTGGGT</u> CCTAGATTTCGGTAAA			
NfsB_Ec GW_Fw	GGGG <u>ACAAGTTTGTACAAAAAAGCAGGCT</u> TCGAAGGAGATAGAACCATGG			
	GCGATATCATTTCTGTCGCCTT			
NfsB_Ec GW_Rv	GGGG <u>ACCACTTTGTACAAGAAAGCTGGGT</u> CCTACACTTCGGTTAAGGTGAT			
	GT			
Primers for insertion of nitroreductase variants into vector pTOL2-5xUAS-GAP-tagYFP-P2A-nfsB Ec				
NfsB_Vv pTOL2_Fw	CCC <u>CCCGGG</u> CCTATGACTATTGTTCAA			
NfsB_Vv_Rv	GGG <u>GTCGAC</u> TTAGATTTCGGTAAAAACAG			
Primers for insertion of rhodopsin promoter into vector pTOL2-5xUAS-GAP-tagYFP-P2A-nfsB Ec				
rho_promoter_F2	AATTTAGGGTAAT <u>GGCCGGCC</u> CGACCTGCAGGTCAACGG			
rho_promoter_R	AGTCTACCCTGC <u>TACGTA</u> GGCTGCGGTTGGATGTGG			
Primers for swapping eGFP gene into 5xUAS:YFP-2A-NTR2.0 vector				
<i>Sbf</i> I-GFP_FOR	GCAG <u>CCTGCAGG</u> AAGCACAGCTACAATGATGGTGAGCAAGGGCGAG			
GFP-oe_REV	CTCCGCTTCCCTTGTACAAGTACTTGTACAGCTCGTCCATGC			
FW-P2A	<u>TACTTGTACAAGGGAAGCGGAG</u> CTA			
KflI-Bglobin_REV	CAA <u>GGGTCCC</u> CAAACTCACC			
Primers for insertion of YFP-2A-NTR 2.0 gene into 5xQUAS vector				
MluI-YFP_FOR	TTA <u>ACGCGT</u> AGCAGGGTAGACTGTAGAGG			
AvrII-He1Pro_REV	GGC <u>CCTAGG</u> GTTGCCTCA			

Underlined sequences are restriction, recombination, or overlap extensions.

Transgenic Line Table | Transgenic lines used and established in this study

Individual Transgenic Lines					
Full Transgene Name		Abbreviation (here)	Ref.		
Tg(5xUAS:GAP-tagYFP-P2A-nfsB_Vv F70A/F108Y)jh513		UAS:YFP-NTR2.0	here		
Et(2xNRSE-fos:KALTA4)gmc617		NRSE:KalTA4	61		
Tg(5xUAS:GAP-ECFP,he:GAP-ECFP)gmc1913	na	UAS:CFP	here		
Tg(14xUAS:nfsB_Ec-mCherry)c264		UAS:NTR1.0-Cherry	62		
Tg(mpeg1.1:EYFP-nfsB_Ec T41Q/N71S/F124T)w202	1.1	mpeg:NTR1.1-YFP	63		
Tg(rho:EYFP-nfsB_Ec)gmc500	1.0	rho:YFP-NTR1.0	64		
Tg(rho:GAP-tagYFP-P2A-nfsB_Vv F70A/F108Y)jh405	2.0	rho:YFP-NTR2.0	here		
Tg(mpeg1.1:Gal4-VP16)gl24	na	mpeg:Gal4	65		
Double Transgenic Lines					
Full Transgene Name		Abbreviation (here)	Ref.		
Et(2xNRSE-fos:KALTA4)gmc617;		NRSE:KalTA4;	61		
Tg(5xUAS:GAP-tagYFP-P2A-nfsB_Vv F70A/F108Y)jh513	2.0	UAS:YFP-NTR2.0	here		
Et(2xNRSE-fos:KALTA4)gmc617;		NRSE:KalTA4;	61		
Tg(5xUAS:GAP-ECFP,he:GAP-ECFP)gmc1913		UAS:CFP	here		
<i>Tg(mpeg1.1:Gal4-VP16)gl24;</i>		mpeg:Gal4;	65		
Tg(5xUAS:GAP-tagYFP-P2A-nfsB_Vv F70A/F108Y)jh513	2.0	UAS:YFP-NTR2.0	here		
Triple Transgenic Lines					
Full Transgene Name	NTR	Abbreviation (here)	Ref.		
Et(2xNRSE-fos:KALTA4)gmc617;		NRSE:KalTA4;	61		
Tg(5xUAS:GAP-tagYFP-P2A-nfsB_Vv F70A/F108Y)jh513;	2.0	UAS:YFP-NTR2.0	here		
Tg(5xUAS:GAP-ECFP,he:GAP-ECFP)gmc1913		UAS:CFP	here		
Et(2xNRSE-fos:KALTA4)gmc617;		NRSE:KalTA4;	61		
Tg(5xUAS:GAP-tagYFP-P2A-nfsB_Vv F70A/F108Y)jh513;		UAS:YFP-NTR2.0	here		
Tg(14xUAS:nfsB_Ec-mCherry)c264		UAS:NTR1.0-Cherry	62		

New Reporter/Effector Transgenic Lines				
Full Transgene Name	NTR	Expression system	Reporter	Ref.
Tg(5xUAS:GAP-EGFP-P2A-NfsB_Vv F70A/F108Y,he:tagBFP2)jh551	2.0	Gal4/UAS	EGFP	here
Tg(5xUAS:GAP-tagYFP-P2A-NfsB_Vv F70A/F108Y,he:tagBFP2)jh552	2.0	Gal4/UAS	tagYFP	here
Tg(5xUAS:GAP-mCherry-P2A-NfsB_Vv F70A/F108Y,he:tagBFP2)jh553	2.0	Gal4/UAS	mCherry	here
Tg(5xQUAS:GAP-tagYFP-P2A-NfsB_Vv F70A/F108Y,he:ECFP)jh562	2.0	QF/QUAS	tagYFP	here

References

- 59. Prosser, G. A. *et al.* Creation and screening of a multi-family bacterial oxidoreductase library to discover novel nitroreductases that efficiently activate the bioreductive prodrugs CB1954 and PR-104A. *Biochem. Pharmacol.* **85**, 1091–103 (2013).
- 60. Provost, E., Rhee, J. & Leach, S. D. Viral 2A peptides allow expression of multiple proteins from a single ORF in transgenic zebrafish embryos. *Genesis* **45**, 625–629 (2007).
- 61. Xie, X., Mathias, J. R., Smith, M. A., Walker, S. L., Teng, Y., Distel, M., Köster, R. W., Sirotkin, H. I., Saxena, M. T. & Mumm, J. S. Silencer-delimited transgenesis: NRSE/RE1 sequences promote neural-specific transgene expression in a NRSF/REST-dependent manner. *BMC Biol.* **10**, 93 (2012).
- Davison, J. M., Akitake, C. M., Goll, M. G., Rhee, J. M., Gosse, N., Baier, H., Halpern, M. E., Leach, S. D. & Parsons, M. J. Transactivation from Gal4-VP16 transgenic insertions for tissue-specific cell labeling and ablation in zebrafish. *Dev. Biol.* 304, 811– 24 (2007).
- Petrie, T. A., Strand, N. S., Yang, C.-T., Tsung-Yang, C., Rabinowitz, J. S. & Moon, R. T. Macrophages modulate adult zebrafish tail fin regeneration. *Development* 141, 2581– 91 (2014).
- 64. Walker, S. L., Ariga, J., Mathias, J. R., Coothankandaswamy, V., Xie, X., Distel, M., Köster, R. W., Parsons, M. J., Bhalla, K. N., Saxena, M. T. & Mumm, J. S. Automated reporter quantification in vivo: High-throughput screening method for reporter-based assays in zebrafish. *PLoS One* **7**, e29916 (2012).
- 65. Ellett, F., Pase, L., Hayman, J. W., Andrianopoulos, A. & Lieschke, G. J. Mpeg1 Promoter Transgenes Direct Macrophage-Lineage Expression in Zebrafish. *Blood* **117**, e49-56 (2011).