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Supplementary Tables 

 

Abbreviation Trait/disease Reference (doi) 
ADHD Attention deficit hyperactivity disorder 10.1016/j.jaac.2010.06.008 
ALS Amyotrophic lateral sclerosis 10.1016/j.neuron.2018.02.027 

PD Parkinson's disease 10.1016/S1474-4422(19)30320-5 
RA Rheumatoid arthritis 10.1038/nature12873 
BMI Body mass index 10.1038/nature14177 
EduYear Educational years 10.1038/nature17671 
HEIGHT Height 10.1038/ng.3097 
CD Crohn's disease 10.1038/ng.3359 
IBD Inflammatory bowel disease  10.1038/ng.3359 
UC Ulcerative colitis 10.1038/ng.3359 
CAD Cardiovascular disease 10.1038/ng.3396 
DS Depression symptom 10.1038/ng.3552 
Neu Neuroticism 10.1038/ng.3552 
SLE Systemic lupus erythematosus 10.1038/ng.3603 
T2D Type 2 Diabetes 10.1038/s41588-018-0241-6 
DRINKING Alcohol Assumption 10.1038/s41588-018-0309-3 
AD Alzheimer's disease 10.1038/s41588-018-0311-9 
ASD Autism spectrum disorder 10.1038/s41588-019-0344-8 
BD Bipolar disorder 10.1038/s41588-019-0397-8 
MDD Major depression disorder 10.1038/s41593-018-0326-7 
SZ Schizophrenia 10.1101/2020.09.12.20192922 
MS Multiple sclerosis 10.1126/science.aav7188 
 

Supplementary Table 1.  Trait/Disease, abbreviation and reference for GWAS included in 
LD-score regression analysis  
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Supplementary Notes 

Permutation to evaluate the empirical performance of CLPP cutoff 

CLPP was first coined by Hormozdiari, et al. 1, measuring a joint posterior probability from 
colocalization, and is calculated as the product of posterior inclusion probability in two traits. A 
1% cutoff is used in the original paper, and then widely applied by others 2–4. We performed two 
permutation analyses on our real data to test the empirical performance of the 1% CLPP cutoff.  
First, we considered a scenario where there are no true eQTLs. Using expression of 2,457 genes 
on chr1 from the PsychENCODE data, we randomly permuted the sample labels and then 
performed eQTL analysis followed by eCAVIAR colocalization analysis with PGC2 Schizophrenia 
GWAS summary statistics. We found that there is no SNP with a CLPP > 1%.  Next we considered 
the scenario where there are true eQTLs in the dataset, but their genome locations are 
independent of the GWAS associations.  We extracted eQTL results for the 920 genes on chr1 
that have a lead eQTL variant with p < 1e-6, and performed statistical fine-mapping on each gene.  
The posterior inclusion probabilities were then shuffled and used for colocalization analysis with 
eCAVIAR using the same Schizophrenia GWAS data.  Only a single SNP passed the 1% CLPP 
cutoff in this analysis. 

Validation of rs72986630 effect in chromatin accessibility and gene 
expression data 
To further investigate one prioritized functional variant rs72986630 that reside in REST TF binding 
site overlapping TSS of ZNF823, we queried our unpublished ATAC-seq data set (Bendl et al., in 
preparation) of neuronal and non-neuronal samples from ACC brain region generated on 
postmortem human brains from CommonMind cohort 5. This dataset consists of samples from 
370 donors (114 SZ cases, 64 BD cases, 64 controls) with rs72986630 MAF of 6.0%. Since only 
two donors carry the ALT/ALT (i.e. T/T) genotype, we excluded them for further analysis.  
 
To generate ATAC-seq data set, neuronal and non-neuronal cell populations were isolated from 
postmortem tissue by fluorescence-activated nuclear sorting using anti-NeuN antibody. ATAC-
seq libraries were created using an established protocol 6. Raw sequencing reads were mapped 
to human genome hg38 using STAR aligner 7. The samples of the same cell type (neuron / non-
neuron) and genotype at rs72986630 (CC / CT) were subsampled and merged, creating 4 BAM 
files with a uniform depth of 1 billion pair-end reads. Subsampling ratios were calculated per each 
sample individually within those four respective groups (genotype by cell type) to ensure that each 
of them contributed the same number of reads, regardless of their per-sample read counts. Using 
these BAM files, bigWig files were created and peaks were called by the MACS (v2.1) with the 
same parameters as described in Hauberg, et al.48, but using an FDR threshold of 0.01. After 
removing peaks overlapping the blacklisted genomic regions and peaks not being sufficiently 
accessible (CPM>1 in at least 10% of samples was required), 498,183 peaks remained. The final 
read count matrix of 664 samples by 498,183 peaks was normalized using the trimmed mean of 
M-values (TMM) method. The following covariates were selected by Bayesian Information 
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Criterion (BIC) method to be added to the base covariates, i.e. genotype by cell type: mean GC 
content, fraction of reads with GC content 0-19%, 20-39%, 40-59%, fraction of reads in peaks, 
fraction of unmapped reads, AT dropout, and mean insert size. Since our dataset contains up to 
two samples per individual, we ran differential analysis to get differentially accessible peaks 
between CC and CT carriers using dream (v1.17.9) 8 that accounts for correlation structure in 
repeated measures. As an alternative approach, instead of quantifying changes between all open 
chromatin regions, we performed differential analysis between CC and CT carriers on TF binding 
sites of REST motif. We used footprinting to narrow down our focus only to 31,534 REST TF 
binding sites that are bound in at least one set of samples (out of 4 sets, i.e. genotype by cell 
type) as predicted by TOBIAS9.                         
 
The analysis of differential gene expression between REF/REF (C/C) and REF/ALT (C/T) 
genotype at rs72986630 followed the same approach as the analysis of chromatin accessibility. 
We used a subset of 338 homogenate RNA-seq samples of ACC brain region from CommonMind 
Consortium 5 that originate from the same donors as ATAC-seq samples. We performed 
differential analysis only for sufficiently expressed protein-coding genes (CPM>1 in at least 30% 
of samples was required), i.e. we start the analysis with a count matrix of 338 samples by 14,893 
genes that were normalized by trimmed mean of M-values (TMM) method. The following technical 
covariates were selected by BIC method: institution, expression profiling efficiency, intronic rate, 
intragenic rate, fraction of reads with GC content 20-39%, 40-59%, and AT dropout.  
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