

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Decreasing COVID-19 In-Hospital Mortality – Lessons from the Pandemic

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-058171
Article Type:	Original research
Date Submitted by the Author:	09-Oct-2021
Complete List of Authors:	Castagna, Francesco; Montefiore Medical Center, Xue, Xiaonan; Albert Einstein College of Medicine, Department of Epidemiology and Population Health Saeed, O; Albert Einstein College of Medicine Kataria, Rachna ; Albert Einstein College of Medicine Puius, Yoram; Albert Einstein College of Medicine Patel, Snehal; Albert Einstein College of Medicine Garcia, Mario; Albert Einstein College of Medicine Racine, Andrew D. ; Albert Einstein College of Medicine, Department of Pediatrics Sims, Daniel; Albert Einstein College of Medicine Jorde, Ulrich; Albert Einstein College of Medicine
Keywords:	COVID-19, Public health < INFECTIOUS DISEASES, EPIDEMIOLOGY

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Decreasing COVID-19 In-Hospital Mortality – Lessons from the Pandemic

Francesco Castagna MD¹, Xiaonan Xue PhD², Omar Saeed MD¹, Rachna Kataria MD¹, Yoram A Puius MD PhD³, Snehal R Patel MD¹, Mario J Garcia MD¹, Andrew D Racine MD⁴, Daniel B Sims MD¹, Ulrich P Jorde MD¹

Affiliations:

¹ Division of Cardiology, Montefiore Medical Center and Albert Einstein College of Medicine,

Bronx, NY

² Department of Epidemiology and Population Health, Albert Einstein College of Medicine,

Bronx, NY

³ Division of Infectious Diseases, Montefiore Medical Center and Albert Einstein College of

Medicine, Bronx, NY

⁴ Department of Pediatrics, Montefiore Medical Center and Albert Einstein College of Medicine,

Bronx, New York.

Word count: 2,708

Corresponding Author:

Ulrich P. Jorde, MD Professor of Medicine

Division of Cardiology Department of Medicine Montefiore Medical Center 3400 Bainbridge Ave. 7th floor Bronx, NY Email: <u>ujorde@montefiore.org</u>

BMJ Open

Abstract

Introduction: COVID-19 first struck New York City in the spring of 2020 resulting in an unprecedented strain on our health care system triggering multiple changes in public health policy governing hospital operations as well as therapeutic approaches to COVID-19. We examined inpatient mortality at our center throughout the course of the pandemic.

Methods: Retrospective chart review of clinical characteristics, treatments, and outcome data of all patients admitted with COVID-19 from March 1st, 2020 to February 28th, 2021. Patients were grouped into three-month quartiles. Hospital strain was assessed as percent of occupied beds based on a normal bed capacity of 1,491.

Results: Inpatient mortality decreased from 25.0% in spring to 10.8% over the course of the year. During this time, the use of remdesivir, steroids, and anticoagulants increased; the use of hydroxychloroquine and other antibiotics decreased. Daily bed occupation ranged from 62% to 118% and COVID-19 mortality increased by 0.7% per 1% increase in bed occupation (HR 1.007, CI: 1.001, 1.013, p=0.004). In a multivariate model with demographics, comorbidities, acuity of illness, and bed occupation inpatient mortality during the second surge remained significantly lower than during the initial surge (HR 0.520, CI 0.448-0.604, p<0.001). Propensity score analysis confirmed this finding (HR 0.580 CI: 0.507-0.663, p<0.001).

Conclusion: Inpatient mortality from COVID-19 decreased to a degree disproportionate to advances in disease specific therapeutics and was associated with bed occupation. Early reduction in epicenter hospital bed occupation to accommodate acutely ill and resource-intensive patients should be a critical component in the strategic planning for future pandemics.

Strengths and limitations of this study

- Large cohort study (7,390 COVID-19 patients).
- Longitudinal analysis over 1 year of management and hospital police changes.
- Analysis of mortality changes after adjustment for different therapies and clinical parameters.
- Identification of the association between level of hospital system stress and mortality, with important public health ramifications.
- Limitation: data on most recent variants are not included

BMJ Open

Key questions:

What is already known? COVID-19 treatment and mortality changed over one year. Was the percentage of hospital bed occupation associated with in-patient mortality?

What are the new findings? In this retrospective cohort study of 7,390 COVID-19 patients admitted to our institution over a 12-month period, we found that inpatient mortality due to COVID-19 decreased to a degree disproportionate to advances in disease specific therapies. Additionally, inpatient mortality due to COVID-19 was associated with the percentage of hospital bed occupation.

What do the new findings imply? We provide important insights into the temporal changes in COVID-19 prognosis and for the first time identify hospital stress – measured as the percentage of bed occupation – as a parameter independently associated with COVID-19 mortality. Early reductions in epicenter hospital bed occupation to accommodate acutely ill and resource-intensive patients should be critical considerations in the strategic planning for future pandemics.

INTRODUCTION

Coronavirus disease 2019 (COVID-19 was declared a global pandemic by the World Health Organization on March 11th, 2020.¹ In the United States, after a cluster of cases reported from Washington state², New York state quickly became the initial epicenter of this pandemic with over 1.27 million of cases till date and over 50,000 fatalities with the highest concentration in the Bronx and Queens boroughs of New York City, ³ Montefiore Einstein, with its three principal teaching hospitals and combined adult bed capacity of 1,491, is the primary health care provider for the large, nearly 1.5 million diverse population of the Bronx⁴ and experienced a "first wave" of COVID-19 admissions in the spring of 2020³, followed by a significant reduction of cases until a second surge in hospitalizations was noted in the winter of 2020. Throughout the course of the year, multiple public health measures - including those adapting hospital operation to a disaster level pandemic, such as cancellation of all elective procedures and waiver of state specific licensing for health care providers - were put in place. In addition, the understanding of COVID-19 pathophysiology improved ⁵⁶, new treatments were developed ⁷⁻¹⁰, parts of the general population^{11 12} as well as hospital personnel developed antibodies after COVID-19 illness ¹³, and our hospital system adapted to and then recovered from crisis mode.¹⁴ Here, we report outcomes of patients hospitalized with COVID-19 through one year since the first case, focusing on the differences observed between the spring and the winter surges.

METHODS:

Study Population

We retrospectively reviewed all adult patients admitted to Montefiore Medical Center with a real time reverse transcription polymerase chain reaction (RT-PCR) assay positive for COVID-19

BMJ Open

between March 1, 2020 and February 28, 2021. We divided this timeframe in four 3-month seasons: spring (March 1, 2020 to May 31, 2020), summer (June 1, 2020 to August 30, 2020), fall (September 1, 2020 to November 30, 2020), and winter (December 1, 2020 to February 28, 2021).

Data Collection

Medical data including demographic, clinical, and laboratory variables were extracted from the electronic medical record system. The primary outcome was 30-day in-hospital mortality.

Statistical Analysis

Continuous variables are displayed as mean ± standard deviation or median [25-75% interquartile range] and compared with the Student's t-test, or Wilcoxon ranks-sum, as appropriate. Categorical data are presented as percent and compared by the chi-squared test. We estimated the cumulative incidence of the primary endpoint in-hospital mortality for each season, treating hospital discharge as a competing event.¹⁵ To avoid any bias due to differential follow-up length, we censored the follow-up time at 30 days after the admission.

A multivariable competing risk proportional hazard models was used to estimate the subdistribution hazard ratios^{16 17} for time to in-hospital death. Selection method for covariates is presented in the Supplemental Material.

Then we focused on examining the difference in in-hospital death between patients admitted in the spring and in the winter, as they represented the two largest and most temporal distant waves of the COVID-19 pandemic occurring before and after pandemic specific therapeutic hospital

logistic changes had been implemented. Selection method for covariates is presented in the Supplemental Material.

The proportionality assumption was examined 18 and no violation was identified. A two-sided p<0.05 was considered statistically significant.

Propensity Score Analysis

To fully control the potential differences in patient population and hospital stress between spring and winter COVID-19 patients, we also used propensity score (PS) matching to compare the 30day in-hospital mortality between spring and winter admissions. The same covariates used for the multivariable competing risk regression were used for PS matching. PS matching was carried out through a 1:1 greedy matching algorithm, with a caliper width of 0.1 SD. We then stratified on matched pair in the competing risk regression model.^{19 20} Because one-to-one matching led to a reduction in sample size, we used this analysis as a sensitivity analysis. All statistical analyses was performed with SPSS (IBM Corp, ver. 25, Armonk, NY) and the R packages cmprsk and crrSC (R Foundation for Statistical Computing, ver 3.5)

Patient and Public Involvement

Given the retrospective nature of our analysis, it was not appropriate or possible to involve patients or the public in the design, or conduct, or reporting, or dissemination plans of our research.

RESULTS

BMJ Open

7,390 COVID-19 positive adult patients were admitted between March 1, 2020 and February 28, 2021 (Figure 1). 4,495 patients were admitted during the spring, 264 during the summer, 377 during the fall, and 2,254 during the winter.

On April 8, 2020, peak of the spring season, the total numbers of simultaneously adult patients admitted to our hospital (including those admitted to emergency adult wards at our children's hospital²¹) was 1,762 (118% of nominal bed capacity); 1,201 of them (68.2%) were COVID-19 patients. On February 8, 2021, peak of winter season, 1,512 patients (101% of nominal bed capacity) were admitted to our hospital and 393 of them (26.0%) were COVID-19 patients. (Figure 1). Following cancellation of elective procedures, bed occupation decreased to 70% by the end of the spring season and remained at 90% until the beginning of the winter season, when the second wave occurred in December 2020. Unadjusted mortality for patient admitted at the beginning of spring, end of spring, beginning of winter, and end of winter was 28%, 8%, 14%, ie4 and 13%, respectively (Figure 2).

Patient Population

Demographics, past medical history, vital signs at arrivals, and initial laboratory blood tests are presented in Table 1. Overall, median age was 66(55 - 77) years, 3,835(51.9%) patients were male, 5,519 (74.2%) were of Black race and/or Hispanic ethnicity. Median age ranged from 63 years (fall) to 67 years (spring). Sex distribution was similar throughout the year. Summer and fall patients had the lowest and the highest BMI: 26.7 and 28.6 kg/m², respectively.

Pharmacotherapy

Changes in pharmacological approach is presented in **Supplemental Table 1** and **Figure 3**

Spring patients were more likely to receive hydroxychloroquine, azithromycin and other antibiotics. The use of Remdesivir substantially increased throughout the year (from less than 2% during spring to almost 70% by the end of the winter). Steroids prescription (from 33% during spring to almost 70% in February 2021), therapeutic anticoagulation therapy, as well as use of statins, angiotensin converting inhibitors (ACE-I), or angiotensin receptor blockers (ARBs) also increased.

Death, Intubation, and Length of Stay

Over the course of a year, 1,437 (19.4%) died while hospitalized. Patients who died were older, had more comorbidities, and were more acutely ill consistent within prior reports on risk factors for death in COVID-19⁵⁶ (Supplemental Table 2). Average unadjusted monthly mortality is presented in Figure 2. 30-day in-hospital mortality (Figure 4A) was 25.0% for the spring patients, 11.0% for summer patients, 6.9% for fall patients, and 11.4% for winter patients (p < 0.001). On average, spring patients died 6.4 (3.2 - 12.9) days after the arrival to the emergency department, summer patients 7.2 (3.0 - 15.7) days after the arrival, fall patients 13.4 (8.7 - 21.6) days after arrival, and winter patients 13.3 (6.8 - 20.7) days after the arrival (p<0.001). Frequency of invasive ventilatory support was higher during the spring with 892 patients (19.4%) intubated, versus 27 (10.2%) in the summer, 36 (9.5%) during fall, and 268 (11.9%) in the winter, p<0.001. Median time from arrival-to-intubation was 0.7 (0.1 - 4.1) days for spring patients, 0.6 (0.1 - 8.1) days for summer patients, 2.2 (0.1 - 7.3) days for fall patients, and 2.8 (0.3 - 7.0) days for winter patients, p<0.001. Median length of stay was 6.1 (3.5 - 11.1) days during spring, 5.1 (2.7 - 10.1) days during summer, 5.0 (3.0 - 10.1) days during fall, and 6.3 (3.8 - 12.0) days during winter, p<0.001.

BMJ Open

Bed Saturation and Mortality

In the multivariable competing risk proportional hazard model of the entire cohort, percent of bed occupation was associated with increased 30-day in-hospital mortality (HR 1.007, CI: 1.001, 1.013, p=0.004); i.e mortality increase by 0.7 % for each 1% increase of bed occupation.

Spring vs Winter Mortality Comparison and Propensity Matched Analysis

In the multivariable competing risk proportional hazard model comparing spring and winter season, 30-day in-hospital mortality was lower in winter (HR 0.520, CI 0.448-0.604, p<0.001) when compared to spring. After PS caliper matching, there were 1,722 matched pairs. Spring and winter patients had similar distribution of PS (**Supplemental Figure 1**) and standardized average difference among covariates was greatly reduced. PS analysis showed a significant reduction of in-hospital mortality during winter (HR 0.580 CI: 0.507-0.663, p<0.001) confirming what we observed in the multivariable adjusted analysis (**Figure 4B**).

DISCUSSION

We examined inpatient mortality from COVID-19 over the course of a one-year pandemic at our hospital system in New York City. Our principal findings are as follows: First, we observed a substantial reduction of in-house mortality coinciding with multiple pandemic related public health measures focusing on hospital resources on COVID-19 – and preceding comprehensive changes in pharmacotherapy - towards the end of the first surge. Second, we describe - for the first time - hospital bed occupation as an independent risk factor for inpatient mortality from COVID-19.

Public Health Measures in Response to COVID-19

After declaring a state of disaster emergency (March 7, 2020), New York State introduced different measures to limit the spread of the disease, including public schools closure (March 16, 2020), limitation of indoor dining (March 17, 2020), stay-home order for non-essential workers (March 22, 2020), mandatory face coverings in public (April 15, 2020), and night subway closure (April 30, 2020)²². Despite these measures to limit the diffusion of the disease and a generalized reduction of movements around New York City (as evidenced by a more than 90% reduction of subway ridership compared to 2019)²³, more than 30% of Bronx residents were found to have positive antibodies (and thus possibly temporary immunity) against SARS-CoV-2 in August 2020.²⁴

Specifically relevant to hospital operations, executive order no. 202.5 (March 16, 2020)²⁵ allowed healthcare providers not licensed or registered in New York State to temporarily work in the State, and executive order no. 202.10 (March 22, 2020)²⁵ suspended elective operations. These executive orders were associated with a dramatic drop in non-COVID-19 admissions at our institution beginning March 16, 2020. (**Figure 1**). On March 26, 2020 New York State Governor Cuomo additionally mandated all hospitals to increase their bed capacity by 50% to accommodate the surge of COVID-19 patients.²⁵ Despite this order, the actual bed occupation at our institution (while accommodating all COVID-19 patients presenting to our hospitals) remained below the usual operating capacity until December 2020.

Notably, COVID-19 mortality remained stable throughout the summer and fall 2020 with low case counts and increased utilization of steroids, anticoagulation, and remdesivir. Although randomized controlled trials have shown morbidity benefits with the use of remdesevir⁷ and

BMJ Open

mortality reduction with steroids⁸, the magnitude of these effects cannot explain the more than 50% reduction in mortality we observed. Furthermore, pharmacotherapy, with the exception of hydroxychloroquine elimination, did not materially change within the spring season, by the end of which mortality was already decreased. Steroid, remdesivir, and therapeutic anticoagulation were used in 10-20% of patients by May 2020, but they reached 30-70% only in the winter season. Despite that, unadjusted mortality began to increase again in December 2020 during the second wave. Of note, bed occupation also increased at that time and proved to be an independent risk factor for COVID-19 mortality in our cohort of nearly 8,000 patients.

Change in Therapeutic Approach

The initial widespread (>2/3 of first spring patients) use of hydroxychloroquine, an agent eventually proven to be ineffective²⁶ to treat COVID-19, probably represents the most obvious pandemic-associated deviation from the usual multiphase clinical trial standards of therapeutic paradigm development. Only 8 of 2,254 patients received hydroxychloroquine during the winter wave. To a similar extend, we observed a reduction in the use of azithromycin and other antibiotics, the latter possibly reflecting a more careful assessment of the need to treat superimposed bacterial infections during the second wave. Steroid therapy^{8 27} and therapeutic anticoagulation⁹ were implemented in the majority of patients during the winter after the knowledge on the likely disease modulating inflammatory proprieties and pro-thrombotic effect of COVID-19 had been recognized²⁸ and, in the case of steroids, a therapeutic effect had been proven⁸. Remdesivir, an inhibitor of the viral RNA-dependent RNA polymerase that showed shortening of recovery time in hospitalized patients with COVID-19⁷, received emergency FDA approval on October 22nd,2020 ²⁹ and was administered to almost half of the admitted patients

during the winter. If initial concerns of possible interactions between ACE-I or ARBs and SARS-CoV-2 ³⁰ led to a possible underutilization or discontinuation of these drugs during the spring, we observed a significant increase in their use during the following months, after no increased risks were reported. ^{31 32}

Similarly, after several reports showed a possible protective effect associated with the use of statins^{33 34}, their utilization markedly increased during the winter.

Lastly, after the spring wave provided anecdotal evidence for early proning in COVID-19 pneumonia, an approach strongly favoring noninvasive ventilation and avoiding intubation was developed to address respiratory distress in COVID-19; more data about such an approach has since accumulated. ^{10 35}

Change in Hospital Stress Load

At the peak of the pandemic, the hospital saturation reached the 118% of the nominal bed capacity and COVID-19 patients accounted for 68.2% of all admitted patients. This increase in acutely ill patients created significant excess demand on the rest of the hospital infrastructure best characterized by the surge in the need for intensive care unit (ICU) beds and transformation of other hospital areas to ICUs.^{14,21} Despite increased patient load, the number of standard ICU beds, as well as laboratories, diagnostic equipment, and available personnel, remained the same as before the pandemic. This unmatched patient overload resulted in a 0.7 % mortality increase for each 1% increment in hospital bed saturation.

Limitations

Page 15 of 43

BMJ Open

Our study has the shortcomings of a retrospective investigation, but there are some very specific aspects limiting the interpretation of our results. First, it is difficult to assess the true effects of pharmacotherapy given the dynamic changes in indications, doses, and usage that happened over the course of the year. Regardless, we believe the propensity-matched comparison between the spring and the winter waves provides compelling evidence for the validity of our principal observation of inpatient COVID-19 mortality reduction disproportionate to advances in pharmacotherapy. We chose total bed occupation as a metric for hospital stress assuming that other resources per bed remained static. Notably, the ratio of COVID-19 to non-COVID-19 patients, ICU bed saturation, and staff shortages are unaccounted for in this model. Regrettably, an in-depth analysis of these metrics is beyond our ability in this retrospective pandemic analysis with disaster elements. Additionally, a significant number of patients received ICU-level-of-care interventions (mechanical ventilatory support, dialysis, vasopressors titration) on regular floors; therefore, the concept of ICU bed saturation might have been not truly representative of the burden.

However, we feel our data is sufficiently strong to support the notion that bed capacity expansion alone is not the answer. Rather, a smaller number of beds with higher staffing accomplished by drastic reductions in all non-emergent procedures and activities is likely a better approach. Although offering fewer beds in pandemic situation appears initially quite counterintuitive, in practice we observed that mortality began to decrease once beds and resources were allocated specifically to COVID-19 patients by executive orders 202.5 and 202.10; and most importantly that bed occupation never exceeded 100% once hospital operations focused on the COVID-19 pandemic only. Lastly, it is conceivable that an uptrend in mortality observed late in the pandemic with established treatment paradigms could be due to new viral strains or a sicker

patient population. Although we are unable to provide detailed strain analysis for our study population, a meaningful numbers of new (and possibly more virulent) strains were not yet observed in in the Bronx, where our study was conducted.³⁶ The small sample size of patients in summer and fall does not allow meaningful propensity matched comparisons, and when comparing summer, fall, and winter populations, there do not appear to be clinically meaningful differences.

CONCLUSIONS

Inpatient mortality from COVID-19 decreased to a degree disproportionate to advances in disease specific therapeutics and was associated with bed occupation. Early reduction in epicenter hospital bed occupation to accommodate acutely ill and resource-intensive patients should be a critical component in the strategic planning for future pandemics.

DECLARATIONS

Ethics approval and consent to participate

The Office of Human Research Affairs at Albert Einstein College of Medicine approved this study (# 2020-11308). Patient consent and HIPAA forms were waived by our IRB due to the retrospective nature of our research.

Consent for publication

Non applicable.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding Clicz Cz author on reasonable request.

Competing interests

No conflicts of interest exist.

Funding/Support

Francesco Castagna is supported by a grant by the National Center for Advancing Translational Science (NCATS) Clinical and Translational Science Award at Einstein-Montefiore (UL1TR001073). Omar Saeed is supported by grants from the National Institute for Health/National Heart, Lung and Blood Institute (K23HL145140) and the National Center for Advancing Translational Science (NCATS) Clinical and Translational Science Award at Einstein-Montefiore (UL1TR001073). Ulrich Jorde is supported by the McAdam Family Foundation (award number not applicable).

Author's Contributions

Design of the project: FC, XX, and UPJ.

Underlying data verified by FC, XX, and UPJ.

Acquisition, analysis, and interpretation of data: FC, XX, OM, RK, YAP, SRP, MJC, ADR, DS, and UPJ.

Statistical analysis: FC and XX.

Obtained funding: UPJ

Manuscript writing: FC, XX, and UPJ.

Critical revision of the manuscript for important intellectual content: FC, XX, OM, RK, YAP, SRP, MJC, ADR, DS, and UPJ.

Supervision: UPJ

All the Authors reviewed the work and approved the final version.

FC and UPJ had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Acknowledgements

Not applicable

2	
د ∡	
4	
5	
6	
7	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
22	
23 24	
24	
25	
26	
27	
28	
29	
30	
31	
32	
22	
22	
34	
35	
36	
37	
38	
39	
40	
41	
42	
12	
40	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
22	
54	
55	
56	
57	
58	
59	
60	

References

- 1. World Health Organization. WHO Director-General's opening remarks at the media briefing on COVID-19-11 March 2020: Geneva, Switzerland, 2020.
- Bhatraju PK, Ghassemieh BJ, Nichols M, et al. Covid-19 in Critically Ill Patients in the Seattle Region — Case Series. *New England Journal of Medicine* 2020;382(21):2012-22. doi: 10.1056/NEJMoa2004500
- 3. John Hopkins University. COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU): JHU; 2020 [Available from: <u>https://coronavirus.jhu.edu/map.html</u> accessed 1/20/2021.
- Lozano R, Naghavi M, Foreman K, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. *Lancet* 2012;380(9859):2095-128. doi: 10.1016/S0140-6736(12)61728-0 [published Online First: 2012/12/19]
- Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. *The Lancet* 2020;395(10229):1054-62. doi: 10.1016/S0140-6736(20)30566-3
- 6. Wu Z, McGoogan JM. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. *Jama* 2020;323(13):1239-42. doi: 10.1001/jama.2020.2648 [published Online First: 2020/02/25]
- Beigel JH, Tomashek KM, Dodd LE, et al. Remdesivir for the Treatment of Covid-19 Final Report. *New England Journal of Medicine* 2020;383(19):1813-26. doi: 10.1056/NEJMoa2007764
- Group RC, Horby P, Lim WS, et al. Dexamethasone in Hospitalized Patients with Covid-19 -Preliminary Report. *The New England journal of medicine* 2020 doi: 10.1056/NEJMoa2021436 [published Online First: 2020/07/18]
- Thachil J, Tang N, Gando S, et al. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. *Journal of Thrombosis and Haemostasis* 2020;18(5):1023-26. doi: <u>https://doi.org/10.1111/jth.14810</u>
- Shelhamer MC, Wesson PD, Solari IL, et al. Prone Positioning in Moderate to Severe Acute Respiratory Distress Syndrome Due to COVID-19: A Cohort Study and Analysis of Physiology. *Journal of intensive care medicine* 2021;36(2):241-52. doi: 10.1177/0885066620980399 [published Online First: 2021/01/01]
- Rosenberg ES, Tesoriero JM, Rosenthal EM, et al. Cumulative incidence and diagnosis of SARS-CoV-2 infection in New York. *Annals of epidemiology* 2020;48:23-29.e4. doi: 10.1016/j.annepidem.2020.06.004 [published Online First: 2020/07/11]
- Sekine T, Perez-Potti A, Rivera-Ballesteros O, et al. Robust T Cell Immunity in Convalescent Individuals with Asymptomatic or Mild COVID-19. *Cell* 2020;183(1):158-68.e14. doi: <u>https://doi.org/10.1016/j.cell.2020.08.017</u>
- Fill Malfertheiner S, Brandstetter S, Roth S, et al. Immune response to SARS-CoV-2 in health care workers following a COVID-19 outbreak: A prospective longitudinal study. J Clin Virol 2020;130:104575. doi: 10.1016/j.jcv.2020.104575 [published Online First: 2020/08/18]
- 14. Alvarez Villela M, Boucher T, Terre J, et al. Surge-in-Place: Conversion of a Cardiac Catheterization Laboratory Into a COVID-19 Intensive Care Unit and Back Again. *The Journal of invasive cardiology* 2020 [published Online First: 2020/12/22]

15. Putter H, Fiocco M, Geskus RB. Tutorial in biostatistics: competing risks and multi-state models. *Stat Med* 2007;26(11):2389-430. doi: 10.1002/sim.2712 [published Online First: 2006/10/13]

- 16. Gray RJ. A class of K-sample tests for comparing the cumulative incidence of a competing risk. *The Annals of statistics* 1988:1141-54.
- 17. Fine JP, Gray RJ. A Proportional Hazards Model for the Subdistribution of a Competing Risk. *Journal of the American Statistical Association* 1999;94(446):496-509. doi: 10.1080/01621459.1999.10474144
- 18. Schoenfeld D. Partial residuals for the proportional hazards regression model. *Biometrika* 1982;69(1):239-41.
- 19. Austin PC, Fine JP. Propensity-score matching with competing risks in survival analysis. *Stat Med* 2019;38(5):751-77. doi: 10.1002/sim.8008 [published Online First: 2018/10/23]
- 20. Zhou B, Latouche A, Rocha V, et al. Competing risks regression for stratified data. *Biometrics* 2011;67(2):661-70. doi: 10.1111/j.1541-0420.2010.01493.x [published Online First: 2010/12/16]
- Philips K, Uong A, Buckenmyer T, et al. Rapid Implementation of an Adult Coronavirus Disease 2019 Unit in a Children's Hospital. *The Journal of pediatrics* 2020;222:22-27. doi: 10.1016/j.jpeds.2020.04.060 [published Online First: 2020/05/08]
- 22. New York City Office of the Mayor. News: New York City Office of the Mayor; [Available from: <u>https://www1.nyc.gov/office-of-the-mayor/news.page</u> accessed 1/17/2021.
- 23. Metropolitan Transportation Authority. Fare Data: Metropolitan Transportation Authority; [Available from: <u>http://web.mta.info/developers/fare.html</u> accessed 1/17/2021.
- 24. New York City Department of Health and Mental Hygiene. COVID-19: Data: New York City Department of Health and Mental Hygiene; 2021 [New York City Department of Health and Mental Hygiene:[Available from: https://www1.nyc.gov/site/doh/covid/covid-19-data.page accessed 1/17/2021.
- 25. State of New York. Executive Orders: State of New York; [Available from: https://www.governor.ny.gov/keywords/executive-order accessed 1/17/2021.
- 26. Cavalcanti AB, Zampieri FG, Rosa RG, et al. Hydroxychloroquine with or without Azithromycin in Mild-to-Moderate Covid-19. *The New England journal of medicine* 2020;383(21):2041-52. doi: 10.1056/NEJMoa2019014 [published Online First: 2020/07/25]
- Sterne JAC, Murthy S, Diaz JV, et al. Association Between Administration of Systemic Corticosteroids and Mortality Among Critically III Patients With COVID-19: A Metaanalysis. *Jama* 2020;324(13):1330-41. doi: 10.1001/jama.2020.17023 [published Online First: 2020/09/03]
- 28. Carsana L, Sonzogni A, Nasr A, et al. Pulmonary post-mortem findings in a series of COVID-19 cases from northern Italy: a two-centre descriptive study. *The Lancet infectious diseases* 2020;20(10):1135-40.
- 29. United States Federal Drug Administration. FDA's approval of Veklury (remdesivir) for the treatment of COVID-19—The Science of Safety and Effectiveness: United States Federal Drug Administration; [Available from: <u>https://www.fda.gov/drugs/drug-safety-and-availability/fdas-approval-veklury-remdesivir-treatment-covid-19-science-safety-and-effectiveness</u> accessed 1/17/2021.

1	
2	
3	30 Esler M Esler D Can angiotensin receptor-blocking drugs perhaps be harmful in the
4	COVID-19 nandemic? <i>Journal of hypertension</i> 2020;38(5):781-82 doi:
5	10 1007/hib 00000000002450 [mubliched Online First: 2020/02/21]
6	10.1097/11 JI.00000000002430 [published Online First. 2020/05/21]
7	31. Mancia G, Rea F, Ludergnani M, et al. Renin–Angiotensin–Aldosterone System Blockers
8	and the Risk of Covid-19. <i>New England Journal of Medicine</i> 2020;382(25):2431-40. doi:
9	10.1056/NEJMoa2006923
10	32. Zhang P. Zhu L. Cai J. et al. Association of Inpatient Use of Angiotensin-Converting
11	Enzyme Inhibitors and Angiotensin II Recentor Blockers With Mortality Among Patients
12	With Hypertension Hospitalized With COVID 10 <i>Circulation research</i>
13	With Hypertension mosphalized with $COVID-19$. Circulation research
14	2020;126(12):16/1-81. doi: doi:10.1161/CIRCRESAHA.120.31/134
15	33. Tan WYT, Young BE, Lye DC, et al. Statin use is associated with lower disease severity in
16	COVID-19 infection. Scientific Reports 2020;10(1):17458. doi: 10.1038/s41598-020-
17	74492-0
18	34 Saeed O Castagna F Agalliu L et al. Statin Use and In-Hospital Mortality in Patients With
19	Diabetes Mellitus and COVID-19 Journal of the American Heart Association
20	Diabetes Mentus and $COVID-19$. Journal of the American Heart Association 2020,0(24), 0.019475 , $1.011(1/14)$ 14, 120,019475
21	2020;9(24):e0184/5. doi: doi:10.1161/JAHA.120.0184/5
22	35. Paul V, Patel S, Royse M, et al. Proning in Non-Intubated (PINI) in Times of COVID-19:
23	Case Series and a Review. Journal of intensive care medicine 2020;35(8):818-24. doi:
24	10.1177/0885066620934801 [published Online First: 2020/07/08]
25	36. New York City Department of Health and Mental Hygiene. Health Department Releases
26	Detailed Report on COVID-19 Variants: New York City Department of Health and
27	Montal Hygione: 2021 [Aygilabla from:
28	
29	https://www1.nyc.gov/site/don/about/press/pr2021/health-department-releases-detailed-
30	report-on-covid-19-variants.page accessed 4/21/2021.
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	20
59	
60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	Spr	ring (n=4495)	Sum	mer (n=264)	Fa	ull (n=377)	Win	nter (n=2254)
	Sample	Value	Sample	Value	Sample	Value	Sample	Value
Demographics						•	-	
Age (IQR) - yr	4495	66 (55 - 77)	264	66 (50 - 76)	377	63 (50 - 73)	2254	67 (56 - 77)
Male sex - no (%)	4495	2377 (52.9)	264	138 (52.3)	377	198 (52.5)	2254	1122 (49.8)
Black race and / or Hispanic ethnicity – no (%)	4495	3345 (74.4)	264	219 (83.0)	377	286 (75.9)	2254	1635 (74.2)
Body Mass Index (IQR) - kg/m ²	4229	28.4 (24.6 - 33)	250	27.6 (22.5 - 32.7)	358	28.6 (25 - 34.1)	2194	28.2 (24.4 - 33.1)
Hospital bed saturation (IQR) - %	4495	97.4 (86.5 – 107.6)	264	81.7 (76.3 - 85.8)	377	87.6 (83.2 - 90.2)	2254	95.3 (91.9 – 101.8)
Past Medical History	T			6				
Hypertension - no (%)	4495	3370 (75)	264	197 (74.6)	377	254 (67.4)	2254	1713 (76)
Sleep apnea - no (%)	4495	521 (11.6)	264	28 (10.6)	377	47 (12.5)	2254	270 (12)
Hyperlipidemia - no (%)	4495	2609 (58)	264	153 (58)	377	199 (52.8)	2254	1380 (61.2)
Atrial fibrillation - no (%)	4495	449 (10)	264	30 (11.4)	377	35 (9.3)	2254	267 (11.8)
Chronic kidney disease - no (%)	4495	1406 (31.3)	264	70 (26.5)	377	85 (22.5)	2254	620 (27.5)
Heart failure - no (%)	4495	980 (21.8)	264	72 (27.3)	377	66 (17.5)	2254	519 (23)
Coronary artery disease - no (%)	4495	1316 (29.3)	264	95 (36)	377	108 (28.6)	2254	721 (32)
Asthma/COPD - no (%)	4495	1371 (30.5)	264	84 (31.8)	377	98 (26)	2254	753 (33.4)
Diabetes mellitus -	4495	2522 (56.1)	264	148 (56.1)	377	187 (49.6)	2254	1244 (55.2)

Table 1. Demographics, Past Medical History, and Clinical Characteristics of Admitted Patients

Vitals at Presentation

Temperature (IQR) - F	4463	98.9 (98.2 - 100)	264	98.4 (97.8 - 98.9)	372	98.8 (98.1 - 99.9)	2254	98.7 (98.1 - 99.8)
SBP (IQR) - mmHg	4469	131 (114 - 148)	264	132 (117 - 149)	375	131 (117 - 147)	2254	132 (117 - 148)
DBP (IQR) - mmHg	4465	75 (65 - 84)	263	77 (67 - 87)	374	74 (68 - 84)	2252	75 (67 - 84)
HR (IQR) – bpm	4467	98 (85 - 112)	264	92.5 (76.3 - 105)	372	94 (80 - 107)	2253	95 (82 - 107)
Oxygen saturation (IQR) - %	4463	95 (91 - 98)	264	98 (96 - 99)	372	96 (94 - 98)	2253	96 (92 - 98)
Respiratory Rate (IQR) - bpm	4466	20 (18 - 22)	264	18 (17 - 20)	372	18 (18 - 20)	2254	19 (18 - 22)
Laboratory Markers		$\mathcal{O}_{\mathcal{C}}$)					
Hemoglobin (IQR) - g/dL	4372	12.8 (11.2 - 14.1)	261	12.4 (10.7 - 13.9)	370	13 (11.6 - 14.3)	2228	12.9 (11.5 - 14.2)
Platelet count (IQR) -k/μL	4372	188 (116 - 260)	261	228 (169 - 300)	372	200 (144 - 257)	2228	196 (143 - 259)
White blood cell count (IQR) - k/µL	4372	7.5 (5.6 - 10.6)	261	8 (5.8 - 11)	370	6.6 (5.1 - 8.9)	2228	6.4 (4.7 - 8.8)
Absolute lymphocyte count (IQR) - k/μL	4420	1 (0.7 - 1.4)	263	1.2 (0.9 - 1.8)	374	1.1 (0.8 - 1.5)	2246	1 (0.7 - 1.4)
Sodium (IQR) – mEq/L	4414	137 (134 - 141)	263	138 (135 - 141)	377	137 (135 - 140)	2253	137 (134 - 140)
Potassium (IQR) – mEq/L	4389	4.3 (3.9 - 4.8)	262	4.2 (3.8 - 4.6)	377	4 (3.8 - 4.4)	2243	4.1 (3.8 - 4.5)
Chloride (IQR) – mEq/L	4394	98 (95 - 103)	263	103 (100 - 105)	377	101 (99 - 104)	2253	101 (98 - 104)
Bicarbonates (IQR) – mEq/L	4414	24 (20 - 26)	263	24 (21 - 27)	377	25 (22 - 27)	2253	24 (21 - 27)
Creatinine (IQR) - mg/dL	4410	1.1 (0.8 - 2)	263	1 (0.8 - 1.5)	377	1 (0.8 - 1.3)	2253	1.1 (0.8 - 1.5)
Glucose (IQR) - mg/dL	4414	134 (108 - 197)	263	121 (100 - 171)	377	122 (102 - 173)	2253	126 (104 - 184)

Aspartate aminotransferase (IQR) - U/L	4045	40 (27 - 65)	245	26 (20 - 38)	354	31 (21 - 47)	2084	35 (24 - 55)
Alanine aminotransferase (IQR) - U/L	4206	27 (17 - 44)	252	21 (14 - 32)	361	25 (16 - 41)	2171	26 (17 - 44)
Lactic acid (IQR) – mmol/L	3981	2.1 (1.6 - 3)	220	1.9 (1.4 - 2.7)	330	1.8 (1.3 - 2.5)	1913	1.9 (1.4 - 2.5)
Lactate dehydrogenase (IQR) - mmol/L	2935	384 (285 - 535)	160	254.5 (196 - 340)	285	300 (225 - 383)	1563	341 (254 - 468)
Creatine Kinase (IQR) – U/L	3453	168 (83 - 401)	209	97 (57 - 176)	313	116 (60 - 213)	1957	126 (67 - 282)
D-dimer (IQR) - μg/mL	2204	1.8 (0.9 - 3.9)	185	1.1 (0.5 - 2.2)	317	0.8 (0.5 - 1.6)	1907	1.2 (0.7 - 2.3)
Procalcitonin (IQR) – ng/mL	1789	0.2 (0.1 - 0.9)	120	0.1 (0.1 - 0.4)	254	0.1 (0.1 - 0.2)	1252	0.1 (0.1 - 0.3)
Troponin T* (IQR) - ng/mL	0	NA	219	0.01 (0.01 - 0.03)	342	0.01 (0.01 - 0.02)	2106	0.01 (0.01 - 0.03)
Troponin I* (IQR) – ng/mL	3662	0.01 (0.01 - 0.03)	3	0.01 (0.01 - 0.01)	0	NA	0	NA
Interleukin-6 (IQR) – pg/mL	1056	33.6 (13.8 - 75.2)	87	11.7 (3 - 43.1)	186	11 (4.7 - 22.2)	710	10.8 (4.3 - 25.6)
Fibrinogen (IQR) – mg/dL	1552	624 (491 - 750)	122	448 (370- 583)	224	540 (436 - 663)	1040	535.5 (434 - 652)
Ferritin (IQR) – ng/mL	1969	716 (335 - 1498)	155	228 (90 - 562)	293	364 (166 - 785)	1637	510 (230 - 1094)

COPD = Chronic obstructive pulmonary disease; DBP = Diastolic blood pressure; HR = Heart rate; IQR = Interquartile range; SBP =

Systolic blood pressure. * Troponin T was available only until June 2020, Troponin I was available only after June 2020.

Figure Legends

Figure 1. Simultaneously Admitted Patients

This graph includes the hospitalized patients and the admitted patients in the emergency

department waiting for a bed. A precipitous decline of non-COVID-19 admissions begins on

March 16, 2020 (vertical gray line) coinciding with gubernatorial health care associated

directives in the State of New York. The dotted red line indicates the nominal bed capacity of our

institution (1,491 beds).

Figure 2. Cumulative Monthly Admission and Mortality

Cumulative monthly admissions (blue line, left axis) and mortality (orange line, right axis) over the year.

Figure 3. Change in Therapies

Percent of patients receiving specific therapies over the year. Lezoni

Figure 4. Cumulative Incidences

30-day in-hospital mortality by seasons.

170x124mm (150 x 150 DPI)

185x153mm (150 x 150 DPI)

200x177mm (150 x 150 DPI)

Supplemental Appendix

Table of contents

Supplemental Methods	
Supplemental Figure 1 - Distribution of Propensity Score	
Supplemental Table 1 - Therapies Administered during the Admissior	۱ 6
Supplemental Table 2 - Comparison Survivors versus Nonsurvivors	7
Supplemental Table 3 - Comparison Spring Vs Winter	
Supplemental References	

BMJ Open

Francesco Castagna MD¹, Xiaonan Xue PhD², Omar Saeed MD¹, Rachna Kataria MD¹, Yoram A Puius MD PhD³, Snehal R Patel MD¹, Mario J Garcia MD¹, Andrew D Racine MD⁴, Daniel B Sims MD¹, Ulrich P Jorde MD¹

¹ Division of Cardiology, Montefiore Medical Center and Albert Einstein College of Medicine,

Bronx, NY

² Department of Epidemiology and Population Health, Albert Einstein College of Medicine,

Bronx, NY

³ Division of Infectious Diseases, Montefiore Medical Center and Albert Einstein College of

Medicine, Bronx, NY

⁴ Department of Pediatrics, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, New York.

Supplemental Methods

 Covariate Selection Method for Multivariable Competing Risk Proportional Hazard Models for Time to In-hospital Death

The covariates in the multivariable analyses included factors present in > 90% of our dataset, known to be associated with in-hospital COVID-19 mortality based on prior literature¹⁻³, or with a univariate association with in-hospital mortality (p<0.05) and a clinical (relative difference >5%) difference between survivors and non survivors (**Supplemental Table 2**). These variables included: age, sex, body mass index (BMI), vital signs at presentation (temperature, systolic and diastolic blood pressure, heart rate, respiratory rate, pulse oxygen saturation), platelet count, white cell count, potassium, bicarbonate, creatinine, glucose, alanine transaminase, aspartate transaminase, history of hypertension, dyslipidemia, chronic kidney disease (CKD), heart failure, coronary artery disease, asthma/chronic obstructive pulmonary disease, diabetes mellitus and statin use. Additionally, lactic acid level and percent of hospital bed saturation were forced into the model as marker of illness severity and level of hospital stress, respectively.

Covariate Selection Method for Multivariable Competing Risk Proportional Hazard Models for in-hospital Death between Patients Spring and Winter Patients

The covariates in the multivariable analyses included factors present in > 90% of our dataset, are known to be associated with in-hospital COVID-19 mortality based on prior literature or with a univariate association between admission season (exposure) or in-hospital mortality (outcome) (p<0.05) and a clinical (relative difference >5%) difference between the spring and winter patients (**Supplemental Table 3**). These variables included: age, sex, BMI, vital signs at

presentation, white cell count, creatinine, glucose, alanine transaminase, history of hypertension, dyslipidemia, chronic kidney disease (CKD), heart failure, coronary artery disease, asthma/chronic obstructive pulmonary disease, diabetes mellitus and statin use. Also in this model, lactic acid level and percent of hospital bed saturation were forced into the model as marker of illness severity and level of hospital stress, respectively.

to beet terien only

Г

FINAL MODEL					····· 0
Sex			o •		
Age			••••		
ВМІ			• • • • •		
Temperature					
SBP			• • •		
DBP			••••		
HR		····· 0····	• • • • • • • • • • • • • • • • • • • •		
Saturation			• • • • • • • • • • • • • • • • • • • •	•••••	
Respiratory rate		0	••••		
HTN			• • • •		
HLD			•••••		
CKD		······ C	• • • •		
HF			• • • •		
COPD/Asthma			• • •		
DM			• • • • •		
CAD			•••		
WBC	····· 0 ···		•		
Glucose		0	•		
AST		••••0•••••	••••		
Lactic acid		0	• • • • • • • • • • • • • • • • • • • •		
Statin use			• • • • • • • • • • • • • • • • • • • •	0	
Bed saturation		0	•		
			o be ● at	efore n fter ma	natching atching
	L [1		1
	-0.4	-0.2	0.0	0.2	0.4

AST = aspartate transaminase; BMI= body mass index; CAD= coronary artery disease; COPD = chronic obstructive pulmonary disease; CKD = chronic kidney disease; DBP= diastolic blood pressure; DM = Diabetes mellitus; HF= heart failure; HLD = hyperlipidemia; HNT = hypertension; HR = heart rate; SBP = systolic blood pressure; WBC = white blood cell count
1	
2 3	
4 5	
6 7	
8 9	
10	
12	
13 14	
15 16	
17	
19	
20 21	
22 23	
24	
26	
27 28	
29 30	
31 32	
33	
34 35	
36 37	
38 39	
40	
41	
43 44	
45 46	
47 48	
49	
50 51	
52 53	
54 55	
56	
5/	

60

	Spring (n=4495)	Summer (n=264)	Fall (n=377)	Winter (n=2254)
Hydroxychloroquine - no (%)	3007 (66.9)	1 (0.4)	2 (0.5)	8 (0.4)
Azithromycin - no (%)	1322 (29.4)	51 (19.3)	118 (31.3)	374 (16.6)
Other antibiotics - no (%)	3382 (75.2)	160 (60.6)	214 (56.8)	1082 (48)
Steroids - no (%)	1485 (33)	71 (26.9)	195 (51.7)	1462 (64.9)
Angiotensin-converting- enzyme Inhibitors - no (%)	318 (7.1)	36 (13.6)	51 (13.5)	269 (11.9)
Angiotensin II receptor blockers - no (%)	264 (5.9)	23 (8.7)	32 (8.5)	212 (9.4)
Statin - no (%)	1478 (32.9)	109 (41.3)	129 (34.2)	1002 (44.5)
Therapeutic anticoagulation - no (%)	1041/4496 (31.2)	76 (28.8)	98 (26.0)	772 (34.3)
Remdesivir* - no (%)	78 (1.7)	37 (14)	134 (35.5)	1224 (54.3)
Lopinavir/Ritonavir – no (%)	40 (0.9)	0 (0)	0 (0)	0 (0)
Ivermectin – no (%)	11 (0.2)	1 (0.4)	0 (0)	34 (1.5)

Supplemental Table 1 - Therapies Administered during the Admission

* 45 patients listed as remdesivir recipients in the spring season were part of a 1:1 double-blind, placebo-controlled study. Instead, all the patients in summer, fall, and winter seasons listed as remdesivir recipients received the actual medication.

3
4
5
6
7
8
0
9 10
10
11
12
13
14
15
16
17
18
10
19
20
21
22
23
24
25
26
20
27
28
29
30
31
32
33
34
35
36
20
3/
38
39
40
41
42
43
44
15
45
40
4/
48
49
50
51
52
53
57
54
22
56
57
58
59
60

	Survio	rs (n=5953)	Nonsurvio	p-value	
	Sample	Value	Sample	Value	
Demographics					
Age (IQR) - yr	5953	64 (52 - 75)	1437	73 (65 - 82)	< 0.001
Male sex - no (%)	5953	2989 (50.2)	1437	846 (58.9)	< 0.001
Black race and / or Hispanic ethnicity – no (%)	5953	4472 (75.1)	1437	1013 (70.5)	< 0.001
Body Mass Index (IQR) - kg/m ²	5679	28.4 (24.6 - 33.2)	1352	27.9 (23.8 - 32.6)	< 0.001
Hospital bed saturation (IQR) - %	5953	94.1 (86.5 - 104.8)	1437	99.3 (87.5 - 107.6)	< 0.001
Past Medical History		ò			
Hypertension - no (%)	5953	4365 (73.3)	1437	1169 (81.4)	< 0.001
Sleep apnea - no (%)	5953	688 (11.6)	1437	178 (12.4)	0.38
Hyperlipidemia - no (%)	5953	3366 (56.5)	1437	975 (67.8)	< 0.001
Atrial fibrillation - no (%)	5953	557 (9.4)	1437	224 (15.6)	< 0.001
Chronic kidney disease - no (%)	5953	1559 (26.2)	1437	622 (43.3)	< 0.001
Heart failure - no (%)	5953	1181 (19.8)	1437	456 (31.7)	< 0.001
Coronary artery disease - no (%)	5953	1653 (27.8)	1437	587 (40.8)	< 0.001
Asthma/COPD - no (%)	5953	1842 (30.9)	1437	464 (32.3)	0.32
Diabetes mellitus - no (%)	5953	3168 (53.2)	1437	933 (64.9)	<0.001
Vitals at Presentation					
Temperature (IQR) - F	5926	99 (98 - 100)	1427	99 (98 - 100)	0.35

SBP (IQR) - mmHg	5932	132 (117 - 148)	1430	127 (107 - 146)	< 0.001
DBP (IQR) - mmHg	5926	76 (67 - 85)	1428	71 (60 - 81)	< 0.001
HR (IQR) – bpm	5927	96 (83 - 110)	1429	100 (85 - 114)	< 0.001
Oxygen saturation (IQR) - %	5922	96 (93 - 98)	1430	92 (84 - 96)	< 0.001
Respiratory Rate (IQR) - bpm	5928	19 (18 - 21)	1428	22 (19 - 26)	< 0.001
Laboratory Markers					
Hemoglobin (IQR) - g/dL	5823	12.9 (11.4 - 14.1)	1408	12.6 (10.9 - 14.2)	0.006
Platelet count (IQR) -k/µL	5825	198 (137 - 264)	1408	172 (88 - 246)	< 0.001
White blood cell count (IQR) - $k/\mu L$	5823	6.9 (5.1 - 9.5)	1408	8.3 (6.0 - 11.9)	< 0.001
Absolute lymphocyte count (IQR) - k/µL	5880	1.1 (0.7 - 1.5)	1423	0.9 (0.6 - 1.2)	< 0.001
Sodium (IQR) – mEq/L	5879	137 (134 - 140)	1428	138 (134 - 143)	< 0.001
Potassium (IQR) – mEq/L	5845	4.2 (3.8 - 4.6)	1426	4.4 (4.0 – 5.0)	< 0.001
Chloride (IQR) – mEq/L	5864	100 (96 - 103)	1423	100 (95 - 104)	0.28
Bicarbonates (IQR) – mEq/L	5879	24 (21 - 27)	1428	22 (18 - 25)	< 0.001
Creatinine (IQR) - mg/dL	5876	1.0 (0.8 - 1.5)	1427	1.6 (1 - 2.9)	< 0.001
Glucose (IQR) - mg/dL	5879	126 (104 - 179)	1428	156 (121 - 236)	< 0.001
Aspartate aminotransferase (IQR) - U/L	5416	35 (24 - 55)	1312	52 (33 - 81)	< 0.001
Alanine aminotransferase (IQR) - U/L	5614	26 (16 - 42)	1376	28 (18 - 46)	< 0.001
Lactic acid (IQR) – mmol/L	5097	1.9 (1.4 - 2.6)	1347	2.6 (1.8 - 3.9)	< 0.001
Lactate dehydrogenase (IQR) - mmol/L	4017	384±219	926	518 (371 - 706)	< 0.001
Creatine Kinase (IQR) – U/L	4714	336 (253 - 454)	1218	777±2657	< 0.001
D-dimer (IQR) - µg/mL	3850	1.2 (0.7 - 2.5)	763	2.5 (1.3 - 6.9)	< 0.001
Procalcitonin (IQR) – ng/mL	2800	0.1 (0.1 - 0.3)	615	0.6 (0.2 - 2.4)	< 0.001

Troponin T* (IQR) - ng/mL	2365	0.01 (0.01 - 0.03)	302	0.03 (0.01 - 0.1)	<0.001
Troponin I* (IQR) – ng/mL	2684	0.01 (0.01 - 0.02)	981	0.02 (0.01 - 0.08)	< 0.001
Interleukin-6 (IQR) – pg/mL	1752	17 (6 - 40)	287	68 (26- 154)	< 0.001
Fibrinogen (IQR) – mg/dL	2478	570 (448 - 690)	460	621 (506 - 761)	< 0.001
Ferritin (IQR) – ng/mL	3395	521 (224 - 1112)	659	1021 (514 - 2161)	< 0.001

COPD = Chronic obstructive pulmonary disease; DBP = Diastolic blood pressure; HR = Heart rate; IQR = Interquartile range; SBP = Systolic blood pressure. * Troponin T was available only until June 2020, Troponin I was available only after June 2020.

ore tel.

1	
2	
2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
10	
IÖ	
19	
20	
21	
22	
22	
∠_) ∧ ^	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
31	
24	
35	
36	
37	
38	
30	
10	
40	
41	
42	
43	
44	
15	
45	
46	
47	
48	
49	
50	
50 E 1	
21	
52	
53	
54	
55	
55	
56	
57	
58	
59	
60	
00	

Supplemental Table 3 - Comparison Spring Vs Winter

	Spring	(n=4495)	Winter (n=2254)		p- value
	Sample	Value	Sample	Value	
Demographics					
Age (IQR) - yr	4495	66 (55 - 77)	2254	67 (56 - 77)	0.051
Male sex - no (%)	4495	2377 (52.9)	2254	1122 (49.8)	0.016
Black race and / or Hispanic ethnicity – no (%)	4495	3345 (74.4)	2254	1635 (72.5)	0.098
Body Mass Index (IQR) - kg/m ²	4229	28.4 (24.6 - 33)	2194	28.2 (24.4 - 33.1)	0.433
Hospital bed saturation (IQR) - %	4495	97.4 (86.5 – 107.6	2254	95.3 (91.9 – 101.8)	<0.001
Past Medical History	5				
Hypertension - no (%)	4495	3370 (75)	2254	1713 (76)	0.357
Sleep apnea - no (%)	4495	521 (11.6)	2254	270 (12)	0.640
Hyperlipidemia - no (%)	4495	2609 (58)	2254	1380 (61.2)	0.012
Atrial fibrillation - no (%)	4495	449 (10)	2254	267 (11.8)	0.019
Chronic kidney disease - no (%)	4495	1406 (31.3)	2254	620 (27.5)	0.001
Heart failure - no (%)	4495	980 (21.8)	2254	519 (23)	0.254
Coronary artery disease - no (%)	4495	1316 (29.3)	2254	721 (32)	0.022
Asthma/COPD - no (%)	4495	1371 (30.5)	2254	753 (33.4)	0.015
Diabetes mellitus - no (%)	4495	2522 (56.1)	2254	1244 (55.2)	0.475
Vitals at Presentation					
Temperature (IQR) - F	4463	98.9 (98.2 - 100)	2254	98.7 (98.1 - 99.8)	<0.001

SBP (IQR) - mmHg	4469	131 (114 - 148)	2254	132 (117 - 148)	0.002
DBP (IQR) - mmHg	4465	75 (65 - 84)	2252	75 (67 - 84)	0.117
HR (IQR) – bpm	4467	98 (85 - 112)	2253	95 (82 - 107)	< 0.001
Oxygen saturation (IQR) - %	4463	95 (91 - 98)	2253	96 (92 - 98)	< 0.001
Respiratory Rate (IQR) - bpm	4466	20 (18 - 22)	2254	19 (18 - 22)	< 0.001
Laboratory Markers					
Hemoglobin (IQR) - g/dL	4372	12.8 (11.2 - 14.1)	2228	12.9 (11.5 - 14.2)	0.030
Platelet count (IQR) -k/µL	4372	188 (116 - 260)	2228	196 (143 - 259)	< 0.001
White blood cell count (IQR) - k/µL	4372	7.5 (5.6 - 10.6)	2228	6.4 (4.7 - 8.8)	< 0.001
Absolute lymphocyte count (IQR) - k/µL	4420	1 (0.7 - 1.4)	2246	1 (0.7 - 1.4)	0.062
Sodium (IQR) – mEq/L	4414	137 (134 - 141)	2253	137 (134 - 140)	< 0.001
Potassium (IQR) – mEq/L	4389	4.3 (3.9 - 4.8)	2243	4.1 (3.8 - 4.5)	< 0.001
Chloride (IQR) – mEq/L	4394	98 (95 - 103)	2253	101 (98 - 104)	< 0.001
Bicarbonates (IQR) – mEq/L	4414	24 (20 - 26)	2253	24 (21 - 27)	< 0.001
Creatinine (IQR) - mg/dL	4410	1.1 (0.8 - 2)	2253	1.1 (0.8 - 1.5)	< 0.001
Glucose (IQR) - mg/dL	4414	134 (108 - 197)	2253	126 (104 - 184)	< 0.001
Aspartate aminotransferase (IQR) - U/L	4045	40 (27 - 65)	2084	35 (24 - 55)	< 0.001
Alanine aminotransferase (IQR) - U/L	4206	27 (17 - 44)	2171	26 (17 - 44)	0.292
Lactic acid (IQR) – mmol/L	3981	2.1 (1.6 - 3)	1913	1.9 (1.4 - 2.5)	< 0.001
Lactate dehydrogenase (IQR) - mmol/L	2935	384 (285 - 535)	1563	341 (254 - 468)	< 0.001
Creatine Kinase (IQR) – U/L	3453	168 (83 - 401)	1957	126 (67 - 282)	< 0.001
D-dimer (IQR) - µg/mL	2204	1.8 (0.9 - 3.9)	1907	1.2 (0.7 - 2.3)	< 0.001

Procalcitonin (IQR) – ng/mL	1789	0.2 (0.1 - 0.9)	1252	0.1 (0.1 - 0.3)	< 0.001
Troponin T* (IQR) - ng/mL	0	NA	2106	0.01 (0.01 - 0.03)	NA
Troponin I* (IQR) – ng/mL	3662	0.01 (0.01 - 0.03)	0	NA	NA
Interleukin-6 (IQR) – pg/mL	1056	34 (14 - 75)	710	11 (4 - 26)	< 0.001
Fibrinogen (IQR) – mg/dL	1552	624 (491 - 750)	1040	536 (434 - 652)	< 0.001
Ferritin (IQR) – ng/mL	1969	716 (335 - 1498)	1637	510 (230 - 1094)	< 0.001

COPD = Chronic obstructive pulmonary disease; DBP = Diastolic blood pressure; HR = Heart rate; IQR = Interquartile range; SBP = Systolic blood pressure. * Troponin T was available only until June 2020, Troponin I was available only after June 2020.

Supplemental References

1. Wu Z, McGoogan JM. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. Jama 2020;323:1239-42.

2. Williamson EJ, Walker AJ, Bhaskaran K, et al. Factors associated with COVID-19related death using OpenSAFELY. Nature 2020;584:430-6.

Tartof SY, Qian L, Hong V, et al. Obesity and Mortality Among Patients Diagnosed With 3. COVID-19: Results From an Integrated Health Care Organization. Ann Intern Med 2020;173:773-81.

STROBE Statement—Checklist of items that should be included in reports of cohort studies

	Item No	Recommendation	Page No
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the	1
		abstract	
		(b) Provide in the abstract an informative and balanced summary of what was	2
		done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being	4
		reported	
Objectives	3	State specific objectives, including any prespecified hypotheses	4
Methods			1
Study design	4	Present key elements of study design early in the paper	4-5
Setting	5	Describe the setting, locations, and relevant dates, including periods of	4-5
		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of	4-5
		participants. Describe methods of follow-up	
		(b) For matched studies, give matching criteria and number of exposed and	
		unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and	5 Supp
		effect modifiers. Give diagnostic criteria, if applicable	Supp
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	4-5
measurement		assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	12
Bias	9	Describe any efforts to address potential sources of bias	12-
Study size	10	Explain how the study size was arrived at	4-5
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,	4-5
		describe which groupings were chosen and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to control for	5-6
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	Supp
		(c) Explain how missing data were addressed	
		(d) If applicable, explain how loss to follow-up was addressed	
		(<u>e</u>) Describe any sensitivity analyses	
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	6-7
		eligible, examined for eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social)	6-9
		and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	
		(c) Summarise follow-up time (eg, average and total amount)	
Outcome data	15*	Report numbers of outcome events or summary measures over time	8-9

Main results	16	 (a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included (b) Report category boundaries when continuous variables were categorized (c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period 	6-9
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	9
Discussion			
Key results	18	Summarise key results with reference to study objectives	9
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	12- 13
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	9-11
Generalisability	21	Discuss the generalisability (external validity) of the study results	14
Other informati	ion		-
Funding	22	Give the source of funding and the role of the funders for the present study and, if	15
		applicable, for the original study on which the present article is based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Impact of COVID-19 Pandemic Management on Outcomes in a Large United States Hospital Center

Journal:	BMJ Open	
Manuscript ID	bmjopen-2021-058171.R1	
Article Type:	Original research	
Date Submitted by the Author:	22-Dec-2021	
Complete List of Authors:	Castagna, Francesco; Montefiore Medical Center, Xue, Xiaonan; Albert Einstein College of Medicine, Department of Epidemiology and Population Health Saeed, O; Albert Einstein College of Medicine Kataria, Rachna ; Albert Einstein College of Medicine Puius, Yoram; Albert Einstein College of Medicine Patel, Snehal; Albert Einstein College of Medicine Garcia, Mario; Albert Einstein College of Medicine Racine, Andrew D. ; Albert Einstein College of Medicine, Department of Pediatrics Sims, Daniel; Albert Einstein College of Medicine Jorde, Ulrich; Albert Einstein College of Medicine	
Primary Subject Heading :	Public health	
Secondary Subject Heading:	Health policy, Infectious diseases, Public health	
Keywords:	COVID-19, Public health < INFECTIOUS DISEASES, EPIDEMIOLOGY	

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1
2
3
4
5
6
7
/
8
9
10
11
12
13
14
15
16
17
17
10 10
19
20
21
22
23
24
25
26
20
27
28
29
30
31
32
33
34
35
36
37
20
20
39
40
41
42
43
44
45
46
47
48
<u>4</u> 0
79 50
50
51
52
53
54
55
56
57
58

60

Impact of COVID-19 Pandemic Management on Outcomes in a 1 Large United States Hospital Center 2 Francesco Castagna MD¹, Xiaonan Xue PhD², Omar Saeed MD¹, Rachna Kataria MD¹, Yoram 3 4 A Puius MD PhD³, Snehal R Patel MD¹, Mario J Garcia MD¹, Andrew D Racine MD⁴, Daniel B 5 Sims MD¹, Ulrich P Jorde MD¹ 6 7 Affiliations: 8 9 ¹ Division of Cardiology, Montefiore Medical Center and Albert Einstein College of Medicine, 10 Bronx, NY 11 ² Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 12 Bronx, NY ³ Division of Infectious Diseases, Montefiore Medical Center and Albert Einstein College of 13 14 Medicine, Bronx, NY ⁴ Department of Pediatrics, Montefiore Medical Center and Albert Einstein College of Medicine, 15 16 Bronx, New York. 17 Word count: 3,064 18 **Corresponding Author:** 19 Ulrich P. Jorde, MD 20 Professor of Medicine 21 Division of Cardiology 22 Department of Medicine 23 Montefiore Medical Center 3400 Bainbridge Ave. 7th floor 24 25 Bronx, NY 26 Email: ujorde@montefiore.org 27

BMJ Open

1 2 3 4	28	Abstract
5 6 7 8 9 10 11	29	Introduction: COVID-19 first struck New York City in the spring of 2020 resulting in an
	30	unprecedented strain on our health care system triggering multiple changes in public health
	31	policy governing hospital operations as well as therapeutic approaches to COVID-19. We
12 13 14	32	examined inpatient mortality at our center throughout the course of the pandemic.
15 16 17	33	Methods: Retrospective chart review of clinical characteristics, treatments, and outcome data of
18 19	34	all patients admitted with COVID-19 from March 1st, 2020 to February 28th, 2021. Patients were
20 21	35	grouped into three-month quartiles. Hospital strain was assessed as percent of occupied beds
22 23 24	36	based on a normal bed capacity of 1,491.
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	37	Results: Inpatient mortality decreased from 25.0% in spring to 10.8% over the course of the
	38	year. During this time, the use of remdesivir, steroids, and anticoagulants increased; the use of
	39	hydroxychloroquine and other antibiotics decreased. Daily bed occupancy ranged from 62% to
	40	118% occupancy. In a multivariate model with all year's data controlling for demographics,
	41	comorbidities, and acuity of illness, bed occupancy was associated with an increased COVID-19
	42	mortality. Yet further adjustment of bed occupancy showed a significant lower mortality rate
	43	during the second surge compared to the initial surge (HR 0.520, CI 0.448-0.604, p<0.001).
41 42 43	44	Propensity score analysis confirmed this difference in these two seasons (HR 0.580 CI: 0.507-
44 45 46	45	0.663, p<0.001).
47 48	46	Conclusion: Inpatient mortality from COVID-19 decreased to a degree disproportionate to
49 50	47	advances in disease specific therapeutics and was associated with bed occupancy. Early
51 52	48	reduction in epicenter hospital bed occupancy to accommodate acutely ill and resource-intensive
54 55	49	patients should be a critical component in the strategic planning for future pandemics.
56 57 58 59		2

1 2 3 4 5	50	Strengths and limitations of this study
6 7	51	• Large cohort study (7,390 COVID-19 patients).
8 9	52	• Longitudinal analysis over 1 year of management and hospital policy changes.
10 11 12	53	• Analysis of mortality changes after adjustment for different therapies and clinical
13 14	54	parameters.
15 16	55	• Identification of the association between level of hospital system stress and mortality,
17 18 19	56	with important public health ramifications.
20 21	57	• Limitation: data on most recent variants are not included
22 23 24 25 26 27 28 29 30 31 32 33 45 36 37 38 30 41 42 43 44 50 51 52 53 54 55 56 57	58	
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Coronavirus disease 2019 (COVID-19) was declared a global pandemic by the World Health Organization on March 11th, 2020.¹ In the United States, after a cluster of cases reported from Washington state², New York state quickly became the initial epicenter of this pandemic with over 1.27 million of cases till date and over 50,000 fatalities with the highest concentration in the Bronx and Queens boroughs of New York City.³ Montefiore Einstein, with its three principal teaching hospitals and combined adult bed capacity of 1,491, is the primary health care provider for the large, nearly 1.5 million diverse population of the Bronx⁴ and experienced a "first wave" of COVID-19 admissions in the spring of 2020³, followed by a significant reduction of cases until a second surge in hospitalizations was noted in the winter of 2020. Throughout the course of the year, multiple public health measures - including those adapting hospital operation to a disaster level pandemic, such as cancellation of all elective procedures and waiver of state specific licensing for health care providers - were put in place. In addition, the understanding of COVID-19 pathophysiology improved ⁵⁶, new treatments were developed ⁷⁻¹⁰, parts of the general population^{11 12} as well as hospital personnel developed antibodies after COVID-19 illness ¹³, and our hospital system adapted to and then recovered from crisis mode.¹⁴ Here, we report outcomes of patients hospitalized with COVID-19 through one year since the first case, focusing on the differences observed between the spring and the winter surges.

METHODS:

79 Study Population

80 We retrospectively reviewed all adult patients admitted to Montefiore Medical Center with a real
81 time reverse transcription polymerase chain reaction (RT-PCR) assay positive for COVID-19

between March 1, 2020 and February 28, 2021. We divided this timeframe in four 3-month

seasons based on northern hemisphere calendar: spring (March 1, 2020 to May 31, 2020),

summer (June 1, 2020 to August 30, 2020), fall (September 1, 2020 to November 30, 2020), and

winter (December 1, 2020 to February 28, 2021).

Data Collection

Medical data including demographic, clinical, and laboratory variables were extracted from the electronic medical record system. The primary outcome was 30-day in-hospital mortality.

Statistical Analysis

Continuous variables are displayed as mean \pm standard deviation or median [25-75%]

interquartile range] and compared with the Student's t-test, or Wilcoxon ranks-sum, as

appropriate. Categorical data are presented as percent and compared by the chi-squared test. We

estimated the cumulative incidence of the primary endpoint in-hospital mortality for each season,

treating hospital discharge as a competing event.¹⁵ To avoid any bias due to differential follow-

up length, we censored the follow-up time at 30 days after the admission.

A multivariable competing risk proportional hazard models was used to estimate the sub-

distribution hazard ratios¹⁶¹⁷ for time to in-hospital death. The covariates in the multivariable

analyses included factors present in > 90% of our dataset, known to be associated with in-

hospital COVID-19 mortality based on prior literature^{6 18 19}, or with a univariate association with

in-hospital mortality (p < 0.05) and a clinical (relative difference >5%) difference between

survivors and non survivors (Supplemental Table 1). These variables included: age, sex, body

mass index (BMI), vital signs at presentation (temperature, systolic and diastolic blood pressure,

Page 7 of 43

1

BMJ Open

2		
3 4	105	heart rate, respiratory rate, pulse oxygen saturation), platelet count, white cell count, potassium,
5 6 7 8 9 10 11 12 13 14 15 16	106	bicarbonate, creatinine, glucose, alanine transaminase, aspartate transaminase, history of
	107	hypertension, dyslipidemia, chronic kidney disease (CKD), heart failure, coronary artery disease,
	108	asthma/chronic obstructive pulmonary disease, diabetes mellitus and statin use. Additionally,
	109	lactic acid level and percent of hospital bed saturation were forced into the model as marker of
	110	illness severity and level of hospital stress, respectively.
17 18 10	111	
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35	112	Then we focused on examining the difference in in-hospital death between patients admitted in
	113	the spring and in the winter, as they represented the two largest and most temporal distant waves
	114	of the COVID-19 pandemic occurring before and after public health polices, specific therapeutic
	115	approaches and hospital management changes had been implemented. Selection method for
	116	covariates is presented in the Supplemental Material and Supplemental Table 2.
	117	The proportionality assumption was examined ²⁰ and no violation was identified. A two-sided
	118	p<0.05 was considered statistically significant.
36 37	119	
38 39	120	Propensity Score Analysis
40 41 42 43 44 45 46 47 48 49 50 51 52 53	121	To fully control the potential differences in patient population and hospital stress between spring
	122	and winter COVID-19 patients, we also used propensity score (PS) matching to compare the 30-
	123	day in-hospital mortality between spring and winter admissions. The same covariates used for
	124	the multivariable competing risk regression were used for PS matching. PS matching was carried
	125	out through a 1:1 greedy matching algorithm, with a caliper width of 0.1 SD. We then stratified
	126	on matched pair in the competing risk regression model. ^{21 22} Because one-to-one matching led to
54 55	127	a reduction in sample size, we used this analysis as a sensitivity analysis.
56 57		
58 59		ć

3 4	128	All statistical analyses was performed with SPSS (IBM Corp, ver. 25, Armonk, NY) and the R
5 6	129	packages cmprsk and crrSC (R Foundation for Statistical Computing, ver 3.5)
7 8 0	130	
) 10 11	131	Patient and Public Involvement
12 13	132	Given the retrospective nature of our analysis, it was not appropriate or possible to involve
14 15 16	133	patients or the public in the design, or conduct, or reporting, or dissemination plans of our
10 17 18	134	research.
19 20	135	
21 22 22	136	RESULTS
23 24 25	137	7,390 COVID-19 positive adult patients were admitted between March 1, 2020 and February 28,
26 27	138	2021 (Figure 1). 4,495 patients were admitted during the spring, 264 during the summer, 377
28 29	139	during the fall, and 2,254 during the winter.
30 31 32	140	On April 8, 2020, peak of the spring season, the total numbers of simultaneously adult patients
33 34	141	admitted to our hospital (including those admitted to emergency adult wards at our children's
35 36	142	hospital ²³) was 1,762 (118% of nominal bed capacity); 1,201 of them (68.2%) were COVID-19
37 38 30	143	patients. On February 8, 2021, peak of winter season, 1,512 patients (101% of nominal bed
40 41	144	capacity) were admitted to our hospital and 393 of them (26.0%) were COVID-19 patients.
42 43	145	(Figure 1). Following cancellation of elective procedures, bed occupancy decreased to 70% by
44 45	146	the end of the spring season and remained at 90% until the beginning of the winter season, when
40 47 48	147	the second wave occurred in December 2020. Unadjusted mortality for patient admitted at the
49 50	148	beginning of spring, end of spring, beginning of winter, and end of winter was 28%, 8%, 14%,
51 52	149	and 13%, respectively (Figure 2).
53 54 55 56 57 58 59	150	

BMJ Open

2
3
Δ
-
5
6
7
8
9
10
10
11
12
13
14
15
16
17
10
10
19
20
21
22
23
24
24
25
26
27
28
29
30
50
31
32
33
34
35
36
27
20
38
39
40
41
42
43
10
44
45
46
47
48
49
50
51
51
52
53
54
55
56
57
57
58
59

60

151 **Patient Population** 152 Demographics, past medical history, vital signs at arrivals, and initial laboratory blood tests are 153 presented in Table 1. Overall, median age was 66(55 - 77) years, 3.835 (51.9%) patients were 154 male, 5,519 (74.2%) were of Black race and/or Hispanic ethnicity. Median age ranged from 63 155 years (fall) to 67 years (spring). Sex distribution was similar throughout the year. Summer and 156 fall patients had the lowest and the highest BMI: 26.7 and 28.6 kg/m², respectively. 157 158 **Pharmacotherapy** 159 Changes in pharmacological approach is presented in **Supplemental Table 3** and **Figure 3**. 160 Spring patients were more likely to receive hydroxychloroquine, azithromycin and other 161 antibiotics. The use of Remdesivir substantially increased throughout the year (from less than 2% 162 during spring to almost 70% by the end of the winter). Steroids prescription (from 33% during 163 spring to almost 70% in February 2021), therapeutic anticoagulation therapy, as well as use of 164 statins, angiotensin converting inhibitors (ACE-I), or angiotensin receptor blockers (ARBs) also 165 increased. 166 167 Death, Intubation, and Length of Stay 168 Over the course of a year, 1,437 (19.4%) died while hospitalized. Patients who died were older, 169 had more comorbidities, and were more acutely ill consistent within prior reports on risk factors 170 for death in COVID-19⁵⁶ (Supplemental Table 1). Average unadjusted monthly mortality is

- 171 presented in **Figure 2**. 30-day in-hospital mortality (**Figure 4A**) was 25.0% for the spring
- 172 patients, 11.0% for summer patients, 6.9% for fall patients, and 11.4% for winter patients
- 173 (p<0.001). On average, spring patients died 6.4 (3.2 12.9) days after the arrival to the

2	
3 4	174
4 5 6	175
7 8	176
9	170
10 11	177
12 13	178
14 15	179
16 17	180
18 19 20	181
20 21 22	182
22 23	102
24 25	183
26 27	184
28 29	185
30 31	186
32	100
33 34	187
35 36	188
37 38	189
39 40	190
41 42	170
43	191
44 45	192
46 47	193
48 49	194
50 51 52	195
52 53	
54 55	196
56	
57 58	
59	
60	

74	emergency department, summer patients 7.2 $(3.0 - 15.7)$ days after the arrival, fall patients 13.4		
75	(8.7 - 21.6) days after arrival, and winter patients 13.3 (6.8 - 20.7) days after the arrival		
76	(p<0.001). Frequency of invasive ventilatory support was higher during the spring with 892		
77	patients (19.4%) intubated, versus 27 (10.2%) in the summer, 36 (9.5%) during fall, and 268		
78	(11.9%) in the winter, p<0.001. Median time from arrival-to-intubation was 0.7 (0.1 - 4.1) days		
79	for spring patients, 0.6 (0.1 - 8.1) days for summer patients, 2.2 (0.1 - 7.3) days for fall patients,		
80	and 2.8 $(0.3 - 7.0)$ days for winter patients, p<0.001. Median length of stay was 6.1 $(3.5 - 11.1)$		
81	days during spring, 5.1 (2.7 – 10.1) days during summer, 5.0 ($3.0 - 10.1$) days during fall, and		
82	6.3 (3.8 – 12.0) days during winter, p<0.001.		
83			
84	Bed Saturation and Mortality		
85	We defined bed saturation the percentage of bed occupancy calculated from the ratio between the		
86	number of admitted patients over the nominal bed capacity of our institution (1,491).		
87	In the multivariable competing risk proportional hazard model of the entire cohort, percent of		
88	bed occupancy was associated with increased 30-day in-hospital mortality (HR 1.007, CI: 1.001,		
89	1.013, p=0.004); i.e mortality increase by 0.7 % for each 1% increase of bed occupancy.		
90	Consistent results were observed per level increase in bed occupancy quartile, (HR 1.086 [1.026		
91	-1.148], P-value for linear trend = 0.004). Results of the competing risk regression analysis are		
92	presented in the Table 2.		
93			
94	Spring vs Winter Mortality Comparison and Propensity Matched Analysis		
95	In the multivariable competing risk proportional hazard model comparing spring and winter		
96	season, 30-day in-hospital mortality was lower in winter (HR 0.520, CI 0.448-0.604, p<0.001)		

Page 11 of 43

1

BMJ Open

2	
3	197
4 5	177
6 7	198
7 8 9	199
10 11	200
12 13	201
14 15	202
16 17	203
18 19 20	204
20 21 22	205
23 24	206
25 26	207
27 28	208
29 30	200
31 32	209
33 34	210
35 36	211
37 38	212
39 40	213
41 42	214
43 44	211
45 46	215
47 48	216
49 50	217
51 52	218
53 54	219
55 56	
57	
58 59	

197 when compared to spring. After PS caliper matching, there were 1,722 matched pairs. Spring and 198 winter patients had similar distribution of PS (Supplemental Figure 1) and standardized average 199 difference among covariates was greatly reduced. PS analysis showed a significant reduction of 200 in-hospital mortality during winter (HR 0.580 CI: 0.507-0.663, p<0.001) confirming what we 201 observed in the multivariable adjusted analysis (Figure 4B).

203 DISCUSSION

204 We examined inpatient mortality from COVID-19 over the course of a one-year pandemic at our 205 hospital system in New York City. Our principal findings are as follows: First, we observed a 206 substantial reduction of in-hospital mortality coinciding with multiple pandemic related public 207 health measures focusing on hospital resources on COVID-19 – and preceding comprehensive 208 changes in pharmacotherapy - towards the end of the first surge. Second, we describe - for the 209 first time - hospital bed occupancy as an independent risk factor for inpatient mortality from 210 COVID-19.

- 211

60

212 **Public Health Measures in Response to COVID-19**

After declaring a state of disaster emergency (March 7, 2020), New York State introduced 213 214 different measures to limit the spread of the disease, including public schools closure (March 16, 215 2020), limitation of indoor dining (March 17, 2020), stay-home order for non-essential workers 216 (March 22, 2020), mandatory face coverings in public (April 15, 2020), and night subway 217 closure (April 30, 2020)²⁴. Despite these measures to limit the diffusion of the disease and a 218 generalized reduction of movements around New York City (as evidenced by a more than 90%) reduction of subway ridership compared to 2019)²⁵, more than 30% of Bronx residents were 219

~	
3 4	
5 6	4
7 8	,
9 10	,
11 12 12	,
13 14 15	,
15 16 17	
17 18 19	-
20 21	
22 23	-
24 25	
26 27	
28 29	-
30 31	,
32 33	,
34 35	,
36 37	,
30 39 40	-
40 41 42	4
43 44	
45 46	
47 48	
49 50	
51 52	,
53 54	,
55 56	
57 58	
59 60	

1 2

> 220 found to have positive antibodies (and thus possibly temporary immunity) against SARS-CoV-2 221 in August 2020.²⁶

222 Specifically relevant to hospital operations, executive order no. 202.5 (March 16, 2020)²⁷ 223 allowed healthcare providers not licensed or registered in New York State to temporarily work in 224 the State, and executive order no. 202.10 (March 22, 2020)²⁷ suspended elective operations. 225 These executive orders were associated with a dramatic drop in non-COVID-19 admissions at 226 our institution beginning March 16, 2020. (Figure 1). On March 26, 2020 New York State 227 Governor Cuomo additionally mandated all hospitals to increase their bed capacity by 50% to accommodate the surge of COVID-19 patients.²⁷ Despite this order, the actual bed occupancy at 228 229 our institution (while accommodating all COVID-19 patients presenting to our hospitals) 230 remained below the usual operating capacity until December 2020. 231 Notably, COVID-19 mortality remained stable throughout the summer and fall 2020 with low 232 case counts and increased utilization of steroids, anticoagulation, and remdesivir. Although 233 randomized controlled trials have shown morbidity benefits with the use of remdesevir⁷ and 234 mortality reduction with steroids⁸, the magnitude of these effects cannot explain the more than 235 50% reduction in mortality we observed. Furthermore, pharmacotherapy, with the exception of hydroxychloroquine elimination, did not materially change within the spring season, by the end 236 237 of which mortality was already decreased. Steroid, remdesivir, and therapeutic anticoagulation were used in 10-20% of patients by May 2020, but they reached 30-70% only in the winter 238 239 season. Despite that, unadjusted mortality began to increase again in December 2020 during the 240 second wave. Of note, bed occupancy also increased at that time and proved to be an

- 241 independent risk factor for COVID-19 mortality in our cohort of nearly 8,000 patients.
- 242

Page 13 of 43

BMJ Open

1
2
3
4
5
6
7
0
0
9
10
11
12
13
14
15
16
17
18
10
20
∠∪ ⊃1
21
22
23
24
25
26
27
28
29
30
21
21
32
33
34
35
36
37
38
39
40
/1
 ∕10
-ד∠ גע
45
44
45
46
47
48
49
50
51
52
53
55
54 57
55
56
57
58
59

261

60

243 Change in Therapeutic Approach

244 The initial widespread ($\geq 2/3$ of first spring patients) use of hydroxychloroquine, an agent eventually proven to be ineffective²⁸ to treat COVID-19, probably represents the most obvious 245 246 pandemic-associated deviation from the usual multiphase clinical trial standards of therapeutic 247 paradigm development. Only 8 of 2,254 patients received hydroxychloroquine during the winter 248 wave. Similarly, we observed a reduction in the use of azithromycin and other antibiotics, the 249 latter possibly reflecting a more careful assessment of the need to treat superimposed bacterial 250 infections during the second wave. Steroid therapy^{8 29} and therapeutic anticoagulation⁹ were 251 implemented in the majority of patients during the winter after the knowledge on the likely 252 disease modulating inflammatory proprieties and pro-thrombotic effect of COVID-19 had been 253 recognized³⁰ and, in the case of steroids, a therapeutic effect had been proven⁸. Remdesivir, an 254 inhibitor of the viral RNA-dependent RNA polymerase that showed shortening of recovery time 255 in hospitalized patients with COVID-19⁷, received emergency FDA approval on October 256 22nd,2020³¹ and was administered to almost half of the admitted patients during the winter. If 257 initial concerns of possible interactions between ACE-I or ARBs and SARS-CoV-2 32 led to a 258 possible underutilization or discontinuation of these drugs during the spring, we observed a 259 significant increase in their use during the following months, after no increased risks were 260 reported. 33 34

6 262 statins^{35 36}, their utilization markedly increased during the winter.

Lastly, after the spring wave provided anecdotal evidence for early proning in COVID-19
 pneumonia, an approach strongly favoring noninvasive ventilation and avoiding intubation was
 developed to address respiratory distress in COVID-19; more data about such an approach has

Similarly, after several reports showed a possible protective effect associated with the use of

since accumulated. ^{10 37} The cumulative effect of these therapeutic changes, in combination with a better preparedness to respond to a pandemic, can be estimate from the different mortality between the first surge (spring) and the second surge (winter). After matching the two groups for demographic and clinical variables, as well as for elements indicative of hospital distress (bed occupancy), a significant reduction of mortality was observed during the winter trimester.

272 Change in Hospital Stress Load

At the peak of the pandemic, the hospital saturation reached the 118% of the nominal bed capacity and COVID-19 patients accounted for 68.2% of all admitted patients. This increase in acutely ill patients created significant excess demand on the rest of the hospital infrastructure best characterized by the surge in the need for intensive care unit (ICU) beds and transformation of other hospital areas to ICUs.^{14 23} Despite increased patient load, the number of standard ICU beds, as well as laboratories, diagnostic equipment, and available personnel, remained the same as before the pandemic. This unmatched patient overload resulted in a 0.7 % mortality increase for each 1% increment in hospital bed saturation. In light of these results, strategies to minimize the bed occupancy for non-Covid-19 patients or non-life-saving admission should be adopted to diverge resources to improve the outcome of admitted Covid-19 patients.

284 Limitations

Our study has the shortcomings of a retrospective investigation, but there are some very specific aspects limiting the interpretation of our results. First, it is difficult to assess the true effects of pharmacotherapy given the dynamic changes in indications, doses, and usage that happened over the course of the year. Regardless, we believe the propensity-matched comparison between the Page 15 of 43

BMJ Open

spring and the winter waves provides compelling evidence for the validity of our principal observation of inpatient COVID-19 mortality reduction disproportionate to advances in pharmacotherapy. We chose total bed occupancy as a metric for hospital stress assuming that other resources per bed remained static. Notably, the ratio of COVID-19 to non-COVID-19 patients, ICU bed saturation, and staff shortages are unaccounted for in this model. Regrettably, an in-depth analysis of these metrics is beyond our ability in this retrospective pandemic analysis with disaster elements. Additionally, a significant number of patients received ICU-level-of-care interventions (mechanical ventilatory support, dialysis, vasopressors titration) on regular floors; therefore, the concept of ICU bed saturation might have been not truly representative of the burden. However, we feel our data is sufficiently strong to support the notion that bed capacity expansion alone is not the answer. Rather, a smaller number of beds with higher staffing accomplished by drastic reductions in all non-emergent procedures and activities is likely a better approach. Although offering fewer beds in pandemic situation appears initially quite counterintuitive, in practice we observed that mortality began to decrease once beds and resources were allocated specifically to COVID-19 patients by executive orders 202.5 and 202.10; and most importantly that bed occupancy never exceeded 100% once hospital operations focused on the COVID-19 pandemic only. It is conceivable that an uptrend in mortality observed late in the pandemic with established treatment paradigms could be due to new viral strains or a sicker patient population. Although we are unable to provide detailed strain analysis for our study population, a meaningful numbers of new (and possibly more virulent) strains were not yet observed in in the Bronx, where our study was conducted.³⁸ The small sample size of patients in summer and fall does not allow meaningful propensity matched comparisons, and when comparing summer, fall, and

winter populations, there do not appear to be clinically meaningful differences. Lastly, singlepatient data on vaccination status were not available. At the conclusion of the study, only 13.8% of the population of New York State received at least one dose and 7.4% received two doses³⁹. Given the heterogeneous distribution of vaccination within the state (and the city of New York), it is impossible to meaningfully account for these parameters. CONCLUSIONS Inpatient mortality from COVID-19 decreased to a degree disproportionate to advances in disease specific therapeutics and was associated with bed occupancy. Early reduction in epicenter hospital bed occupancy to accommodate acutely ill and resource-intensive patients should be a critical component in the strategic planning for future pandemics.

2 3 4	
5 6 7	
8 9 10	
11 12	3
13 14 15	3
16 17 18 19	
20 21	3
22 23 24 25	3
26 27	2
28 29 30	
31 32 33	
34 35 36	
37 38	3
39 40 41	2
42 43	2
44 45	3
46 47 49	3
40 49 50	3
51 52	3
53 54 55	3
56 57	
58 59	

60

325 **DECLARATIONS**

- 326 Ethics approval and consent to participate
- 327 The Office of Human Research Affairs at Albert Einstein College of Medicine approved this
- 328 study (# 2020-11308). Patient consent and HIPAA forms were waived by our IRB due to the
- 329 retrospective nature of our research.
- 330 **Consent for publication**
- 331 Non applicable.
- 332 Availability of data and materials
- 333 The datasets used and/or analyzed during the current study are available from the corresponding

er.

author on reasonable request.

2 335 Competing interests

336 No conflicts of interest exist.

337 Funding/Support

- 338 Francesco Castagna is supported by a grant from the National Institute for Health
- 339 (T32HL144456) and the National Center for Advancing Translational Science (NCATS) Clinical
- and Translational Science Award at Einstein-Montefiore (UL1TR001073). Omar Saeed is
 - 341 supported by grants from the National Institute for Health/National Heart, Lung and Blood
 - 342 Institute (K23HL145140) and the National Center for Advancing Translational Science
 - 343 (NCATS) Clinical and Translational Science Award at Einstein-Montefiore (UL1TR001073).
 - 344 Ulrich Jorde is supported by the McAdam Family Foundation (award number not applicable).

3 ⊿	345	Author's Contributions
5	346	Design of the project: FC, XX, and UPJ.
7	347	Underlying data verified by FC, XX, and UPJ.
8 9 10 11	348 349	Acquisition, analysis, and interpretation of data: FC, XX, OM, RK, YAP, SRP, MJC, ADR, DS, and UPJ.
12 13	350	Statistical analysis: FC and XX.
14	351	Obtained funding: UPJ
15 16	352	Manuscript writing: FC, XX, and UPJ.
17 18 19	353 354	Critical revision of the manuscript for important intellectual content: FC, XX, OM, RK, YAP, SRP, MJC, ADR, DS, and UPJ.
20	355	Supervision: UPJ
22 23	356	All the Authors reviewed the work and approved the final version.
24 25 26 27	357 358	FC and UPJ had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.
28	359	
29 30	360	Acknowledgements
31 32	361	Not applicable
33 34	362	
35 36	363	
37 38	364	
39 40	365	
41 42		
43 44		
45 46		
47		
40 49		
50 51		
52 53		
54		
55 56		
57 58		17
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2		
3 4	366	References
5	367	1. World Health Organization. WHO Director-General's opening remarks at the media briefing
6 7	368	on COVID-19-11 March 2020: Geneva, Switzerland, 2020.
/ 8	369	2. Bhatraju PK, Ghassemieh BJ, Nichols M, et al. Covid-19 in Critically Ill Patients in the Seattle
9	370	Region — Case Series. New England Journal of Medicine 2020;382(21):2012-22. doi:
10	371	10.1056/NEJMoa2004500
11	372	3. John Hopkins University. COVID-19 Dashboard by the Center for Systems Science and
12	373	Engineering (CSSE) at Johns Hopkins University (JHU): JHU; 2020 [Available from:
13	374	https://coronavirus.jhu.edu/map.html accessed 1/20/2021.
14	375	4. Lozano R, Naghavi M, Foreman K, et al. Global and regional mortality from 235 causes of
16	376	death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of
17	377	Disease Study 2010. Lancet 2012;380(9859):2095-128. doi: 10.1016/S0140-
18	378	6736(12)61728-0 [published Online First: 2012/12/19]
19	379	5. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients
20	380	with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet
21	381	2020;395(10229):1054-62. doi: 10.1016/S0140-6736(20)30566-3
22	382	6. Wu Z, McGoogan JM. Characteristics of and Important Lessons From the Coronavirus
24	383	Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases
25	384	From the Chinese Center for Disease Control and Prevention. Jama 2020;323(13):1239-
26	385	42. doi: 10.1001/jama.2020.2648 [published Online First: 2020/02/25]
27	386	7. Beigel JH, Tomashek KM, Dodd LE, et al. Remdesivir for the Treatment of Covid-19 — Final
28	387	Report. New England Journal of Medicine 2020;383(19):1813-26. doi:
29	388	10.1056/NEJMoa2007764
30 31	389	8. Group RC, Horby P, Lim WS, et al. Dexamethasone in Hospitalized Patients with Covid-19 -
32	390	Preliminary Report. The New England journal of medicine 2020 doi:
33	391	10.1056/NEJMoa2021436 [published Online First: 2020/07/18]
34	392	9. Thachil J, Tang N, Gando S, et al. ISTH interim guidance on recognition and management of
35	393	coagulopathy in COVID-19. Journal of Thrombosis and Haemostasis 2020;18(5):1023-
36	394	26. doi: <u>https://doi.org/10.1111/jth.14810</u>
38	395	10. Shelhamer MC, Wesson PD, Solari IL, et al. Prone Positioning in Moderate to Severe Acute
39	396	Respiratory Distress Syndrome Due to COVID-19: A Cohort Study and Analysis of
40	397	Physiology. <i>Journal of intensive care medicine</i> 2021;36(2):241-52. doi:
41	398	10.1177/0885066620980399 [published Online First: 2021/01/01]
42	399	11. Rosenberg ES, Tesoriero JM, Rosenthal EM, et al. Cumulative incidence and diagnosis of
43	400	SARS-CoV-2 infection in New York. Annals of epidemiology 2020;48:23-29.e4. doi:
44 45	401	10.1016/j.annepidem.2020.06.004 [published Online First: 2020/07/11]
46	402	12. Sekine T, Perez-Potti A, Rivera-Ballesteros O, et al. Robust T Cell Immunity in
47	403	Convalescent Individuals with Asymptomatic or Mild COVID-19. Cell 2020;183(1):158-
48	404	68.e14. doi: <u>https://doi.org/10.1016/j.cell.2020.08.017</u>
49	405	13. Fill Malfertheiner S, Brandstetter S, Roth S, et al. Immune response to SARS-CoV-2 in
50	406	health care workers following a COVID-19 outbreak: A prospective longitudinal study. J
51	407	<i>Clin Virol</i> 2020;130:104575. doi: 10.1016/j.jcv.2020.104575 [published Online First:
5∠ 53	408	2020/08/18]
54	409	14. Alvarez Villela M, Boucher T, Terre J, et al. Surge-in-Place: Conversion of a Cardiac
55	410	Catheterization Laboratory Into a COVID-19 Intensive Care Unit and Back Again. The
56	411	Journal of invasive cardiology 2020 [published Online First: 2020/12/22]
57		
58 50		18
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3	412	15. Putter H, Fiocco M, Geskus RB. Tutorial in biostatistics: competing risks and multi-state
4	413	models. Stat Med 2007;26(11):2389-430. doi: 10.1002/sim.2712 [published Online First:
5	414	2006/10/13]
7	415	16. Grav RJ. A class of K-sample tests for comparing the cumulative incidence of a competing
, 8	416	risk. The Annals of statistics 1988:1141-54.
9	417	17 Fine JP Grav RJ A Proportional Hazards Model for the Subdistribution of a Competing
10	418	Risk Journal of the American Statistical Association 1999.94(446).496-509 doi:
11	419	10 1080/01621459 1999 10474144
12	420	18 Williamson EI Walker AI Bhaskaran K et al Factors associated with COVID-19-related
13	421	death using OpenSAFFLY Nature 2020:584(7821):430-36 doi: 10.1038/s41586-020-
14	422	2521_4 [nublished Online First: 2020/07/09]
15	422 123	10 Tartof SV Oian I Hong V et al Obesity and Mortality Among Patients Diagnosed With
17	423 121	COVID-10: Results From an Integrated Health Care Organization Annals of internal
18	424	medicine 2020:173(10):773 81 doi: 10.7326/m20.3742 [published Online First:
19	425	2020/08/141
20	420	2020/06/14]
21	427	20. Schoemen D. Farnar residuals for the proportional hazards regression model. <i>Biometrika</i>
22	420	1962,09(1).259-41.
23	429	Mod 2010;29(5):751, 77, doi: 10.1002/sim 2002 [mublished Online First: 2012/10/22]
24 25	430	Med 2019, 58(5). / 51- / /. doi: 10.1002/sini.8008 [published Online First. 2018/10/25]
26	431	22. Zhou B, Lalouche A, Rocha V, et al. Competing fisks regression for stratified data.
27	432	Biometrics $2011;6/(2):661-70.$ doi: $10.1111/3.1541-0420.2010.01493.x$ [published
28	433	$\begin{array}{c} \text{Online First: } 2010/12/16 \end{bmatrix}$
29	434	23. Philips K, Uong A, Buckenmyer I, et al. Rapid Implementation of an Adult Coronavirus
30	435	Disease 2019 Unit in a Children's Hospital. The Journal of pediatrics 2020;222:22-27.
31	436	doi: 10.1016/j.jpeds.2020.04.060 [published Online First: 2020/05/08]
32	437	24. New York City Office of the Mayor. News: New York City Office of the Mayor; [Available
33 24	438	from: https://www1.nyc.gov/office-of-the-mayor/news.page accessed 1/17/2021.
35	439	25. Metropolitan Transportation Authority. Fare Data: Metropolitan Transportation Authority;
36	440	[Available from: http://web.mta.info/developers/fare.html accessed 1/17/2021.
37	441	26. New York City Department of Health and Mental Hygiene. COVID-19: Data: New York
38	442	City Department of Health and Mental Hygiene; 2021 [New York City Department of
39	443	Health and Mental Hygiene: [Available from: <u>https://www1.nyc.gov/site/doh/covid/covid-</u>
40	444	<u>19-data.page</u> accessed 1/17/2021.
41	445	27. State of New York. Executive Orders: State of New York; [Available from:
4Z //3	446	https://www.governor.ny.gov/keywords/executive-order accessed 1/17/2021.
44	447	28. Cavalcanti AB, Zampieri FG, Rosa RG, et al. Hydroxychloroquine with or without
45	448	Azithromycin in Mild-to-Moderate Covid-19. The New England journal of medicine
46	449	2020;383(21):2041-52. doi: 10.1056/NEJMoa2019014 [published Online First:
47	450	2020/07/25]
48	451	29. Sterne JAC, Murthy S, Diaz JV, et al. Association Between Administration of Systemic
49	452	Corticosteroids and Mortality Among Critically Ill Patients With COVID-19: A Meta-
50 51	453	analysis. Jama 2020;324(13):1330-41. doi: 10.1001/jama.2020.17023 [published Online
51 52	454	First: 2020/09/03]
53	455	30. Carsana L, Sonzogni A, Nasr A, et al. Pulmonary post-mortem findings in a series of
54	456	COVID-19 cases from northern Italy: a two-centre descriptive study. The Lancet
55	457	infectious diseases 2020;20(10):1135-40.
56		
57		
58		19
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2		
3	458	31. United States Federal Drug Administration. FDA's approval of Veklury (remdesivir) for the
4	459	treatment of COVID-19-The Science of Safety and Effectiveness: United States Federal
5	460	Drug Administration; [Available from: https://www.fda.gov/drugs/drug-safety-and-
7	461	availability/fdas-approval-veklury-remdesivir-treatment-covid-19-science-safety-and-
8	462	effectiveness accessed 1/17/2021
9	463	32 Fsler M Fsler D Can angiotensin recentor-blocking drugs perhaps be harmful in the
10	467	52. Ester W, Ester D. Can anglotensin receptor-blocking drugs perhaps be narman in the
11	404	10 1007/bib 00000000002450 [published Online First: 2020/02/21]
12	405	10.1097/IIJI.00000000002450 [published Olline First. 2020/05/21]
13	400	55. Mancia G, Rea F, Ludergnani M, et al. Renin–Angiotensin–Aldosterone System Blockers
14	46/	and the Risk of Covid-19. New England Journal of Medicine 2020;382(25):2431-40. doi:
15	468	10.1056/NEJMoa2006923
16	469	34. Zhang P, Zhu L, Cai J, et al. Association of Inpatient Use of Angiotensin-Converting
17	470	Enzyme Inhibitors and Angiotensin II Receptor Blockers With Mortality Among Patients
18	471	With Hypertension Hospitalized With COVID-19. Circulation research
19	472	2020;126(12):1671-81. doi: doi:10.1161/CIRCRESAHA.120.317134
20	473	35. Tan WYT, Young BE, Lye DC, et al. Statin use is associated with lower disease severity in
21	474	COVID-19 infection. Scientific Reports 2020:10(1):17458. doi: 10.1038/s41598-020-
22	475	74492-0
23	476	36 Saeed O Castagna F Agallin I et al Statin Use and In-Hospital Mortality in Patients With
25	477	Diabetes Mellitus and COVID-19 Journal of the American Heart Association
26	479 179	$2020.0(24) \cdot 2018475$ doi: 10.1161/LAHA 120.018475
27	470	2020,9(24).00104/3. doi: doi:10.1101/JAHA.120.0104/3 27 Dayl V. Datal S. Davas M. at al. Draming in Non Intubated (DINI) in Times of COVID 10:
28	4/9	57. Paul V, Patel S, Koyse M, et al. Proning in Non-Intubated (PINI) in Times of COVID-19.
29	480	Case Series and a Review. Journal of intensive care medicine 2020;35(8):818-24. doi:
30	481	10.117//0885066620934801 [published Online First: 2020/07/08]
31	482	38. New York City Department of Health and Mental Hygiene. Health Department Releases
32	483	Detailed Report on COVID-19 Variants: New York City Department of Health and
33	484	Mental Hygiene; 2021 [Available from:
34 25	485	https://www1.nyc.gov/site/doh/about/press/pr2021/health-department-releases-detailed-
35 26	486	report-on-covid-19-variants.page accessed 4/21/2021.
30	487	39. New York City Department of Health and Mental Hygiene. COVID-19: Data - Vaccines:
38	488	New York City Department of Health and Mental Hygiene: 2021 [Available from:
39	489	https://www1 nvc gov/site/doh/covid/covid-19-data-vaccines page#dosestrend accessed
40	490	12/10/2021
41	491	
42	171	
43		
44		
45		
46		
4/		
40 70		
49 50		
51		
52		
53		
54		
55		
56		
57		
58		20
59		For peer review only - http://bmionon.hmi.com/site/about/quidelines.yhtml
60		r or peer review only - http://binjopen.binj.com/site/about/guidelines.xhtml

	Spr	Spring (n=4495)		Summer (n=264)		Fall (n=377)		nter (n=2254)
	Sample	Value	Sample	Value	Sample	Value	Sample	Value
30-Day hospital out	tcome	·		<u>.</u>		·		
Still admitted - no (%)	4495	194 (4.3)	264	6 (2.3)	377	15 (4.0)	2254	103 (4.6)
Discharged alive - no (%)	4495	3177 (70.7)	264	229 (86.7)	377	336 (89.1)	2254	1893 (84.0)
Dead in the hospital - no (%)	4495	1124 (25.0)	264	29 (11.0)	377	26 (6.9)	2254	258 (11.4)
Demographics		6	0.					
Age (IQR) - yr	4495	66 (55 - 77)	264	66 (50 - 76)	377	63 (50 - 73)	2254	67 (56 - 77)
Male sex - no (%)	4495	2377 (52.9)	264	138 (52.3)	377	198 (52.5)	2254	1122 (49.8)
Black race and / or Hispanic ethnicity – no (%)	4495	3345 (74.4)	264	219 (83.0)	377	286 (75.9)	2254	1635 (74.2)
Body Mass Index (IQR) - kg/m ²	4229	28.4 (24.6 - 33)	250	27.6 (22.5 - 32.7)	358	28.6 (25 - 34.1)	2194	28.2 (24.4 - 33.1)
Hospital bed saturation (IQR) - %	4495	97.4 (86.5 – 107.6)	264	81.7 (76.3 - 85.8)	377	87.6 (83.2 - 90.2)	2254	95.3 (91.9 - 101.8)
Past Medical History	7							
Hypertension - no (%)	4495	3370 (75)	264	197 (74.6)	377	254 (67.4)	2254	1713 (76)
Sleep apnea - no (%)	4495	521 (11.6)	264	28 (10.6)	377	47 (12.5)	2254	270 (12)
Hyperlipidemia - no (%)	4495	2609 (58)	264	153 (58)	377	199 (52.8)	2254	1380 (61.2)
Atrial fibrillation - no (%)	4495	449 (10)	264	30 (11.4)	377	35 (9.3)	2254	267 (11.8)

Table 1. Demographics, Past Medical History, and Clinical Characteristics of Admitted Patients

 BMJ Open

disease - no (%)	4495	1406 (31.3)	264	70 (26.5)	377	85 (22.5)	2254	620 (27.5
Heart failure - no (%)	4495	980 (21.8)	264	72 (27.3)	377	66 (17.5)	2254	519 (23)
Coronary artery disease - no (%)	4495	1316 (29.3)	264	95 (36)	377	108 (28.6)	2254	721 (32)
Asthma/COPD - no (%)	4495	1371 (30.5)	264	84 (31.8)	377	98 (26)	2254	753 (33.4
Diabetes mellitus - no (%)	4495	2522 (56.1)	264	148 (56.1)	377	187 (49.6)	2254	1244 (55.2
Vitals at Presentation	1	-		· · ·				·
Temperature (IQR) - F	4463	98.9 (98.2 - 100)	264	98.4 (97.8 - 98.9)	372	98.8 (98.1 - 99.9)	2254	98.7 (98.1 - 9
SBP (IQR) - mmHg	4469	131 (114 - 148)	264	132 (117 - 149)	375	131 (117 - 147)	2254	132 (117 - 1
DBP (IQR) - mmHg	4465	75 (65 - 84)	263	77 (67 - 87)	374	74 (68 - 84)	2252	75 (67 - 84
HR (IQR) – bpm	4467	98 (85 - 112)	264	92.5 (76.3 - 105)	372	94 (80 - 107)	2253	95 (82 - 10
Oxygen saturation (IQR) - %	4463	95 (91 - 98)	264	98 (96 - 99)	372	96 (94 - 98)	2253	96 (92 - 98
Respiratory Rate (IQR) - bpm	4466	20 (18 - 22)	264	18 (17 - 20)	372	18 (18 - 20)	2254	19 (18 - 22
Laboratory Markers					0.			
Hemoglobin (IQR) - g/dL	4372	12.8 (11.2 - 14.1)	261	12.4 (10.7 - 13.9)	370	13 (11.6 - 14.3)	2228	12.9 (11.5 - 1
Platelet count (IQR)	4372	188 (116 - 260)	261	228 (169 - 300)	372	200 (144 - 257)	2228	196 (143 - 2:
-k/μL								
-k/μL White blood cell count (IQR) - k/μL	4372	7.5 (5.6 - 10.6)	261	8 (5.8 - 11)	370	6.6 (5.1 - 8.9)	2228	6.4 (4.7 - 8.
-k/μL White blood cell count (IQR) - k/μL Absolute lymphocyte count (IQR) - k/μL	4372 4420	7.5 (5.6 - 10.6) 1 (0.7 - 1.4)	261 263	8 (5.8 - 11) 1.2 (0.9 - 1.8)	370 374	6.6 (5.1 - 8.9) 1.1 (0.8 - 1.5)	2228 2246	6.4 (4.7 - 8.

Potassium (IQR) – mEq/L	4389	4.3 (3.9 - 4.8)	262	4.2 (3.8 - 4.6)	377	4 (3.8 - 4.4)	2243	4.1 (3.8 - 4.5)
Chloride (IQR) – mEq/L	4394	98 (95 - 103)	263	103 (100 - 105)	377	101 (99 - 104)	2253	101 (98 - 104)
Bicarbonates (IQR) - mEq/L	4414	24 (20 - 26)	263	24 (21 - 27)	377	25 (22 - 27)	2253	24 (21 - 27)
Creatinine (IQR) - mg/dL	4410	1.1 (0.8 - 2)	263	1 (0.8 - 1.5)	377	1 (0.8 - 1.3)	2253	1.1 (0.8 - 1.5)
Glucose (IQR) - mg/dL	4414	134 (108 - 197)	263	121 (100 - 171)	377	122 (102 - 173)	2253	126 (104 - 184)
Aspartate aminotransferase (IQR) - U/L	4045	40 (27 - 65)	245	26 (20 - 38)	354	31 (21 - 47)	2084	35 (24 - 55)
Alanine aminotransferase (IQR) - U/L	4206	27 (17 - 44)	252	21 (14 - 32)	361	25 (16 - 41)	2171	26 (17 - 44)
Lactic acid (IQR) – mmol/L	3981	2.1 (1.6 - 3)	220	1.9 (1.4 - 2.7)	330	1.8 (1.3 - 2.5)	1913	1.9 (1.4 - 2.5)
Lactate dehydrogenase (IQR) - mmol/L	2935	384 (285 - 535)	160	254.5 (196 - 340)	285	300 (225 - 383)	1563	341 (254 - 468)
Creatine Kinase (IQR) – U/L	3453	168 (83 - 401)	209	97 (57 - 176)	313	116 (60 - 213)	1957	126 (67 - 282)
D-dimer (IQR) - μg/mL	2204	1.8 (0.9 - 3.9)	185	1.1 (0.5 - 2.2)	317	0.8 (0.5 - 1.6)	1907	1.2 (0.7 - 2.3)
Procalcitonin (IQR) - ng/mL	1789	0.2 (0.1 - 0.9)	120	0.1 (0.1 - 0.4)	254	0.1 (0.1 - 0.2)	1252	0.1 (0.1 - 0.3)
Troponin T* (IQR) - ng/mL	0	NA	219	0.01 (0.01 - 0.03)	342	0.01 (0.01 - 0.02)	2106	0.01 (0.01 - 0.03)
Troponin I* (IQR) – ng/mL	3662	0.01 (0.01 - 0.03)	3	0.01 (0.01 - 0.01)	0	NA	0	NA
Interleukin-6 (IQR) – pg/mL	1056	33.6 (13.8 - 75.2)	87	11.7 (3 - 43.1)	186	11 (4.7 - 22.2)	710	10.8 (4.3 - 25.6)
Fibrinogen (IQR) – mg/dL	1552	624 (491 - 750)	122	448 (370- 583)	224	540 (436 - 663)	1040	535.5 (434 - 652)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

COPD = Chronic obs	structive pu	Imonary disease; DBI	P = Diastoli	ic blood pressure; H	R = Heart 1	rate; IQR = Interqua	rtile range;	SBP =
Systolic blood pressu	re. * Tropo	onin T was available o	nly until Ju	ine 2020, Troponin I	was availa	able only after June	2020.	
2								
--------	----------							
2								
5								
4								
5								
6								
-								
/								
8								
9								
1	Λ							
1	0							
1	1							
1	2							
1	3							
1	л Л							
1	4							
1	5							
1	6							
1	7							
1	, 0							
I	Ø							
1	9							
2	0							
2	1							
2	' -							
2	Z							
2	3							
2	4							
2	5							
2	2							
2	6							
2	7							
2	8							
2	a							
2	~							
3	0							
3	1							
3	2							
2	2							
2	ر ۸							
3	4							
3	5							
3	6							
2	7							
2	<i>'</i>							
3	8							
3	9							
4	0							
Λ	1							
+	2							
4	2							
4	3							
4	4							
Δ	5							
+	2							
4	6							
4	7							
4	8							
Δ	g							
-	~							
5	U							
5	1							
5	2							
5	R							
ר -	ر ۸							
5	4							
5	5							
5	6							
5	7							
ر	1							

60

1

	Multivariable	<u>)</u>
Variable	HR (95% CI)	P-value
Age - yr	1.046 (1.04 - 1.051)	< 0.001
Male sex - yes/no	1.352 (1.187 - 1.54)	< 0.001
Body mass index - kg/m2	1.022 (1.012 - 1.032)	< 0.001
Temperature - F	1.071 (1.036 - 1.108)	< 0.001
SBP - mmHg	0.994 (0.991 - 0.997)	< 0.001
DBP - mmHg	0.996 (0.991 - 1.001)	0.14
HR - bpm	1.003 (0.999 - 1.006)	0.11
Oxygen saturation - %	0.967 (0.961 - 0.972)	< 0.001
Respiratory rate - bpm	1.027 (1.019 - 1.035)	< 0.001
White blood cell count - k/µL 🦯	1.008 (1.001 - 1.016)	0.02
Glucose - mg/dL	1.001 (1 - 1.001)	0.001
Aspartate aminotransferase - U/L	1 (1 - 1.001)	0.21
Alanine aminotransferase - U/L	1 (0.999 - 1)	0.25
Lactic acid – mmol/L	1.071 (1.036 - 1.107)	< 0.001
Platelet count -k/µL	0.999 (0.998 - 0.999)	< 0.001
Potassium – mEq/L	1.096 (1.028 - 1.168)	0.0052
Bicarbonates – mEq/L	0.957 (0.944 - 0.971)	< 0.001
Creatinine - mg/dL	1.023 (0.998 - 1.049)	0.069
HTN - yes/no	1.008 (0.851 - 1.194)	0.93
HLD - yes/no	1.196 (1.02 - 1.401)	0.027
CKD - yes/no	1.263 (1.09 - 1.462)	0.002
HF - yes/no	1.33 (1.146 - 1.543)	< 0.001
COPD/Asthma - yes/no	0.948 (0.827 - 1.088)	0.45
DM - yes/no	0.946 (0.819 - 1.093)	0.45
CAD - yes/no	1.101 (0.955 - 1.271)	0.19
Statin use - %	0.577 (0.501 - 0.664)	< 0.001

Table 2. Association with In-Hospital Mortality (Regression models with competing risks)

Bed occupancy - %1.007 (1.002 - 1.013)0.004CAD = Coronary artery disease; CKD = Chronic kidney disease; COPD = Chronic obstructivepulmonary disease; DBP = Diastolic blood pressure; DM= Diabetes mellitus; HLD =hyperlipidemia; HF = Heart failure; HR = Heart rate; HTN = Hypertension; SBP = Systolicblood pressure

Figure Legends

Figure 1. Simultaneously Admitted Patients

This graph includes the hospitalized patients and the admitted patients in the emergency

department waiting for a bed. A precipitous decline of non-COVID-19 admissions begins on

March 16, 2020 (vertical gray line) coinciding with gubernatorial health care associated

directives in the State of New York. The dotted red line indicates the nominal bed capacity of our

institution (1,491 beds).

Figure 2. Cumulative Monthly Admission and Mortality

Cumulative monthly admissions (blue line, left axis) and mortality (orange line, right axis) over the year.

Figure 3. Change in Therapies

Percent of patients receiving specific therapies over the year. Lezoni

Figure 4. Cumulative Incidences

30-day in-hospital mortality by seasons.

Figure 1

85x62mm (300 x 300 DPI)

Figure 2 90x74mm (300 x 300 DPI)

Figure 3

89x79mm (300 x 300 DPI)

60

Spring

Winter

15 20 25 30

days in hospital

Supplemental Appendix

Table of contents

Supplemental Table 1	- Comparison Survivors versus Non-survivors	
Supplemental Method	s	
Supplemental Table 2	- Comparison Spring Vs Winter	7
Supplemental Table 3	- Therapies Administered during the Admission	
Supplemental Figure	- Distribution of Propensity Score	

BMJ Open

59

60

Francesco Castagna MD¹, Xiaonan Xue PhD², Omar Saeed MD¹, Rachna Kataria MD¹, Yoram A Puius MD PhD³, Snehal R Patel MD¹, Mario J Garcia MD¹, Andrew D Racine MD⁴, Daniel B Sims MD¹, Ulrich P Jorde MD¹

Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY Division of Infectious Diseases, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY Department of Pediatrics, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, New

Division of Cardiology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY

Supplemental Table 1 - Comparison Survivors versus Non-survivors

	Surv	vivors (n=5953)	Non-sur	vivors (n=1437)	p-value
	Sample	Value	Sample	Value	
Demographics					
Age (IQR) - yr	5953	64 (52 - 75)	1437	73 (65 - 82)	< 0.001
Male sex - no (%)	5953	2989 (50.2)	1437	846 (58.9)	< 0.001
Black race and / or Hispanic ethnicity – no (%)	5953	4472 (75.1)	1437	1013 (70.5)	< 0.001
Body Mass Index (IQR) - kg/m ²	5679	28.4 (24.6 - 33.2)	1352	27.9 (23.8 - 32.6)	< 0.001
Hospital bed saturation (IQR) -	5953	94.1 (86.5 - 104.8)	1437	99.3 (87.5 - 107.6)	< 0.001
Past Medical History	R				
Hypertension - no (%)	5953	4365 (73.3)	1437	1169 (81.4)	< 0.001
Sleep apnea - no (%)	5953	688 (11.6)	1437	178 (12.4)	0.38
Hyperlipidemia - no (%)	5953	3366 (56.5)	1437	975 (67.8)	< 0.001
Atrial fibrillation - no (%)	5953	557 (9.4)	1437	224 (15.6)	< 0.001
Chronic kidney disease - no (%)	5953	1559 (26.2)	1437	622 (43.3)	< 0.001
Heart failure - no (%)	5953	1181 (19.8)	1437	456 (31.7)	< 0.001
Coronary artery disease - no (%)	5953	1653 (27.8)	1437	587 (40.8)	< 0.001
Asthma/COPD - no (%)	5953	1842 (30.9)	1437	464 (32.3)	0.32
Diabetes mellitus - no (%)	5953	3168 (53.2)	1437	933 (64.9)	< 0.001
Vitals at Presentation					
Temperature (IQR) - F	5926	99 (98 - 100)	1427	99 (98 - 100)	0.35
SBP (IQR) - mmHg	5932	132 (117 - 148)	1430	127 (107 - 146)	< 0.001
DBP (IQR) - mmHg	5926	76 (67 - 85)	1428	71 (60 - 81)	< 0.001
HR (IQR) – bpm	5927	96 (83 - 110)	1429	100 (85 - 114)	< 0.001

Page 35 of 43

BMJ Open

Oxygen saturation (IQR) - %	5922	96 (93 - 98)	1430	92 (84 - 96)	< 0.001
Respiratory Rate (IQR) - bpm	5928	19 (18 - 21)	1428	22 (19 - 26)	<0.001
Laboratory Markers					
Hemoglobin (IQR) - g/dL	5823	12.9 (11.4 - 14.1)	1408	12.6 (10.9 - 14.2)	0.006
Platelet count (IQR) -k/µL	5825	198 (137 - 264)	1408	172 (88 - 246)	< 0.001
White blood cell count (IQR) - k/uL	5823	6.9 (5.1 - 9.5)	1408	8.3 (6.0 - 11.9)	< 0.001
Absolute lymphocyte count IQR) - k/μL	5880	1.1 (0.7 - 1.5)	1423	0.9 (0.6 - 1.2)	< 0.001
Sodium (IQR) – mEq/L	5879	137 (134 - 140)	1428	138 (134 - 143)	< 0.001
Potassium (IQR) – mEq/L	5845	4.2 (3.8 - 4.6)	1426	4.4 (4.0 - 5.0)	< 0.001
Chloride (IQR) – mEq/L	5864	100 (96 - 103)	1423	100 (95 - 104)	0.28
Bicarbonates (IQR) – mEq/L	5879	24 (21 - 27)	1428	22 (18 - 25)	< 0.001
Creatinine (IQR) - mg/dL	5876	1.0 (0.8 - 1.5)	1427	1.6 (1 - 2.9)	< 0.001
Glucose (IQR) - mg/dL	5879	126 (104 - 179)	1428	156 (121 - 236)	< 0.001
Aspartate aminotransferase (IOR) - U/L	5416	35 (24 - 55)	1312	52 (33 - 81)	< 0.001
Alanine aminotransferase (IQR) - U/L	5614	26 (16 - 42)	1376	28 (18 - 46)	< 0.001
Lactic acid (IQR) – mmol/L	5097	1.9 (1.4 - 2.6)	1347	2.6 (1.8 - 3.9)	< 0.001
Lactate dehydrogenase (IQR) - mmol/L	4017	384±219	926	518 (371 - 706)	< 0.001
Creatine Kinase (IQR) – U/L	4714	336 (253 - 454)	1218	777±2657	< 0.001
D-dimer (IQR) - μg/mL	3850	1.2 (0.7 - 2.5)	763	2.5 (1.3 - 6.9)	< 0.001
Procalcitonin (IQR) – ng/mL	2800	0.1 (0.1 - 0.3)	615	0.6 (0.2 - 2.4)	< 0.001
Troponin T* (IQR) - ng/mL	2365	0.01 (0.01 - 0.03)	302	0.03 (0.01 - 0.1)	< 0.001
Troponin I* (IQR) – ng/mL	2684	0.01 (0.01 - 0.02)	981	0.02 (0.01 - 0.08)	< 0.001
Interleukin-6 (IQR) – pg/mL	1752	17 (6 - 40)	287	68 (26- 154)	< 0.001
Fibrinogen (IQR) – mg/dL	2478	570 (448 - 690)	460	621 (506 - 761)	< 0.001

1	Ferritin (IQR) – ng/mL	3395	521 (224 - 1112)	659	1021 (514 - 2161)	< 0.001
2 3 4 5 6	COPD = Chronic obstructive pulmo Interquartile range; SBP = Systolic was available only after June 2020.	onary diseas blood press	e; DBP = Diastolic blo ure. * Troponin T was	ood pressure; H available only	HR = Heart rate; IQR until June 2020, Tro	= ponin I
7 8 9 10						
11 12 13 14 15						
16 17 18 19						
20 21 22 23 24						
25 26 27 28						
30 31 32 33						
34 35 36 37 38						
39 40 41 42						
43 44 45 46 47						
48 49 50 51 52						
53 54 55 56						
57 58 59 60	For peer review	w only - http:/	//bmjopen.bmj.com/site/a	bout/guidelines	.xhtml	5

BMJ Open

Supplemental Methods

Covariate Selection Method for Multivariable Competing Risk Proportional Hazard Models for in-hospital Death between Patients Spring and Winter Patients

The covariates in the multivariable analyses included factors present in > 90% of our dataset, are known to be associated with in-hospital COVID-19 mortality based on prior literature or with a univariate association between admission season (exposure) or in-hospital mortality (outcome) (p<0.05) and a clinical (relative difference >5%) difference between the spring and winter patients (Supplemental Table 2). These variables included: age, sex, BMI, vital signs at presentation, white cell count, creatinine, glucose, alanine transaminase, history of hypertension, dyslipidemia, chronic kidney disease (CKD), heart failure, coronary artery disease, asthma/chronic obstructive pulmonary disease, diabetes mellitus and statin use. Also in this model, lactic acid level and percent of hospital bed saturation were forced into the model as marker of illness severity and level of hospital stress, respectively.

Supplemental Table 2 - Comparison Spring Vs Winter

	Spi	ring (n=4495)	Wi	nter (n=2254)	p- value
	Sample	Value	Sample	Value	
Demographics					
Age (IQR) - yr	4495	66 (55 - 77)	2254	67 (56 - 77)	0.051
Male sex - no (%)	4495	2377 (52.9)	2254	1122 (49.8)	0.016
Black race and / or Hispanic ethnicity – no (%)	4495	3345 (74.4)	2254	1635 (72.5)	0.098
Body Mass Index (IQR) - kg/m ²	4229	28.4 (24.6 - 33)	2194	28.2 (24.4 - 33.1)	0.433
Hospital bed saturation (IQR) - %	4495	97.4 (86.5 – 107.6	2254	95.3 (91.9 - 101.8)	< 0.001
Past Medical History	0				
Hypertension - no (%)	4495	3370 (75)	2254	1713 (76)	0.357
Sleep apnea - no (%)	4495	521 (11.6)	2254	270 (12)	0.640
Hyperlipidemia - no (%)	4495	2609 (58)	2254	1380 (61.2)	0.012
Atrial fibrillation - no (%)	4495	449 (10)	2254	267 (11.8)	0.019
Chronic kidney disease - no (%)	4495	1406 (31.3)	2254	620 (27.5)	0.001
Heart failure - no (%)	4495	980 (21.8)	2254	519 (23)	0.254
Coronary artery disease - no (%)	4495	1316 (29.3)	2254	721 (32)	0.022
Asthma/COPD - no (%)	4495	1371 (30.5)	2254	753 (33.4)	0.015
Diabetes mellitus - no (%)	4495	2522 (56.1)	2254	1244 (55.2)	0.475
Vitals at Presentation					
Temperature (IQR) - F	4463	98.9 (98.2 - 100)	2254	98.7 (98.1 - 99.8)	< 0.001
SBP (IQR) - mmHg	4469	131 (114 - 148)	2254	132 (117 - 148)	0.002
DBP (IQR) - mmHg	4465	75 (65 - 84)	2252	75 (67 - 84)	0.117
HR (IQR) – bpm	4467	98 (85 - 112)	2253	95 (82 - 107)	< 0.001

Page 39 of 43

BMJ Open

Oxygen saturation (IQR) - %	4463	95 (91 - 98)	2253	96 (92 - 98)	< 0.001
Respiratory Rate (IQR) - bpm	4466	20 (18 - 22)	2254	19 (18 - 22)	< 0.001
Laboratory Markers					
Hemoglobin (IQR) - g/dL	4372	12.8 (11.2 - 14.1)	2228	12.9 (11.5 - 14.2)	0.030
Platelet count (IQR) -k/µL	4372	188 (116 - 260)	2228	196 (143 - 259)	< 0.001
White blood cell count (IQR) - k/µL	4372	7.5 (5.6 - 10.6)	2228	6.4 (4.7 - 8.8)	< 0.001
Absolute lymphocyte count (IQR) - k/μL	4420	1 (0.7 - 1.4)	2246	1 (0.7 - 1.4)	0.062
Sodium (IQR) – mEq/L	4414	137 (134 - 141)	2253	137 (134 - 140)	< 0.001
Potassium (IQR) – mEq/L	4389	4.3 (3.9 - 4.8)	2243	4.1 (3.8 - 4.5)	< 0.001
Chloride (IQR) – mEq/L	4394	98 (95 - 103)	2253	101 (98 - 104)	< 0.001
Bicarbonates (IQR) – mEq/L	4414	24 (20 - 26)	2253	24 (21 - 27)	< 0.001
Creatinine (IQR) - mg/dL	4410	1.1 (0.8 - 2)	2253	1.1 (0.8 - 1.5)	< 0.001
Glucose (IQR) - mg/dL	4414	134 (108 - 197)	2253	126 (104 - 184)	< 0.001
Aspartate aminotransferase (IQR) - U/L	4045	40 (27 - 65)	2084	35 (24 - 55)	< 0.001
Alanine aminotransferase (IQR) - U/L	4206	27 (17 - 44)	2171	26 (17 - 44)	0.292
Lactic acid (IQR) – mmol/L	3981	2.1 (1.6 - 3)	1913	1.9 (1.4 - 2.5)	< 0.001
Lactate dehydrogenase (IQR) - mmol/L	2935	384 (285 - 535)	1563	341 (254 - 468)	< 0.001
Creatine Kinase (IQR) – U/L	3453	168 (83 - 401)	1957	126 (67 - 282)	< 0.001
D-dimer (IQR) - µg/mL	2204	1.8 (0.9 - 3.9)	1907	1.2 (0.7 - 2.3)	< 0.001
Procalcitonin (IQR) – ng/mL	1789	0.2 (0.1 - 0.9)	1252	0.1 (0.1 - 0.3)	< 0.001
Гroponin T* (IQR) - ng/mL	0	NA	2106	0.01 (0.01 - 0.03)	NA
Froponin I* (IQR) – ng/mL	3662	0.01 (0.01 - 0.03)	0	NA	NA
Interleukin-6 (IQR) – pg/mL	1056	34 (14 - 75)	710	11 (4 - 26)	<0.001
Fibrinogen (IQR) – mg/dL	1552	624 (491 - 750)	1040	536 (434 - 652)	< 0.001

1	Ferritin (IQR) – ng/mL	1969	716 (335 - 1498)	1637	510 (230 - 1094)	< 0.001
2 3 4	COPD = Chronic obstructive pulmonar Interquartile range; SBP = Systolic bloc	y disease; D od pressure.	BP = Diastolic blood j * Troponin T was ava	pressure; H	R = Heart rate; IQR = until June 2020, Trope	onin I
5 6 7	was available only after June 2020.					
7 8 9						
10 11						
12 13						
14 15 16						
17 18						
19 20 21						
21 22 23						
24 25						
26 27 28						
29 30						
31 32						
33 34 35						
36 37						
38 39						
40 41 42						
43 44						
45 46 47						
48 49						
50 51						
52 53 54						
55 56						
57 58						9
59 60	For peer review or	nly - http://bmj	jopen.bmj.com/site/about	t/guidelines.x	html	

	Spring (n=4495)	Summer (n=264)	Fall (n=377)	Winter (n=2254)
Hydroxychloroquine - no (%)	3007 (66.9)	1 (0.4)	2 (0.5)	8 (0.4)
Azithromycin - no (%)	1322 (29.4)	51 (19.3)	118 (31.3)	374 (16.6)
Other antibiotics - no (%)	3382 (75.2)	160 (60.6)	214 (56.8)	1082 (48)
Steroids - no (%)	1485 (33)	71 (26.9)	195 (51.7)	1462 (64.9)
Angiotensin-converting- enzyme Inhibitors - no (%)	318 (7.1)	36 (13.6)	51 (13.5)	269 (11.9)
Angiotensin II receptor blockers - no (%)	264 (5.9)	23 (8.7)	32 (8.5)	212 (9.4)
Statin - no (%)	1478 (32.9)	109 (41.3)	129 (34.2)	1002 (44.5)
Therapeutic anticoagulation - no (%)	1041/4496 (31.2)	76 (28.8)	98 (26.0)	772 (34.3)
Remdesivir* - no (%)	78 (1.7)	37 (14)	134 (35.5)	1224 (54.3)
Lopinavir/Ritonavir – no (%)	40 (0.9)	0 (0)	0 (0)	0 (0)
Ivermectin – no (%)	11 (0.2)	1 (0.4)	0 (0)	34 (1.5)

Supplemental Table 3 - Therapies Administered during the Admission

* 45 patients listed as remdesivir recipients in the spring season were part of a 1:1 double-blind, placebocontrolled study. Instead, all the patients in summer, fall, and winter seasons listed as remdesivir recipients Ats III Summe received the actual medication.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

FINAL MODEL Sex Age BMI Temperature SBP BBP BBP HR Saturation Respiratory rate HTN HLD CKD
Sex Age BMI 0 Temperature 1 2 3 DBP 4 4 5 4 6 5 7 8 9 HTN 0 1 1 1 2 2 3
Age BMI Temperature SBP DBP HR Saturation Respiratory rate HTN HLD CKD
Age BMI Temperature SBP OBP HR Saturation Respiratory rate HTN HLD CKD
BMI Temperature SBP DBP HR Saturation Respiratory rate HTN HLD CKD
Temperature SBP DBP HR Saturation Respiratory rate HTN HLD CKD
SBP DBP HR Saturation Respiratory rate HTN HLD CKD
DBPImage: Constraint of the second secon
HR O O O O O O O O O O O O O O O O O O O
Saturation Respiratory rate HTN HLD CKD UF
Respiratory rate HTN HLD CKD UE
HTN HLD CKD
HTN •• HLD •• CKD ••
HLD CKD
CKD O O
COPD/Asthma
DM
CAD NO
Glucose
AST 0
Lactic acid
Statin use
Bed saturation
◦ before matching
• after matching
-0.4 -0.2 0.0 0.2 0.4

Supplemental Figure 1 - Distribution of Propensity Score

AST = aspartate transaminase; BMI= body mass index; CAD= coronary artery disease; COPD = chronic
 obstructive pulmonary disease; CKD = chronic kidney disease; DBP= diastolic blood pressure; DM = Diabetes
 mellitus; HF= heart failure; HLD = hyperlipidemia; HNT = hypertension; HR = heart rate; SBP = systolic blood
 pressure; WBC = white blood cell count

STROBE Statement—Checklist of items that should be included in reports of cohort studies

	Item No	Recommendation	Page No
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the	1
		abstract	
		(b) Provide in the abstract an informative and balanced summary of what was	2
		done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being	4
		reported	
Objectives	3	State specific objectives, including any prespecified hypotheses	4
Methods			1
Study design	4	Present key elements of study design early in the paper	4-5
Setting	5	Describe the setting, locations, and relevant dates, including periods of	4-5
		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of	4-5
		participants. Describe methods of follow-up	
		(b) For matched studies, give matching criteria and number of exposed and	
		unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and	5 Supp
		effect modifiers. Give diagnostic criteria, if applicable	Supp
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	4-5
measurement		assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	12
Bias	9	Describe any efforts to address potential sources of bias	12-
Study size	10	Explain how the study size was arrived at	4-5
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,	4-5
		describe which groupings were chosen and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to control for	5-6
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	Supp
		(c) Explain how missing data were addressed	
		(d) If applicable, explain how loss to follow-up was addressed	
		(<u>e</u>) Describe any sensitivity analyses	
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	6-7
		eligible, examined for eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social)	6-9
		and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	
		(c) Summarise follow-up time (eg, average and total amount)	
Outcome data	15*	Report numbers of outcome events or summary measures over time	8-9

Main results	16	 (a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included (b) Report category boundaries when continuous variables were categorized (c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period 	6-9
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	9
Discussion			
Key results	18	Summarise key results with reference to study objectives	9
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	12- 13
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	9-11
Generalisability	21	Discuss the generalisability (external validity) of the study results	14
Other informati	ion		-
Funding	22	Give the source of funding and the role of the funders for the present study and, if	15
		applicable, for the original study on which the present article is based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Hospital Bed Occupancy Rate is An Independent Risk Factor for COVID-19 Inpatient Mortality: A Pandemic Epicenter Cohort Study

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-058171.R2
Article Type:	Original research
Date Submitted by the Author:	08-Jan-2022
Complete List of Authors:	Castagna, Francesco; Montefiore Medical Center; Albert Einstein College of Medicine Xue, Xiaonan; Albert Einstein College of Medicine, Department of Epidemiology and Population Health Saeed, O; Albert Einstein College of Medicine; Montefiore Medical Center Kataria, Rachna ; Massachusetts General Hospital Puius, Yoram; Albert Einstein College of Medicine; Montefiore Medical Center Patel, Snehal; Albert Einstein College of Medicine; Montefiore Medical Center Garcia, Mario; Albert Einstein College of Medicine; Montefiore Medical Center Racine, Andrew D. ; Albert Einstein College of Medicine, Department of Pediatrics; Montefiore Medical Center Sims, Daniel; Albert Einstein College of Medicine; Montefiore Medical Center
Primary Subject Heading :	Public health
Secondary Subject Heading:	Health policy, Infectious diseases, Public health
Keywords:	COVID-19, Public health < INFECTIOUS DISEASES, EPIDEMIOLOGY

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3 4	1	Hospital Bed Occupancy Rate is An Independent Risk Factor for		
5 6 7	2	COVID-19 Inpatient Mortality: A Pandemic Epicenter Cohort		
8 9 10 11	3	Study		
12 13	4	Francesco Castagna MD ¹ , Xiaonan Xue PhD ² , Omar Saeed MD ¹ , Rachna Kataria MD ³ , Yoram		
14 15	5	A Puius MD PhD ⁴ , Snehal R Patel MD ¹ , Mario J Garcia MD ¹ , Andrew D Racine MD ⁵ , Daniel B		
16 17 18	6	Sims MD ¹ , Ulrich P Jorde MD ¹		
19 20 21	7 8 9	Affiliations:		
22 23 24	10	¹ Division of Cardiology, Montefiore Medical Center and Albert Einstein College of Medicine,		
25 26	11	Bronx, NY		
27 28	12	² Department of Epidemiology and Population Health, Albert Einstein College of Medicine,		
29 30	13	Bronx, NY		
31 32 33	14	³ Division of Cardiology, Massachusetts General Hospital and Harvard Medical School, Boston,		
34 35	15	МА		
36 37	16	⁴ Division of Infectious Diseases, Montefiore Medical Center and Albert Einstein College of		
38 39 40	17	Medicine, Bronx, NY		
40 41 42	18	⁵ Department of Pediatrics, Montefiore Medical Center and Albert Einstein College of Medicine,		
43 44	19	Bronx, New York.		
45 46	20	Word count: 3,091		
47 48 49	21	Corresponding Author:		
50 51 52	22 23	Ulrich P. Jorde, MD Professor of Medicine		
53 54 55 56	24 25 26	Division of Cardiology - Department of Medicine - Montefiore Medical Center 3400 Bainbridge Ave. 7 th floor Bronx, NY Email: <u>ujorde@montefiore.org</u>		
57 58 59		1		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml		

58 59

60

BMJ Open

2 3 4	27	Abstract
5 6 7	28	Introduction: COVID-19 first struck New York City in the spring of 2020 resulting in an
8 9	29	unprecedented strain on our health care system triggering multiple changes in public health
10 11 12	30	policy governing hospital operations as well as therapeutic approaches to COVID-19. We
13 14	31	examined inpatient mortality at our center throughout the course of the pandemic.
15 16 17	32	Methods: Retrospective chart review of clinical characteristics, treatments, and outcome data of
18 19	33	all patients admitted with COVID-19 from March 1st, 2020 to February 28th, 2021. Patients were
20 21 22	34	grouped into three-month quartiles. Hospital strain was assessed as percent of occupied beds
22 23 24	35	based on a normal bed capacity of 1,491.
25 26 27	36	Results: Inpatient mortality decreased from 25.0% in spring to 10.8% over the course of the
27 28 29	37	year. During this time, the use of Remdesivir, steroids, and anticoagulants increased; the use of
30 31	38	hydroxychloroquine and other antibiotics decreased. Daily bed occupancy ranged from 62% to
32 33 34	39	118% occupancy. In a multivariate model with all year's data controlling for demographics,
35 36	40	comorbidities, and acuity of illness, percentage of bed occupancy was associated with increased
37 38 30	41	30-day in-hospital mortality of COVID-19 patients (0.7% mortality increase for each 1%
39 40 41	42	increase in bed occupancy - HR 1.007, CI: 1.001, 1.013, p=0.004)
42 43	43	Conclusion: Inpatient mortality from COVID-19 was associated with bed occupancy. Early
44 45 46	44	reduction in epicenter hospital bed occupancy to accommodate acutely ill and resource-intensive
47 48	45	patients should be a critical component in the strategic planning for future pandemics.
49 50 51 52 53 54 55	46	
50 57 58		2

1 2 3 4 5	47	Strengths and limitations of this study
6 7	48	• Large cohort study (7,390 COVID-19 patients).
8 9	49	• Longitudinal analysis over 1 year of management and hospital policy changes.
10 11 12	50	• Analysis of mortality changes after adjustment for different therapies and clinical
13 14	51	parameters.
15 16	52	• Identification of the association between level of hospital system stress and mortality,
17 18 19	53	with important public health ramifications.
20 21	54	• Limitation: data on most recent variants are not included
22 23 24 25 26 27 28 29 30 31 32 33 4 35 36 37 38 39 40 41 42 43 44 45 46 47 48 9 50 51 52 53 54 55 56 57	55	
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

56	INTRODUCTION
----	--------------

Coronavirus disease 2019 (COVID-19) was declared a global pandemic by the World Health Organization on March 11th, 2020.¹ In the United States, after a cluster of cases reported from Washington state², New York state quickly became the initial epicenter of this pandemic with over 1.27 million of cases till date and over 50,000 fatalities with the highest concentration in the Bronx and Queens boroughs of New York City.³ Montefiore Einstein, with its three principal teaching hospitals and combined adult bed capacity of 1,491, is the primary health care provider for the large, nearly 1.5 million diverse population of the Bronx⁴ and experienced a "first wave" of COVID-19 admissions in the spring of 2020³, followed by a significant reduction of cases until a second surge in hospitalizations was noted in the winter of 2020. Throughout the course of the year, multiple public health measures - including those adapting hospital operation to a disaster level pandemic, such as cancellation of all elective procedures and waiver of state specific licensing for health care providers - were put in place. In addition, the understanding of COVID-19 pathophysiology improved ⁵⁶, new treatments were developed ⁷⁻¹⁰, parts of the general population^{11 12} as well as hospital personnel developed antibodies after COVID-19 illness ¹³, and our hospital system adapted to and then recovered from crisis mode.¹⁴ Here, we report outcomes of patients hospitalized with COVID-19 through one year since the first case, focusing on the differences observed between the spring and the winter surges.

METHODS:

76 Study Population

We retrospectively reviewed all adult patients admitted to Montefiore Medical Center with a real
time reverse transcription polymerase chain reaction (RT-PCR) assay positive for COVID-19

between March 1, 2020 and February 28, 2021. We divided this timeframe in four 3-month

seasons based on northern hemisphere calendar: spring (March 1, 2020 to May 31, 2020),

summer (June 1, 2020 to August 30, 2020), fall (September 1, 2020 to November 30, 2020), and

winter (December 1, 2020 to February 28, 2021).

Data Collection

Medical data including demographic, clinical, and laboratory variables were extracted from the electronic medical record system. The primary outcome was 30-day in-hospital mortality.

Statistical Analysis

Continuous variables are displayed as mean \pm standard deviation or median [25-75%]

interquartile range] and compared with the Student's t-test, or Wilcoxon ranks-sum, as

appropriate. Categorical data are presented as percent and compared by the chi-squared test. We

estimated the cumulative incidence of the primary endpoint in-hospital mortality for each season,

treating hospital discharge as a competing event.¹⁵ To avoid any bias due to differential follow-

up length, we censored the follow-up time at 30 days after the admission.

A multivariable competing risk proportional hazard models was used to estimate the sub-

distribution hazard ratios¹⁶¹⁷ for time to in-hospital death. The covariates in the multivariable

analyses included factors present in > 90% of our dataset, known to be associated with in-

hospital COVID-19 mortality based on prior literature^{6 18 19}, or with a univariate association with

in-hospital mortality (p < 0.05) and a clinical (relative difference >5%) difference between

survivors and non survivors (Supplemental Table 1). These variables included: age, sex, body

mass index (BMI), vital signs at presentation (temperature, systolic and diastolic blood pressure, Page 7 of 41

1

60

BMJ Open

2		
3 4	102	heart rate, respiratory rate, pulse oxygen saturation), platelet count, white cell count, potassium,
5 6	103	bicarbonate, creatinine, glucose, alanine transaminase, aspartate transaminase, history of
/ 8 9	104	hypertension, dyslipidemia, chronic kidney disease (CKD), heart failure, coronary artery disease,
) 10 11	105	asthma/chronic obstructive pulmonary disease, diabetes mellitus and statin use. Additionally,
12 13	106	lactic acid level and percent of hospital bed saturation were forced into the model as marker of
14 15 16	107	illness severity and level of hospital stress, respectively.
17 18 10	108	
20 21	109	Then we focused on examining the difference in in-hospital death between patients admitted in
22 23	110	the spring and in the winter, as they represented the two largest and most temporal distant waves
24 25	111	of the COVID-19 pandemic occurring before and after public health polices, specific therapeutic
26 27 28	112	approaches and hospital management changes had been implemented. Selection method for
28 29 30 31 32	113	covariates is presented in the Supplemental Material and Supplemental Table 2.
	114	The proportionality assumption was examined ²⁰ and no violation was identified. A two-sided
33 34 35	115	p<0.05 was considered statistically significant.
36 37	116	
38 39	117	Propensity Score Analysis
40 41	118	To fully control the potential differences in patient population and hospital stress between spring
42 43 44	119	and winter COVID-19 patients, we also used propensity score (PS) matching to compare the 30-
45 46 47 48 49 50 51 52 53	120	day in-hospital mortality between spring and winter admissions. The same covariates used for
	121	the multivariable competing risk regression were used for PS matching. PS matching was carried
	122	out through a 1:1 greedy matching algorithm, with a caliper width of 0.1 SD. We then stratified
	123	on matched pair in the competing risk regression model. ^{21 22} Because one-to-one matching led to
54 55	124	a reduction in sample size, we used this analysis as a sensitivity analysis.
56 57 58		C.
59		0

2			
3 4	125	All statistical analyses was performed with SPSS (IBM Corp, ver. 25, Armonk, NY) and the R	
5 6	126	packages cmprsk and crrSC (R Foundation for Statistical Computing, ver 3.5)	
7 8	127		
9 10 11	128	Patient and Public Involvement	
12 13	129	Given the retrospective nature of our analysis, it was not appropriate or possible to involve	
14 15	130	patients or the public in the design, or conduct, or reporting, or dissemination plans of our	
16 17 18	131	research.	
19 20	132		
21 22	133	RESULTS	
23 24 25	134	7,390 COVID-19 positive adult patients were admitted between March 1, 2020 and February 23	8,
25 26 27	135	2021 (Figure 1). 4,495 patients were admitted during the spring, 264 during the summer, 377	
28 29	136	during the fall, and 2,254 during the winter.	
30 31 22	137	On April 8, 2020, peak of the spring season, the total numbers of simultaneously adult patients	
32 33 34	138	admitted to our hospital (including those admitted to emergency adult wards at our children's	
35 36	139	hospital ²³) was 1,762 (118% of nominal bed capacity); 1,201 of them (68.2%) were COVID-19	ł
37 38	140	patients. On February 8, 2021, peak of winter season, 1,512 patients (101% of nominal bed	
39 40 41	141	capacity) were admitted to our hospital and 393 of them (26.0%) were COVID-19 patients.	
42 43	142	(Figure 1). Following cancellation of elective procedures, bed occupancy decreased to 70% by	
44 45	143	the end of the spring season and remained at 90% until the beginning of the winter season, whe	n
46 47 48	144	the second wave occurred in December 2020. Unadjusted mortality for patient admitted at the	
49 50	145	beginning of spring, end of spring, beginning of winter, and end of winter was 28%, 8%, 14%,	
51 52	146	and 13%, respectively (Figure 2).	
53 54 55	147		
56 57			
58			7
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

BMJ Open

Patient Population Demographics, past medical history, vital signs at arrivals are presented in Table 1. Initial laboratory blood tests are presented in **Supplemental Table 3.** Overall, median age was 66 (55 – 77) years, 3,835 (51.9%) patients were male, 5,519 (74.2%) were of Black race and/or Hispanic ethnicity. Median age ranged from 63 years (fall) to 67 years (spring). Sex distribution was similar throughout the year. Summer and fall patients had the lowest and the highest BMI: 26.7 and 28.6 kg/m², respectively. **Pharmacotherapy** Changes in pharmacological approach is presented in Supplemental Table 4 and Figure 3. Spring patients were more likely to receive hydroxychloroquine, azithromycin and other antibiotics. The use of Remdesivir substantially increased throughout the year (from less than 2% during spring to almost 70% by the end of the winter). Steroids prescription (from 33% during

spring to almost 70% in February 2021), therapeutic anticoagulation therapy, as well as use of

statins, angiotensin converting inhibitors (ACE-I), or angiotensin receptor blockers (ARBs) alsoincreased.

0 164

Death, Intubation, and Length of Stay

Over the course of a year, 1,437 (19.4%) died while hospitalized. Patients who died were older,
had more comorbidities, and were more acutely ill consistent within prior reports on risk factors
for death in COVID-19⁵⁶ (Supplemental Table 1). Average unadjusted monthly mortality is
presented in Figure 2. 30-day in-hospital mortality (Figure 4A) was 25.0% for the spring
patients, 11.0% for summer patients, 6.9% for fall patients, and 11.4% for winter patients

2	
3	
4	
5	
6	
7	
, 8	
0	
ש ש	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
27	
5Z	
33	
34	
35	
36	
37	
38	
39	
40	
41	
47	
12	
د ب	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
22	
20	
5/	
58	
59	
60	

171	(p<0.001). On average, spring patients died 6.4 $(3.2 - 12.9)$ days after the arrival to the
172	emergency department, summer patients 7.2 $(3.0 - 15.7)$ days after the arrival, fall patients 13.4
173	(8.7 - 21.6) days after arrival, and winter patients 13.3 (6.8 - 20.7) days after the arrival
174	(p<0.001). Frequency of invasive ventilatory support was higher during the spring with 892
175	patients (19.4%) intubated, versus 27 (10.2%) in the summer, 36 (9.5%) during fall, and 268
176	(11.9%) in the winter, p<0.001. Median time from arrival-to-intubation was 0.7 (0.1 - 4.1) days
177	for spring patients, 0.6 (0.1 - 8.1) days for summer patients, 2.2 (0.1 – 7.3) days for fall patients,
178	and 2.8 $(0.3 - 7.0)$ days for winter patients, p<0.001. Median length of stay was 6.1 $(3.5 - 11.1)$
179	days during spring, 5.1 (2.7 – 10.1) days during summer, 5.0 (3.0 – 10.1) days during fall, and
180	6.3 (3.8 – 12.0) days during winter, p<0.001.
181	
182	Bed Saturation and Mortality
183	We defined bed saturation the percentage of bed occupancy calculated from the ratio between the
184	number of admitted patients over the nominal bed capacity of our institution (1,491).
185	In the multivariable competing risk proportional hazard model of the entire cohort, percent of
186	bed occupancy was associated with increased 30-day in-hospital mortality (HR 1.007, CI: 1.001,
187	1.013, p=0.004); i.e mortality increase by 0.7 % for each 1% increase of bed occupancy.
188	Consistent results were observed per level increase in bed occupancy quartile, (HR 1.086 [1.026
189	-1.148], P-value for linear trend = 0.004). Results of the competing risk regression analysis are
190	presented in the Table 2.
191	
192	Spring vs Winter Mortality Comparison and Propensity Matched Analysis

BMJ Open

In the multivariable competing risk proportional hazard model comparing spring and winter season, 30-day in-hospital mortality was lower in winter (HR 0.520, CI 0.448-0.604, p<0.001) when compared to spring. After PS caliper matching, there were 1,722 matched pairs. Spring and winter patients had similar distribution of PS (Supplemental Figure 1) and standardized average difference among covariates was greatly reduced. PS analysis showed a significant reduction of in-hospital mortality during winter (HR 0.580 CI: 0.507-0.663, p<0.001) confirming what we observed in the multivariable adjusted analysis (Figure 4B). DISCUSSION We examined inpatient mortality from COVID-19 over the course of a one-year pandemic at our hospital system in New York City. Our principal findings are as follows: First, we observed a substantial reduction of in-hospital mortality coinciding with multiple pandemic related public health measures focusing on hospital resource management – and preceding comprehensive changes in pharmacotherapy - towards the end of the first surge. Second, we describe - for the first time - hospital bed occupancy as an independent risk factor for inpatient mortality from COVID-19.

210 Public Health Measures in Response to COVID-19

After declaring a state of disaster emergency (March 7, 2020), New York State introduced
different measures to limit the spread of the disease, including public schools closure (March 16,
2020), limitation of indoor dining (March 17, 2020), stay-home order for non-essential workers
(March 22, 2020), mandatory face coverings in public (April 15, 2020), and night subway
closure (April 30, 2020)²⁴. Despite these measures to limit the diffusion of the disease and a

1	
2	
3	
4	
5	
ر ح	
6	
7	
8	
9	
10	
11	
12	
12	
14	
14	
15	
16	
17	
18	
19	
20	
21	
22	
∠∠ วว	
23	
24	
25	
26	
27	
28	
29	
30	
31	
27	
3Z	
33	
34	
35	
36	
37	
38	
39	
40	
<u>⊿</u> 1	
+1 12	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
00	

216	generalized reduction of movements around New York City (as evidenced by a more than 90%
217	reduction of subway ridership compared to 2019) ²⁵ , more than 30% of Bronx residents were
218	found to have positive antibodies (and thus possibly temporary immunity) against SARS-CoV-2
219	in August 2020. ²⁶
220	Specifically relevant to hospital operations, executive order no. 202.5 (March 16, 2020) ²⁷
221	allowed healthcare providers not licensed or registered in New York State to temporarily work in
222	the State, and executive order no. 202.10 (March 22, 2020) ²⁷ suspended elective operations.
223	These executive orders were associated with a dramatic drop in non-COVID-19 admissions at
224	our institution beginning March 16, 2020. (Figure 1). On March 26, 2020 New York State
225	Governor Cuomo additionally mandated all hospitals to increase their bed capacity by 50% to
226	accommodate the surge of COVID-19 patients. ²⁷ Despite this order, the actual bed occupancy at
227	our institution (while accommodating all COVID-19 patients presenting to our hospitals)
228	remained below the usual operating capacity until December 2020.
229	Notably, COVID-19 mortality remained stable throughout the summer and fall 2020 with low
230	case counts and increased utilization of steroids, anticoagulation, and remdesivir. Although
231	randomized controlled trials have shown morbidity benefits with the use of remdesevir ⁷ and
232	mortality reduction with steroids ⁸ , the magnitude of these effects cannot explain the more than
233	50% reduction in mortality we observed. Furthermore, pharmacotherapy, with the exception of
234	hydroxychloroquine elimination, did not materially change within the spring season, by the end
235	of which mortality was already decreased. Steroid, remdesivir, and therapeutic anticoagulation
236	were used in 10-20% of patients by May 2020, but they reached 30-70% only in the winter
237	season. Despite that, unadjusted mortality began to increase again in December 2020 during the

Page 13 of 41

BMJ Open

1	
2	
3	
4	
5	
6	
7	
/ 0	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20 21	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
27	
22	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
15	
77 76	
40	
4/	
48	
49	
50	
51	
52	
53	
54	
55	
56	
50	
57	
57	

60

second wave. Of note, bed occupancy also increased at that time and proved to be an
independent risk factor for COVID-19 mortality in our cohort of nearly 8,000 patients.

241 Change in Therapeutic Approach

242 The initial widespread ($\geq 2/3$ of first spring patients) use of hydroxychloroquine, an agent eventually proven to be ineffective²⁸ to treat COVID-19, probably represents the most obvious 243 244 pandemic-associated deviation from the usual multiphase clinical trial standards of therapeutic 245 paradigm development. Only 8 of 2,254 patients received hydroxychloroquine during the winter 246 wave. Similarly, we observed a reduction in the use of azithromycin and other antibiotics, the 247 latter possibly reflecting a more careful assessment of the need to treat superimposed bacterial infections during the second wave. Steroid therapy^{8 29} and therapeutic anticoagulation⁹ were 248 249 implemented in the majority of patients during the winter after the knowledge on the likely 250 disease modulating inflammatory proprieties and pro-thrombotic effect of COVID-19 had been recognized³⁰ and, in the case of steroids, a therapeutic effect had been proven⁸. Remdesivir, an 251 252 inhibitor of the viral RNA-dependent RNA polymerase that showed shortening of recovery time 253 in hospitalized patients with COVID-19⁷, received emergency FDA approval on October 254 22nd,2020³¹ and was administered to almost half of the admitted patients during the winter. If 255 initial concerns of possible interactions between ACE-I or ARBs and SARS-CoV-2 32 led to a 256 possible underutilization or discontinuation of these drugs during the spring, we observed a 257 significant increase in their use during the following months, after no increased risks were 258 reported. 33 34

Similarly, after several reports showed a possible protective effect associated with the use of
statins^{35 36}, their utilization markedly increased during the winter.

Lastly, after the spring wave provided anecdotal evidence for early proning in COVID-19 pneumonia, an approach strongly favoring noninvasive ventilation and avoiding intubation was developed to address respiratory distress in COVID-19; more data about such an approach has since accumulated. ^{10 37} The cumulative effect of these therapeutic changes, in combination with a better preparedness to respond to a pandemic, can be estimate from the different mortality between the first surge (spring) and the second surge (winter). After matching the two groups for demographic and clinical variables, as well as for elements indicative of hospital distress (bed occupancy), a significant reduction of mortality was observed during the winter trimester.

270 Change in Hospital Stress Load

At the peak of the pandemic, the hospital saturation reached the 118% of the nominal bed capacity and COVID-19 patients accounted for 68.2% of all admitted patients. This increase in acutely ill patients created significant excess demand on the rest of the hospital infrastructure best characterized by the surge in the need for intensive care unit (ICU) beds and transformation of other hospital areas to ICUs.^{14 23} Despite increased patient load, the number of standard ICU beds, as well as laboratories, diagnostic equipment, and available personnel, remained the same as before the pandemic. This unmatched patient overload resulted in a 0.7 % mortality increase for each 1% increment in hospital bed saturation. In light of these results, strategies to minimize the bed occupancy for non-Covid-19 patients or non-life-saving admission should be adopted to diverge resources to improve the outcome of admitted Covid-19 patients.

282 Limitations

Page 15 of 41

BMJ Open

Our study has the shortcomings of a retrospective investigation, but there are some very specific aspects limiting the interpretation of our results. First, it is difficult to assess the true effects of pharmacotherapy given the dynamic changes in indications, doses, and usage that happened over the course of the year. Regardless, we believe the propensity-matched comparison between the spring and the winter waves provides compelling evidence for the validity of our principal observation of inpatient COVID-19 mortality reduction disproportionate to advances in pharmacotherapy. We chose total bed occupancy as a metric for hospital stress assuming that other resources per bed remained static. Notably, the ratio of COVID-19 to non-COVID-19 patients, ICU bed saturation, and staff shortages are unaccounted for in this model. Regrettably, an in-depth analysis of these metrics is beyond our ability in this retrospective pandemic analysis with disaster elements. Additionally, a significant number of patients received ICU-level-of-care interventions (mechanical ventilatory support, dialysis, vasopressors titration) on regular floors; therefore, the concept of ICU bed saturation might have been not truly representative of the burden. However, we feel our data is sufficiently strong to support the notion that bed capacity expansion alone is not the answer. Rather, a smaller number of beds with higher staffing accomplished by drastic reductions in all non-emergent procedures and activities is likely a better approach. Although offering fewer beds in pandemic situation appears initially quite counterintuitive, in practice we observed that mortality began to decrease once beds and resources were allocated specifically to COVID-19 patients by executive orders 202.5 and 202.10; and most importantly that bed occupancy never exceeded 100% once hospital operations focused on the COVID-19

pandemic only. It is conceivable that an uptrend in mortality observed late in the pandemic with
 established treatment paradigms could be due to new viral strains or a sicker patient population.

2
з
1
4
5
6
7
0 0
0
9
10
11
12
12
13
14
15
16
17
17
18
19
20
21
∠ ı >>
22
23
24
25
20
26
27
28
29
20
30
31
32
33
21
54
35
36
37
38
20
39
40
41
42
42
45
44
45
46
17
47
48
49
50
51
51
52
53
54
55
55
50
57
58
59

60

1

306 Although we are unable to provide detailed strain analysis for our study population, a meaningful 307 numbers of new (and possibly more virulent) strains were not yet observed in in the Bronx, 308 where our study was conducted.³⁸ The small sample size of patients in summer and fall does not 309 allow meaningful propensity matched comparisons, and when comparing summer, fall, and 310 winter populations, there do not appear to be clinically meaningful differences. Lastly, single-311 patient data on vaccination status were not available. At the conclusion of the study, only 13.8% 312 of the population of New York State received at least one dose and 7.4% received two doses³⁹. 313 Given the heterogeneous distribution of vaccination within the state (and the city of New York), 314 it is impossible to meaningfully account for these parameters. 315 316 **CONCLUSIONS** 317 Inpatient mortality from COVID-19 decreased to a degree disproportionate to advances in 318 disease specific therapeutics. Increased bed occupancy was associated to a higher in-hospital 319 mortality. Implementation of non-pharmacological approaches and other seasonal variations 320 might also had a role in the mortality reduction. Early reduction in epicenter hospital bed 321 occupancy to accommodate acutely ill and resource-intensive patients should be a critical 322 component in the strategic planning for future pandemics. 323 324
2 3 4	
5 6 7	
8 9 10	
11 12	
13 14 15	
16 17 18 19	
20 21	
22 23 24 25	
26 27 28	
28 29 30	
31 32 33	
34 35 36	
37 38	
39 40 41	
42 43	
44 45	
46 47 48	
48 49 50	
51 52	
53 54 55	
56 57	
58 59	

60

325 **DECLARATIONS**

- 326 Ethics approval and consent to participate
- 327 The Office of Human Research Affairs at Albert Einstein College of Medicine approved this
- 328 study (# 2020-11308). Patient consent and HIPAA forms were waived by our IRB due to the
- 329 retrospective nature of our research.
- 330 Consent for publication
- 331 Non applicable.
- 332 Availability of data and materials
- 333 The datasets used and/or analyzed during the current study are available from the corresponding

er.

author on reasonable request.

2 335 Competing interests

336 No conflicts of interest exist.

337 Funding/Support

- 338 Francesco Castagna is supported by a grant from the National Institute for Health
- 339 (T32HL144456) and the National Center for Advancing Translational Science (NCATS) Clinical
- and Translational Science Award at Einstein-Montefiore (UL1TR001073). Omar Saeed is
 - 341 supported by grants from the National Institute for Health/National Heart, Lung and Blood
 - 342 Institute (K23HL145140) and the National Center for Advancing Translational Science
 - 343 (NCATS) Clinical and Translational Science Award at Einstein-Montefiore (UL1TR001073).
 - 344 Ulrich Jorde is supported by the McAdam Family Foundation (award number not applicable).

3 4	345	Author's Contributions
5	346	Design of the project: FC, XX, and UPJ.
7	347	Underlying data verified by FC, XX, and UPJ.
o 9 10 11	348 349	Acquisition, analysis, and interpretation of data: FC, XX, OS, RK, YAP, SRP, MJG, ADR, DS, and UPJ.
12	350	Statistical analysis: FC and XX.
13 14	351	Obtained funding: UPJ
15 16	352	Manuscript writing: FC, XX, and UPJ.
17 18 19	353 354	Critical revision of the manuscript for important intellectual content: FC, XX, OS, RK, YAP, SRP, MJG, ADR, DS, and UPJ.
20 21	355	Supervision: UPJ
22 23	356	All the Authors reviewed the work and approved the final version.
24 25 26	357 358	FC and UPJ had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.
27	359	
29 30	360	Acknowledgements
31 32	361	Not applicable
33 34	362	
35 36	363	
37 38	364	
39 40	365	
41 42		
43		
44 45		
46 47		
48		
49 50		
51		
52		
53 54		
55		
56		
57 59		17
58 59		17

2		
3 4	366	References
5	367	1. World Health Organization, WHO Director-General's opening remarks at the media briefing
6	368	on COVID-19-11 March 2020: Geneva, Switzerland, 2020.
7	369	2. Bhatraju PK, Ghassemieh BJ, Nichols M, et al. Covid-19 in Critically Ill Patients in the Seattle
0 9	370	Region — Case Series. New England Journal of Medicine 2020;382(21):2012-22. doi:
10	371	10.1056/NEJMoa2004500
11	372	3. John Hopkins University. COVID-19 Dashboard by the Center for Systems Science and
12	373	Engineering (CSSE) at Johns Hopkins University (JHU): JHU; 2020 [Available from:
13	374	https://coronavirus.jhu.edu/map.html accessed 1/20/2021.
15	375	4. Lozano R, Naghavi M, Foreman K, et al. Global and regional mortality from 235 causes of
16	376	death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of
17	377	Disease Study 2010. <i>Lancet</i> 2012;380(9859):2095-128. doi: 10.1016/S0140-
18	378	6736(12)61728-0 [published Online First: 2012/12/19]
19	379	5. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients
20 21	380	with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet
22	381	2020;395(10229):1054-62. doi: $10.1016/80140-6/36(20)30566-3$
23	382	6. Wu Z, McGoogan JM. Characteristics of and Important Lessons From the Coronavirus
24	383	Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases
25	384 295	42 doi: 10.1001/jama 2020.2648 [nublished Online First: 2020/02/25]
26 27	202 206	42. doi: 10.1001/Jana.2020.2048 [published Online First. 2020/02/25]
27	287	Penpert New England Journal of Modicine 2020:282(10):1812 26 doi:
29	200/	10 1056/NEIMon 2007764
30	380	8 Group RC Horby P. Lim WS, et al. Devamethacone in Hospitalized Patients with Covid-19
31	300	Preliminary Report The New England journal of medicine 2020 doi:
32	391	10 1056/NFIM0a2021436 [published Online First: 2020/07/18]
33 34	392	9 Thachil I Tang N Gando S et al ISTH interim guidance on recognition and management of
35	393	coagulonathy in COVID-19 <i>Journal of Thrombosis and Haemostasis</i> 2020:18(5):1023-
36	394	26 doi: https://doi.org/10.1111/jth.14810
37	395	10. Shelhamer MC, Wesson PD, Solari IL, et al. Prone Positioning in Moderate to Severe Acute
38	396	Respiratory Distress Syndrome Due to COVID-19: A Cohort Study and Analysis of
39 40	397	Physiology. Journal of intensive care medicine 2021;36(2):241-52. doi:
41	398	10.1177/0885066620980399 [published Online First: 2021/01/01]
42	399	11. Rosenberg ES, Tesoriero JM, Rosenthal EM, et al. Cumulative incidence and diagnosis of
43	400	SARS-CoV-2 infection in New York. Annals of epidemiology 2020;48:23-29.e4. doi:
44	401	10.1016/j.annepidem.2020.06.004 [published Online First: 2020/07/11]
45 46	402	12. Sekine T, Perez-Potti A, Rivera-Ballesteros O, et al. Robust T Cell Immunity in
47	403	Convalescent Individuals with Asymptomatic or Mild COVID-19. Cell 2020;183(1):158-
48	404	68.e14. doi: <u>https://doi.org/10.1016/j.cell.2020.08.017</u>
49	405	13. Fill Malfertheiner S, Brandstetter S, Roth S, et al. Immune response to SARS-CoV-2 in
50	406	health care workers following a COVID-19 outbreak: A prospective longitudinal study. J
51 52	407	Clin Virol 2020;130:104575. doi: 10.1016/j.jcv.2020.104575 [published Online First:
52 53	408	2020/08/18]
54	409	14. Alvarez Villela M, Boucher T, Terre J, et al. Surge-in-Place: Conversion of a Cardiac
55	410	Catheterization Laboratory Into a COVID-19 Intensive Care Unit and Back Again. The
56	411	Journal of invasive cardiology 2020 [published Online First: 2020/12/22]
57		10
50 59		18
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

3	412	15. Putter H, Fiocco M, Geskus RB. Tutorial in biostatistics: competing risks and multi-state
4 5	413	models. Stat Med 2007;26(11):2389-430. doi: 10.1002/sim.2712 [published Online First:
6	414	2006/10/13]
7	415	16. Gray RJ. A class of K-sample tests for comparing the cumulative incidence of a competing
8	416	risk. The Annals of statistics 1988:1141-54.
9	417	17. Fine JP, Gray RJ. A Proportional Hazards Model for the Subdistribution of a Competing
10	418	Risk. Journal of the American Statistical Association 1999;94(446):496-509. doi:
11	419	10.1080/01621459.1999.10474144
13	420	18. Williamson EJ, Walker AJ, Bhaskaran K, et al. Factors associated with COVID-19-related
14	421	death using OpenSAFELY. Nature 2020;584(7821):430-36. doi: 10.1038/s41586-020-
15	422	2521-4 [published Online First: 2020/07/09]
16	423	19. Tartof SY, Qian L, Hong V, et al. Obesity and Mortality Among Patients Diagnosed With
17	424	COVID-19: Results From an Integrated Health Care Organization. Annals of internal
18	425	medicine 2020;173(10):773-81. doi: 10.7326/m20-3742 [published Online First:
20	426	2020/08/14]
21	427	20. Schoenfeld D. Partial residuals for the proportional hazards regression model. <i>Biometrika</i>
22	428	1982;69(1):239-41.
23	429	21. Austin PC, Fine JP. Propensity-score matching with competing risks in survival analysis. <i>Stat</i>
24	430	Med 2019;38(5):751-77. doi: 10.1002/sim.8008 [published Online First: 2018/10/23]
25	431	22. Zhou B, Latouche A, Rocha V, et al. Competing risks regression for stratified data.
20 27	432	<i>Biometrics</i> 2011;67(2):661-70. doi: 10.1111/j.1541-0420.2010.01493.x [published
27	433	Online First: 2010/12/16]
29	434	23. Philips K, Uong A, Buckenmyer T, et al. Rapid Implementation of an Adult Coronavirus
30	435	Disease 2019 Unit in a Children's Hospital. <i>The Journal of pediatrics</i> 2020;222:22-27.
31	436	doi: 10.1016/j.jpeds.2020.04.060 [published Online First: 2020/05/08]
32	437	24. New York City Office of the Mayor. News: New York City Office of the Mayor; [Available
33	438	from: <u>https://www1.nyc.gov/office-of-the-mayor/news.page</u> accessed 1/17/2021.
54 35	439	25. Metropolitan Transportation Authority. Fare Data: Metropolitan Transportation Authority;
36	440	[Available from: <u>http://web.mta.info/developers/fare.html</u> accessed 1/17/2021.
37	441	26. New York City Department of Health and Mental Hygiene. COVID-19: Data: New York
38	442	City Department of Health and Mental Hygiene; 2021 [New York City Department of
39	443	Health and Mental Hygiene: [Available from: <u>https://www1.nyc.gov/site/doh/covid/covid-</u>
40	444	<u>19-data.page</u> accessed 1/17/2021.
41 42	445	27. State of New York. Executive Orders: State of New York; [Available from:
43	446	https://www.governor.ny.gov/keywords/executive-order accessed 1/17/2021.
44	447	28. Cavalcanti AB, Zampieri FG, Rosa RG, et al. Hydroxychloroquine with or without
45	448	Azithromycin in Mild-to-Moderate Covid-19. The New England journal of medicine
46	449	2020;383(21):2041-52. doi: 10.1056/NEJMoa2019014 [published Online First:
47	450	2020/07/25]
48 70	451	29. Sterne JAC, Murthy S, Diaz JV, et al. Association Between Administration of Systemic
50	452	Corticosteroids and Mortality Among Critically III Patients With COVID-19: A Meta-
51	453	analysis. Jama 2020;324(13):1330-41. doi: 10.1001/jama.2020.1/023 [published Online
52	454	First: 2020/09/03]
53	455	30. Carsana L, Sonzogni A, Nasr A, et al. Pulmonary post-mortem findings in a series of
54	456	COVID-19 cases from northern Italy: a two-centre descriptive study. <i>The Lancet</i>
55 56	457	infectious diseases 2020;20(10):1135-40.
57		
58		19
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2		
3	458	31. United States Federal Drug Administration. FDA's approval of Veklury (remdesivir) for the
4	459	treatment of COVID-19—The Science of Safety and Effectiveness: United States Federal
5	460	Drug Administration: [Available from: https://www.fda.gov/drugs/drug-safety-and-
6 7	461	availability/fdas-approval-veklury-remdesivir-treatment-covid-19-science-safety-and-
/ 0	161 162	effectiveness accessed 1/17/2021
0	402	22 Falar M. Falar D. Can angiatangin resentar blacking drugg nerhang ha harmful in the
9 10	463	32. Ester M, Ester D. Can angiotensin receptor-olocking drugs pernaps be narmful in the
10	464	COVID-19 pandemic? Journal of hypertension 2020;38(5): /81-82. doi:
12	465	10.1097/hjh.000000000002450 [published Online First: 2020/03/21]
13	466	33. Mancia G, Rea F, Ludergnani M, et al. Renin–Angiotensin–Aldosterone System Blockers
14	467	and the Risk of Covid-19. New England Journal of Medicine 2020;382(25):2431-40. doi:
15	468	10.1056/NEJMoa2006923
16	469	34. Zhang P, Zhu L, Cai J, et al. Association of Inpatient Use of Angiotensin-Converting
17	470	Enzyme Inhibitors and Angiotensin II Receptor Blockers With Mortality Among Patients
18	471	With Hypertension Hospitalized With COVID-19 Circulation research
19	171	2020:126(12):1671-81 doi: doi:10.1161/CIRCRESAHA.120.317134
20	472	25 Tan WVT Young DE Lya DC at al. Statin usa is associated with lower disease severity in
21	4/5	55. Tall w I I, Young BE, Lye DC, et al. Statili use is associated with lower disease sevenity in $COMD$ 10. C C C D C D C D C D
22	4/4	COVID-19 infection. Scientific Reports 2020;10(1):1/458. doi: 10.1038/s41598-020-
23	475	74492-0
24	476	36. Saeed O, Castagna F, Agalliu I, et al. Statin Use and In-Hospital Mortality in Patients With
25	477	Diabetes Mellitus and COVID-19. Journal of the American Heart Association
26	478	2020;9(24):e018475. doi: doi:10.1161/JAHA.120.018475
2/	479	37. Paul V, Patel S, Royse M, et al. Proning in Non-Intubated (PINI) in Times of COVID-19:
20 20	480	Case Series and a Review. Journal of intensive care medicine 2020;35(8):818-24. doi:
30	481	10.1177/0885066620934801 [published Online First: 2020/07/08]
31	482	38. New York City Department of Health and Mental Hygiene. Health Department Releases
32	483	Detailed Report on COVID-19 Variants: New York City Department of Health and
33	187	Mental Hygiene: 2021 [Available from:
34	485	https://www.l.nvc.gov/site/dob/about/press/pr2021/bealth_department_releases_detailed
35	405	report on assid 10 variants page accessed 4/21/2021
36	480	$\frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{10000} \frac{1}{10000000000000000000000000000000000$
37	48/	39. New York City Department of Health and Mental Hygiene. COVID-19: Data - Vaccines:
38	488	New York City Department of Health and Mental Hygiene; 2021 [Available from:
39	489	https://www1.nyc.gov/site/doh/covid/covid-19-data-vaccines.page#dosestrend accessed
40	490	12/10/2021.
41	491	
42		
45 11		
44 45		
46		
47		
48		
49		
50		
51		
52		
53		
54		
55		
56		
5/ E0		20
50 50		20
59		

	Spring (n=4495)	Spring (n=4495) Summer (n=264)		Winter (n=2254)	
30-Day hospital outcome					
Still admitted - no (%)	194 (4.3)	6 (2.3)	15 (4.0)	103 (4.6)	
Discharged alive - no (%)	3177 (70.7)	229 (86.7)	336 (89.1)	1893 (84.0)	
Dead in the hospital - no (%)	1124 (25.0)	29 (11.0)	26 (6.9)	258 (11.4)	
Demographics					
Age (IQR) – yr	66 (55 - 77)	66 (50 - 76)	63 (50 - 73)	67 (56 - 77)	
Male sex - no (%)	2377 (52.9)	138 (52.3)	198 (52.5)	1122 (49.8)	
Black race and / or Hispanic ethnicity – no (%)	3345 (74.4)	219 (83.0)	286 (75.9)	1635 (74.2)	
Body Mass Index (IQR) - kg/m ²	28.4 (24.6 - 33)	27.6 (22.5 - 32.7)	28.6 (25 - 34.1)	28.2 (24.4 - 33.1)	
Hospital bed saturation (IQR) - %	97.4 (86.5 – 107.6)	81.7 (76.3 – 85.8)	87.6 (83.2 - 90.2)	95.3 (91.9 – 101.8)	
Past Medical History					
Hypertension - no (%)	3370 (75)	197 (74.6)	254 (67.4)	1713 (76)	
Sleep apnea - no (%)	521 (11.6)	28 (10.6)	47 (12.5)	270 (12)	
Hyperlipidemia - no (%)	2609 (58)	153 (58)	199 (52.8)	1380 (61.2)	
Atrial fibrillation - no (%)	449 (10)	30 (11.4)	35 (9.3)	267 (11.8)	
Chronic kidney disease - no (%)	1406 (31.3)	70 (26.5)	85 (22.5)	620 (27.5)	
Heart failure - no (%)	980 (21.8)	72 (27.3)	66 (17.5)	519 (23)	
Coronary artery disease - no (%)	1316 (29.3)	95 (36)	108 (28.6)	721 (32)	
Asthma/COPD - no (%)	1371 (30.5)	84 (31.8)	98 (26)	753 (33.4)	
Diabetes mellitus - no (%)	2522 (56.1)	148 (56.1)	187 (49.6)	1244 (55.2)	
Vitals at Presentation					
Temperature (IQR) - F	98.9 (98.2 - 100)	98.4 (97.8 - 98.9)	98.8 (98.1 - 99.9)	98.7 (98.1 - 99.8)	
SBP (IQR) - mmHg	131 (114 - 148)	132 (117 - 149)	/131 (117 - 147)	132 (117 - 148)	
DBP (IQR) - mmHg	75 (65 - 84)	77 (67 - 87)	74 (68 - 84)	75 (67 - 84)	
HR (IQR) – bpm	98 (85 - 112)	92.5 (76.3 - 105)	94 (80 - 107)	95 (82 - 107)	
Oxygen saturation (IQR) - %	95 (91 - 98)	98 (96 - 99)	96 (94 - 98)	96 (92 - 98)	
Respiratory Rate (IQR) - bpm	20 (18 - 22)	18 (17 - 20)	18 (18 - 20)	19 (18 - 22)	

COPD = Chronic obstructive pulmonary disease; DBP = Diastolic blood pressure; HR = Heart

rate; IQR = Interquartile range; SBP = Systolic blood pressure.

2	
З	
5	
4	
5	
6	
7	
/	
8	
9	
10	
10	
11	
12	
13	
1.4	
14	
15	
16	
17	
17	
18	
19	
20	
20	
21	
22	
23	
24	
24	
25	
26	
27	
27	
28	
29	
30	
21	
21	
32	
33	
34	
25	
35	
36	
37	
20	
20	
39	
40	
⊿1	
40	
42	
43	
44	
15	
43	
46	
47	
48	
40	
49	
50	
51	
52	
52	
53	
54	
55	
56	
57	
58	

59

60

Table 2. Association with In-Hospital Mortalit	y (Regression models with competing risks)
--	--

	Multivariable		
Variable	HR (95% CI) P-value		
Age - yr	1.046 (1.04 - 1.051)	< 0.001	
Male sex - yes/no	1.352 (1.187 - 1.54)	< 0.001	
Body mass index - kg/m2	1.022 (1.012 - 1.032)	< 0.001	
Temperature - F	1.071 (1.036 - 1.108)	< 0.001	
SBP - mmHg	0.994 (0.991 - 0.997)	< 0.001	
DBP - mmHg	0.996 (0.991 - 1.001)	0.14	
HR - bpm	1.003 (0.999 - 1.006)	0.11	
Oxygen saturation - %	0.967 (0.961 - 0.972)	< 0.001	
Respiratory rate - bpm	1.027 (1.019 - 1.035)	< 0.001	
White blood cell count - k/µL	1.008 (1.001 - 1.016)	0.02	
Glucose - mg/dL	1.001 (1 - 1.001)	0.001	
Aspartate aminotransferase - U/L	1 (1 - 1.001)	0.21	
Alanine aminotransferase - U/L	1 (0.999 - 1)	0.25	
Lactic acid – mmol/L	1.071 (1.036 - 1.107)	< 0.001	
Platelet count -k/µL	0.999 (0.998 - 0.999)	< 0.001	
Potassium – mEq/L	1.096 (1.028 - 1.168)	0.0052	
Bicarbonates – mEq/L	0.957 (0.944 - 0.971)	< 0.001	
Creatinine - mg/dL	1.023 (0.998 - 1.049)	0.069	
HTN - yes/no	1.008 (0.851 - 1.194)	0.93	
HLD - yes/no	1.196 (1.02 - 1.401)	0.027	
CKD - yes/no	1.263 (1.09 - 1.462)	0.002	
HF - yes/no	1.33 (1.146 - 1.543)	< 0.001	
COPD/Asthma - yes/no	0.948 (0.827 - 1.088)	0.45	
DM - yes/no	0.946 (0.819 - 1.093)	0.45	
CAD - yes/no	1.101 (0.955 - 1.271)	0.19	
Statin use - %	0.577 (0.501 - 0.664)	< 0.001	
Bed occupancy - %	1.007 (1.001 - 1.013)	0.004	

CAD = Coronary artery disease; CKD = Chronic kidney disease; COPD = Chronic obstructive pulmonary disease; DBP = Diastolic blood pressure; DM= Diabetes mellitus; HLD = hyperlipidemia; HF = Heart failure; HR = Heart rate; HTN = Hypertension; SBP = Systolic blood pressure

Figure Legends

Figure 1. Simultaneously Admitted Patients

This graph includes the hospitalized patients and the admitted patients in the emergency

department waiting for a bed. A precipitous decline of non-COVID-19 admissions begins on

March 16, 2020 (vertical gray line) coinciding with gubernatorial health care associated

directives in the State of New York. The dotted red line indicates the nominal bed capacity of our

institution (1,491 beds).

Figure 2. Cumulative Monthly Admissions and Mortality

Cumulative monthly admissions (black line, left axis) and mortality (dotted red line, right axis) over the year.

Figure 3. Change in Therapies

Percent of patients receiving specific therapies over the year. Lezoni

Figure 4. Cumulative Incidences

30-day in-hospital mortality by seasons.

This graph includes the hospitalized patients and the admitted patients in the emergency department waiting for a bed. A precipitous decline of non-COVID-19 admissions begins on March 16, 2020 (vertical gray line) coinciding with gubernatorial health care associated directives in the State of New York. The dotted red line indicates the nominal bed capacity of our institution (1,491 beds).

85x62mm (300 x 300 DPI)

BMJ Open

88x88mm (300 x 300 DPI)

Supplemental Appendix

Table of contents

10 11	Supplemental Table 1 - Comparison Survivors versus Non-survivors	2
12	Supplemental Methods	
13 14	Supplemental Table 2 - Comparison Spring Vs Winter	6
15	Supplemental Table 3 - Initial Laboratory Blood Tests	9
16 17	Supplemental Table 4 - Therapies Administered during the Admission	
18	Supplemental Figure 1 - Distribution of Propensity Score	12
19	Supplemental Figure 1 Distribution of Frepensity Score	
20		
21		
22		
23		
24		
25		
20 27		
27		
20		
30		
31		
32		
33		
34		
35		
36		
3/ 20		
30		
40		
41		
42		
43		
44		
45		

Survivors (n=5953) **Non-survivors (n=1437)** p-value Sample Value Sample Value **Demographics** Age (IQR) - yr 5953 64 (52 - 75) 1437 73 (65 - 82) < 0.001 Male sex - no (%) 5953 2989 (50.2) 1437 846 (58.9) < 0.001 Black race and / or Hispanic 5953 1437 < 0.001 4472 (75.1) 1013 (70.5) ethnicity – no (%) Body Mass Index (IQR) - kg/m² 5679 28.4 (24.6 - 33.2) 1352 27.9 (23.8 - 32.6) < 0.001 Hospital bed saturation (IQR) -5953 99.3 (87.5 - 107.6) 94.1 (86.5 - 104.8) 1437 < 0.001 % **Past Medical History** Hypertension - no (%) 5953 4365 (73.3) 1437 1169 (81.4) < 0.001 Sleep apnea - no (%) 5953 688 (11.6) 1437 178 (12.4) 0.38 Hyperlipidemia - no (%) 5953 3366 (56.5) 1437 975 (67.8) < 0.001 Atrial fibrillation - no (%) 5953 557 (9.4) 1437 224 (15.6) < 0.001Chronic kidney disease - no (%) 5953 1559 (26.2) 1437 < 0.001 622 (43.3) Heart failure - no (%) 5953 1181 (19.8) 1437 456 (31.7) < 0.001 Coronary artery disease - no 5953 1653 (27.8) 1437 587 (40.8) < 0.001 (%) Asthma/COPD - no (%) 5953 1437 0.32 1842 (30.9) 464 (32.3) Diabetes mellitus - no (%) 5953 3168 (53.2) 1437 933 (64.9) < 0.001 Vitals at Presentation Temperature (IQR) - F 5926 99 (98 - 100) 1427 99 (98 - 100) 0.35 SBP (IQR) - mmHg 5932 132 (117 - 148) 1430 127 (107 - 146) < 0.001

Supplemental Table 1 - Comparison Survivors versus Non-survivors

Page 31 of 41

BMJ Open

DBP (IQR) - mmHg	5926	76 (67 - 85)	1428	71 (60 - 81)	< 0.001
HR (IQR) – bpm	5927	96 (83 - 110)	1429	100 (85 - 114)	<0.001
Oxygen saturation (IQR) - %	5922	96 (93 - 98)	1430	92 (84 - 96)	< 0.001
Respiratory Rate (IQR) - bpm	5928	19 (18 - 21)	1428	22 (19 - 26)	< 0.001
Laboratory Markers		L	L		
Hemoglobin (IQR) - g/dL	5823	12.9 (11.4 - 14.1)	1408	12.6 (10.9 - 14.2)	0.006
Platelet count (IQR) -k/µL	5825	198 (137 - 264)	1408	172 (88 - 246)	< 0.001
White blood cell count (IQR) - k/uL	5823	6.9 (5.1 - 9.5)	1408	8.3 (6.0 - 11.9)	< 0.001
Absolute lymphocyte count (IQR) - $k/\mu L$	5880	1.1 (0.7 - 1.5)	1423	0.9 (0.6 - 1.2)	< 0.001
Sodium (IQR) – mEq/L	5879	137 (134 - 140)	1428	138 (134 - 143)	< 0.001
Potassium (IQR) – mEq/L	5845	4.2 (3.8 - 4.6)	1426	4.4 (4.0 - 5.0)	< 0.001
Chloride (IQR) – mEq/L	5864	100 (96 - 103)	1423	100 (95 - 104)	0.28
Bicarbonates (IQR) – mEq/L	5879	24 (21 - 27)	1428	22 (18 - 25)	< 0.001
Creatinine (IQR) - mg/dL	5876	1.0 (0.8 - 1.5)	1427	1.6 (1 - 2.9)	< 0.001
Glucose (IQR) - mg/dL	5879	126 (104 - 179)	1428	156 (121 - 236)	< 0.001
Aspartate aminotransferase (IOR) - U/L	5416	35 (24 - 55)	1312	52 (33 - 81)	< 0.001
Alanine aminotransferase (IQR) - U/L	5614	26 (16 - 42)	1376	28 (18 - 46)	< 0.001
Lactic acid (IQR) – mmol/L	5097	1.9 (1.4 - 2.6)	1347	2.6 (1.8 - 3.9)	< 0.001
Lactate dehydrogenase (IQR) - mmol/L	4017	384±219	926	518 (371 - 706)	< 0.001
Creatine Kinase (IQR) – U/L	4714	336 (253 - 454)	1218	777±2657	< 0.001
D-dimer (IQR) - µg/mL	3850	1.2 (0.7 - 2.5)	763	2.5 (1.3 - 6.9)	< 0.001
Procalcitonin (IQR) – ng/mL	2800	0.1 (0.1 - 0.3)	615	0.6 (0.2 - 2.4)	< 0.001
Troponin T* (IQR) - ng/mL	2365	0.01 (0.01 - 0.03)	302	0.03 (0.01 - 0.1)	< 0.001
Troponin I* (IQR) – ng/mL	2684	0.01 (0.01 - 0.02)	981	0.02 (0.01 - 0.08)	< 0.001

BMJ Open

Interleukin-6 (IQR) – pg/mL	1752	17 (6 - 40)	287	68 (26- 154)	< 0.001
Fibrinogen (IQR) – mg/dL	2478	570 (448 - 690)	460	621 (506 - 761)	< 0.001
Ferritin (IQR) – ng/mL	3395	521 (224 - 1112)	659	1021 (514 - 2161)	< 0.001

COPD = Chronic obstructive pulmonary disease; DBP = Diastolic blood pressure; HR = Heart rate; IQR = Interquartile range; SBP = Systolic blood pressure. * Troponin T was available only until June 2020, Troponin I was available only after June 2020.

BMJ Open

Supplemental Methods

Covariate Selection Method for Multivariable Competing Risk Proportional Hazard Models for in-hospital Death between Patients Spring and Winter Patients

The covariates in the multivariable analyses included factors present in > 90% of our dataset, are known to be associated with in-hospital COVID-19 mortality based on prior literature or with a univariate association between admission season (exposure) or in-hospital mortality (outcome) (p<0.05) and a clinical (relative difference >5%) difference between the spring and winter patients (Supplemental Table 2). These variables included: age, sex, BMI, vital signs at presentation, white cell count, creatinine, glucose, alanine transaminase, history of hypertension, dyslipidemia, chronic kidney disease (CKD), heart failure, coronary artery disease, asthma/chronic obstructive pulmonary disease, diabetes mellitus and statin use. Also in this model, lactic acid level and percent of hospital bed saturation were forced into the model as marker of illness severity and level of hospital stress, respectively.

Supplemental Table 2 - Comparison Spring Vs Winter

	Spring (n=4495)		Winter (n=2254)		p- value
	Sample	Value	Sample	Value	
Demographics					
Age (IQR) - yr	4495	66 (55 - 77)	2254	67 (56 - 77)	0.051
Male sex - no (%)	4495	2377 (52.9)	2254	1122 (49.8)	0.016
Black race and / or Hispanic ethnicity – no (%)	4495	3345 (74.4)	2254	1635 (72.5)	0.098
Body Mass Index (IQR) - kg/m ²	4229	28.4 (24.6 - 33)	2194	28.2 (24.4 - 33.1)	0.433
Hospital bed saturation (IQR) - %	4495	97.4 (86.5 – 107.6	2254	95.3 (91.9 - 101.8)	< 0.001
Past Medical History	0				
Hypertension - no (%)	4495	3370 (75)	2254	1713 (76)	0.357
Sleep apnea - no (%)	4495	521 (11.6)	2254	270 (12)	0.640
Hyperlipidemia - no (%)	4495	2609 (58)	2254	1380 (61.2)	0.012
Atrial fibrillation - no (%)	4495	449 (10)	2254	267 (11.8)	0.019
Chronic kidney disease - no (%)	4495	1406 (31.3)	2254	620 (27.5)	0.001
Heart failure - no (%)	4495	980 (21.8)	2254	519 (23)	0.254
Coronary artery disease - no (%)	4495	1316 (29.3)	2254	721 (32)	0.022
Asthma/COPD - no (%)	4495	1371 (30.5)	2254	753 (33.4)	0.015
Diabetes mellitus - no (%)	4495	2522 (56.1)	2254	1244 (55.2)	0.475
Vitals at Presentation					
Temperature (IQR) - F	4463	98.9 (98.2 - 100)	2254	98.7 (98.1 - 99.8)	< 0.001
SBP (IQR) - mmHg	4469	131 (114 - 148)	2254	132 (117 - 148)	0.002
DBP (IQR) - mmHg	4465	75 (65 - 84)	2252	75 (67 - 84)	0.117
HR (IQR) – bpm	4467	98 (85 - 112)	2253	95 (82 - 107)	< 0.001

Page 35 of 41

BMJ Open

Oxygen saturation (IQR) - %	4463	95 (91 - 98)	2253	96 (92 - 98)	< 0.001
Respiratory Rate (IQR) - bpm	4466	20 (18 - 22)	2254	19 (18 - 22)	< 0.001
Laboratory Markers					
Hemoglobin (IQR) - g/dL	4372	12.8 (11.2 - 14.1)	2228	12.9 (11.5 - 14.2)	0.030
Platelet count (IQR) -k/µL	4372	188 (116 - 260)	2228	196 (143 - 259)	< 0.001
White blood cell count (IQR) - $k/\mu L$	4372	7.5 (5.6 - 10.6)	2228	6.4 (4.7 - 8.8)	< 0.001
Absolute lymphocyte count (IQR) - κ/μL	4420	1 (0.7 - 1.4)	2246	1 (0.7 - 1.4)	0.062
Sodium (IQR) – mEq/L	4414	137 (134 - 141)	2253	137 (134 - 140)	< 0.001
Potassium (IQR) – mEq/L	4389	4.3 (3.9 - 4.8)	2243	4.1 (3.8 - 4.5)	< 0.001
Chloride (IQR) – mEq/L	4394	98 (95 - 103)	2253	101 (98 - 104)	< 0.001
Bicarbonates (IQR) – mEq/L	4414	24 (20 - 26)	2253	24 (21 - 27)	< 0.001
Creatinine (IQR) - mg/dL	4410	1.1 (0.8 - 2)	2253	1.1 (0.8 - 1.5)	< 0.001
Glucose (IQR) - mg/dL	4414	134 (108 - 197)	2253	126 (104 - 184)	< 0.001
Aspartate aminotransferase (IQR) - J/L	4045	40 (27 - 65)	2084	35 (24 - 55)	< 0.001
Alanine aminotransferase (IQR) - J/L	4206	27 (17 - 44)	2171	26 (17 - 44)	0.292
Lactic acid (IQR) – mmol/L	3981	2.1 (1.6 - 3)	1913	1.9 (1.4 - 2.5)	< 0.001
Lactate dehydrogenase (IQR) - mmol/L	2935	384 (285 - 535)	1563	341 (254 - 468)	< 0.001
Creatine Kinase (IQR) – U/L	3453	168 (83 - 401)	1957	126 (67 - 282)	< 0.001
D-dimer (IQR) - µg/mL	2204	1.8 (0.9 - 3.9)	1907	1.2 (0.7 - 2.3)	< 0.001
Procalcitonin (IQR) – ng/mL	1789	0.2 (0.1 - 0.9)	1252	0.1 (0.1 - 0.3)	< 0.001
Troponin T* (IQR) - ng/mL	0	NA	2106	0.01 (0.01 - 0.03)	NA
Γroponin I* (IQR) – ng/mL	3662	0.01 (0.01 - 0.03)	0	NA	NA
nterleukin-6 (IQR) – pg/mL	1056	34 (14 - 75)	710	11 (4 - 26)	< 0.001
Fibrinogen (IQR) – mg/dL	1552	624 (491 - 750)	1040	536 (434 - 652)	< 0.001

Ferritin (IQR) – ng/ml	Ĺ	1969	716 (335 - 1498)	1637	510 (230 - 1094)	< 0.00
COPD = Chronic obstru	uctive pulmonary	y disease; D	BP = Diastolic blood	pressure; H	R = Heart rate; IQR =	
Interquartile range; SBI	P = Systolic bloc	od pressure.	* Troponin T was ava	ilable only	until June 2020, Trop	onin I
was available only after	r June 2020.					
						8
						0
	For peer review on	ly - http://bm	jopen.bmj.com/site/abou	t/guidelines.>	khtml	

Supplemental Table 3 - Initial Laboratory Blood Tests

	Spring (n=4495)	Summer (n=264)	Fall (n=377)	Winter (n=225
Hemoglobin (IQR) - g/dL	12.8 (11.2 - 14.1)	12.4 (10.7 - 13.9)	13 (11.6 - 14.3)	12.9 (11.5 - 14.2
Platelet count (IQR) - k/µL	188 (116 - 260)	228 (169 - 300)	200 (144 - 257)	196 (143 - 259
White blood cell count (IQR) - $k/\mu L$	7.5 (5.6 - 10.6)	8 (5.8 - 11)	6.6 (5.1 - 8.9)	6.4 (4.7 - 8.8)
Absolute lymphocyte count (IQR) - k/µL	1 (0.7 - 1.4)	1.2 (0.9 - 1.8)	1.1 (0.8 - 1.5)	1 (0.7 - 1.4)
Sodium (IQR) – mEq/L	137 (134 - 141)	138 (135 - 141)	137 (135 - 140)	137 (134 - 140
Potassium (IQR) – mEq/L	4.3 (3.9 - 4.8)	4.2 (3.8 - 4.6)	4 (3.8 - 4.4)	4.1 (3.8 - 4.5)
Chloride (IQR) – mEq/L	98 (95 - 103)	103 (100 - 105)	101 (99 - 104)	101 (98 - 104)
Bicarbonates (IQR) – mEq/L	24 (20 - 26)	24 (21 - 27)	25 (22 - 27)	24 (21 - 27)
Creatinine (IQR) - mg/dL	1.1 (0.8 - 2)	1 (0.8 - 1.5)	1 (0.8 - 1.3)	1.1 (0.8 - 1.5)
Glucose (IQR) - mg/dL	134 (108 - 197)	121 (100 - 171)	122 (102 - 173)	126 (104 - 184
Aspartate aminotransferase (IQR) - U/L	40 (27 - 65)	26 (20 - 38)	31 (21 - 47)	35 (24 - 55)
Alanine aminotransferase (IQR) - U/L	27 (17 - 44)	21 (14 - 32)	25 (16 - 41)	26 (17 - 44)
Lactic acid (IQR) – mmol/L	2.1 (1.6 - 3)	1.9 (1.4 - 2.7)	1.8 (1.3 - 2.5)	1.9 (1.4 - 2.5)
Lactate dehydrogenase (IQR) - mmol/L	384 (285 - 535)	254.5 (196 - 340)	300 (225 - 383)	341 (254 - 468
Creatine Kinase (IQR) - U/L	168 (83 - 401)	97 (57 - 176)	116 (60 - 213)	126 (67 - 282)
D-dimer (IQR) - µg/mL	1.8 (0.9 - 3.9)	1.1 (0.5 - 2.2)	0.8 (0.5 - 1.6)	1.2 (0.7 - 2.3)
Procalcitonin (IQR) – ng/mL	0.2 (0.1 - 0.9)	0.1 (0.1 - 0.4)	0.1 (0.1 - 0.2)	0.1 (0.1 - 0.3)
Troponin T* (IQR) - ng/mL	NA	0.01 (0.01 - 0.03)	0.01 (0.01 - 0.02)	0.01 (0.01 - 0.0
Troponin I* (IQR) – ng/mL	0.01 (0.01 - 0.03)	0.01 (0.01 - 0.01)	NA	NA
Interleukin-6 (IQR) – pg/mL	33.6 (13.8 - 75.2)	11.7 (3 - 43.1)	11 (4.7 - 22.2)	10.8 (4.3 - 25.6
Fibrinogen (IQR) – mg/dL	624 (491 - 750)	448 (370- 583)	540 (436 - 663)	535.5 (434 - 65

Ferritin (IQR) – ng/mL	716 (335 - 1498)	228 (90 - 562)	364 (166 - 785)	510 (230 - 109
IQR = Interquartile rar	ege. * Troponin T was av	vailable only until June 2	2020, Troponin I was av	vailable only after
June 2020				
				1(
	For peer review only - http:/	//bmjopen.bmj.com/site/ab	out/guidelines.xhtml	

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
1/	
14	
15	
10	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
20	
27	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
17	
42	
45	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
54	
22	
56	
5/	
58	
59	
60	

Supplemental Table 4 - Therapies Administered during the Admission

	Spring	Summer	Fall	Winter
	(n=4495)	(n=264)	(n=377)	(n=2254)
Hydroxychloroquine - no (%)	3007 (66.9)	1 (0.4)	2 (0.5)	8 (0.4)
Azithromycin - no (%)	1322 (29.4)	51 (19.3)	118 (31.3)	374 (16.6)
Other antibiotics - no (%)	3382 (75.2)	160 (60.6)	214 (56.8)	1082 (48)
Steroids - no (%)	1485 (33)	71 (26.9)	195 (51.7)	1462 (64.9)
Angiotensin-converting- enzyme Inhibitors - no (%)	318 (7.1)	36 (13.6)	51 (13.5)	269 (11.9)
Angiotensin II receptor blockers - no (%)	264 (5.9)	23 (8.7)	32 (8.5)	212 (9.4)
Statin - no (%)	1478 (32.9)	109 (41.3)	129 (34.2)	1002 (44.5)
Therapeutic anticoagulation - no (%)	1041/4496 (31.2)	76 (28.8)	98 (26.0)	772 (34.3)
Remdesivir* - no (%)	78 (1.7)	37 (14)	134 (35.5)	1224 (54.3)
Lopinavir/Ritonavir – no (%)	40 (0.9)	0 (0)	0 (0)	0 (0)
Ivermectin – no (%)	11 (0.2)	1 (0.4)	0 (0)	34 (1.5)

* 45 patients listed as remdesivir recipients in the spring season were part of a 1:1 double-blind, placebocontrolled study. Instead, all the patients in summer, fall, and winter seasons listed as remdesivir recipients received the actual medication.

Supplemental Figure 1 - Distribution of Propensity Score

AST = aspartate transaminase; BMI= body mass index; CAD= coronary artery disease; COPD = chronic
obstructive pulmonary disease; CKD = chronic kidney disease; DBP= diastolic blood pressure; DM = Diabetes
mellitus; HF= heart failure; HLD = hyperlipidemia; HNT = hypertension; HR = heart rate; SBP = systolic blood
pressure; WBC = white blood cell count

STROBE Statement—Checklist of items that should be included in reports of cohort studies

	Item No	Recommendation	Page No
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the	1
		abstract	
		(b) Provide in the abstract an informative and balanced summary of what was	2
		done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being	4
		reported	
Objectives	3	State specific objectives, including any prespecified hypotheses	4
Methods			1
Study design	4	Present key elements of study design early in the paper	4-5
Setting	5	Describe the setting, locations, and relevant dates, including periods of	4-5
		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of	4-5
		participants. Describe methods of follow-up	
		(b) For matched studies, give matching criteria and number of exposed and	
		unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and	5 Supp
		effect modifiers. Give diagnostic criteria, if applicable	Supp
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	4-5
measurement		assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	12
Bias	9	Describe any efforts to address potential sources of bias	12-
Study size	10	Explain how the study size was arrived at	4-5
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,	4-5
		describe which groupings were chosen and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to control for	5-6
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	Supp
		(c) Explain how missing data were addressed	
		(d) If applicable, explain how loss to follow-up was addressed	
		(<u>e</u>) Describe any sensitivity analyses	
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	6-7
		eligible, examined for eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social)	6-9
		and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	
		(c) Summarise follow-up time (eg, average and total amount)	
Outcome data	15*	Report numbers of outcome events or summary measures over time	8-9

Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their	
		precision (eg, 95% confidence interval). Make clear which confounders were adjusted for	
		and why they were included	
		(b) Report category boundaries when continuous variables were categorized	6-9
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	
		meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity	9
		analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	9
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision.	12-
		Discuss both direction and magnitude of any potential bias	13
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	9-11
		multiplicity of analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	14
Other informati	on		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	15
		applicable, for the original study on which the present article is based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml