Prevention of oxaliplatin-induced peripheral neuropathy: a systematic review and metaanalysis

Siyu Peng (MBBS, MRCP, MMed)^{1†}, Ariel Fangting Ying (BSc Hons)^{2†}, Nicholas Jian Hao Chan (MBBS)¹, Raghav Sundar (MBBS, MRCP, MMed, MCI, FAMS)^{3,4,5}, Yu Yang Soon (MBBS, MSc, FRANZCR)^{6*}, Aishwarya Bandla (PhD)^{3,4*}

Authors' affiliations:

1. Department of Medicine, National University Health System, Singapore.

2. Health Services and System Research, Duke-NUS Medical School, Singapore.

3. Department of Haematology-Oncology, National University Cancer Institute Singapore, National University Health System, Singapore.

4. The N.1 Institute for Health, National University of Singapore, Singapore.

5. Yong Loo Lin School of Medicine, National University of Singapore, Singapore.

6. Department of Radiation Oncology, National University Cancer Institute Singapore, National University Health System, Singapore.

[†]These authors contributed equally to the work.

*Correspondence to:

Dr. Aishwarya Bandla, The N.1 Institute for Health, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore. Email: aishwarya.bandla@nus.edu.sg

Dr. Yu Yang Soon, Department of Radiation Oncology, National University Cancer Institute Singapore, National University Health System, Singapore. Email: yu_yang_soon@nuhs.edu.sg

Supplementary Methods

Data sources and searches

Two independent researchers (PS and AYF) conducted a comprehensive literature search in three databases: PubMed-MEDLINE, Embase and Scopus without language restrictions. The dates searched were from 1 Jan 2005 to 8 Aug 2020.

Differences in opinion were reconciled through discussion and consultation with an independent third party.

The search terms included

- Neuroprotect* OR chemoprotect* OR prevent* OR protect* OR prophy* OR reduc*
- Oxaliplatin* OR Eloxatin*
- Neuropath* OR neuro* OR nerv*

The following filters were applied to the respective databases

Engine	PubMed (1)	Embase (1)	Scopus (2)
Filter	(randomized	'crossover	(INDEXTERMS ("clinical trials" OR
	controlled	procedure':de OR	"clinical trials as a topic" OR "randomized
	trial[pt] OR	'double-blind	controlled trial" OR "Randomized
	controlled	procedure':de OR	Controlled Trials as Topic" OR "controlled
	clinical trial[pt]	'randomized	clinical trial" OR "Controlled Clinical
	OR	controlled trial':de	Trials" OR "random allocation" OR
	randomized[tiab]	OR 'single-blind	"Double-Blind Method" OR "Single-Blind
	OR placebo[tiab]	procedure':de OR	Method" OR "Cross-Over Studies" OR
	OR drug	(random* OR	"Placebos" OR "multicenter study" OR
	therapy[sh] OR	factorial* OR	"double blind procedure" OR "single blind
	randomly[tiab]	crossover* OR cross	procedure" OR "crossover procedure" OR
	OR trial[tiab] OR	NEXT/1 over* OR	"clinical trial" OR "controlled study" OR
	groups[tiab]	placebo* OR doubl*	"randomization" OR "placebo")) OR
	NOT (animals	NEAR/1 blind* OR	(TITLE-ABS-KEY (("clinical trials" OR
	[mh] NOT	singl* NEAR/1	"clinical trials as a topic" OR "randomized
	humans [mh]))	blind* OR assign*	controlled trial" OR "Randomized
	OR meta-	OR allocat* OR	Controlled Trials as Topic" OR "controlled
	analysis [pt] OR	volunteer*):de,ab,ti	clinical trial" OR "Controlled Clinical
	meta-analys*		Trials as Topic" OR "random allocation"
		NOT ([animals]/lim	OR "randomly allocated" OR "allocated
		NOT [humans]/lim)	randomly" OR "Double-Blind Method" OR
			"Single-Blind Method" OR "Cross-Over
			Studies" OR "Placebos" OR "cross-over
			trial" OR "single blind" OR "double blind"
			OR "factorial design" OR "factorial
			trial"))) OR (TITLE-ABS (clinical trial*
			OR trial* OR rct* OR random* OR
			blind*))

Quality assessment

We used the approach proposed by the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) Working Group (www.gradeworkinggroup.org) to evaluate the certainty of the result across 4 domains, namely risk of bias, inconsistency, indirectness and imprecision.

The risk of bias was assessed across 6 items in the Risk of Bias (RoB) table in the RevMan 5.3 software, namely "random sequence generation (selection bias)", "allocation concealment (selection bias)", "blinding (performance bias and detection bias)", "incomplete outcome data (attrition bias)" and "selective reporting (reporting bias)". Each bias assessment item was graded as having "High", "Unclear" or "Low" risk of bias.

The following criteria were applied while translating the risk of bias result from RevMan to GRADE scoring:

- Very serious: more than one "High" risk item from RevMan RoB
- Serious: one "High" risk item or two "Unclear" risk items from RevMan RoB
- Not serious: less than one "High" risk item from RevMan RoB

Data Synthesis and Analysis

Null hypothesis: There is no difference in the risk of oxaliplatin induced peripheral neuropathy (OIPN) between intervention vs placebo.

The primary outcome extracted was the Risk Ratio (RR) of grade 2 and above OIPN assessed using the Common Terminology Criteria for Adverse Events (CTCAE). Duration of assessment follows the longest duration in the trials, except when there is significant drop out rate, in which case an earlier cut off is used to mitigate attrition bias.

If there were two or more studies reporting the risk ratio of OIPN by comparing the same intervention to placebo, we synthesized the overall risk ratio using Forest plots using the random effect model of metaanalysis in RevMan 5.3 Software. We used the Q-test to assess between study heterogeneity, which is presented in terms of I^2 of heterogeneity. If significant methodological or statistical heterogeneity was detected, we performed sensitivity analysis based on factors that could have contributed to heterogeneity.

For continuous outcomes such as pain score, neuropathy score, we calculated the difference in means and expressed the results with 95% confidence intervals (CI).

For outcomes that do not fit the above criteria, we assessed outcomes as they were presented in the original trial, such as various nerve conduction studies results.

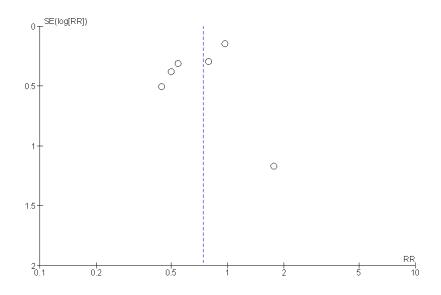
Lastly, for studies that compared two types of interventions, we conducted network meta-analysis using R programming to obtain indirect evidence of effect of each type of intervention versus placebo or no additional intervention.

All reported p-values are 2-sided. A p value of less than 0.05 was considered to indicate statistical significance. All analyses were performed with the RevMan 5.3 software and R software.

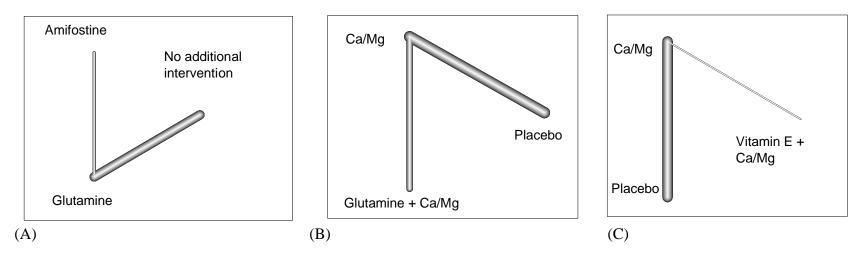
A review protocol was created prior to the intervention and registered with PROSPERO (registration number CRD42021225095), with no amendment made since submission.

Supplementary Figures

	L-Carno	sine	Contr	ol		Risk Ratio	Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI	
Saad 2016	1	30	18	30	50.0%	0.06 [0.01, 0.39] 🔶	_	
Yehia 2015	1	30	19	31	50.0%	0.05 [0.01, 0.38]		
Total (95% CI)		60		61	100.0%	0.05 [0.01, 0.22] 🚽		
Total events	2		37					
eterogeneity: Tau ² = 0.00; Chi ² = 0.00, df = 1 (P = 0.99); l ² = 0% est for overall effect: Z = 4.13 (P < 0.0001)							1 0.1 1 10 avours L-Carnosine Favours contro	100 כו


Supplementary Figure 1. Forest plot for comparison of the incidence of OIPN of CTCAE grade ≥ 2 : L-Carnosine versus control (no additional intervention)

	Ca/M	lg	Co	ntrol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Dong 2010	4	22	11	27	10.4%	0.45 [0.16, 1.21]	_
Gobran 2013	7	30	14	30	16.5%	0.50 [0.24, 1.06]	
Kiladze 2016	18	78	16	55	24.2%	0.79 [0.44, 1.41]	
Loprinzi 2014	50	118	52	119	48.9%	0.97 [0.72, 1.30]	
Total (95% CI)		248		231	100.0%	0.76 [0.54, 1.08]	-
Total events	79		93				
Heterogeneity: Tau ² = 0.04; Chi ² = 4.40, df = 3 (P = 0.22); l ² = 32%							
Test for overall effect:	Z = 1.53 (P	P = 0.13)				0.1 0.2 0.5 1 2 5 10 Favours Ca/Mg Favours Placebo


Supplementary Figure 2. Forest plot for comparison of the incidence of OIPN of CTCAE grade ≥ 2 : Ca/Mg versus placebo, sensitivity analysis by excluding trials with early termination

	Ca/M	lg	Contr	ol		Risk Ratio	Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl	
Chay 2010	3	9	2	10	3.7%	1.67 [0.36, 7.82]		—
Grothey 2011	14	50	26	52	24.8%	0.56 [0.33, 0.94]	_	
Loprinzi 2014	74	118	92	119	71.4%	0.81 [0.68, 0.96]		
Total (95% CI)		177		181	100.0%	0.76 [0.56, 1.03]	•	
Total events	91		120					
Heterogeneity: Tau ² = Test for overall effect:				= 0.25);	l² = 27%		I I I I 0.1 0.2 0.5 1 2 5 Favours Ca/Mg Favours Place	1(

Supplementary Figure 3. Forest plot for comparison of the incidence of OIPN of OSS grade ≥ 2 : Ca/Mg versus placebo

Supplementary Figure 4. Funnel plot of the six trials included in meta-analysis for comparison of the incidence of OIPN of CTCAE grade ≥ 2 with Ca/Mg versus placebo

Supplementary Figure 5. Network diagram comparing (A) Amifostine, Glutamine and no additional intervention, (B) Glutamine + Ca/Mg, Ca/Mg and placebo, and (C) Vitamin E + Ca/Mg, Ca/Mg and placebo.

Network graphs illustrate the type of comparison between different interventions. The presence of lines between a pair of nodes (interventions) indicates direct comparison from original trials, while the absence of line indicates indirect comparison derived from network meta-analysis. The thickness of the lines is proportional to the number of trials that conducted the respective direct comparisons.