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Supporting Information

A The dynamic model of cellular growth

We derive the dynamic model of cellular growth (1), studied in the main text.
We denote fundamental objects and quantities as follows:

Mol set of molecular species

Rxn set of chemical reactions

N g RMolxRxn stoichiometric matrix (unit: 1)

w € RYe! molar masses (unit: gmol~1)
X e Rg"' amounts of substance (unit: mol)
R(-) € RRxn reaction rates (extensive) (unit: molh™1)

The chemical reactions induce the dynamical system

dx

— = NR. 1
i (1)
We define mass,
M = ZM’X@‘ =wl'X, (unit: g) (2a)
the intensive quantities
X Mol : -1
v= 7€ RY?,  (unit: molg™") (2b)
v = il e RR" (unit: molg=*h~1) (2¢)
M
and growth rate
1 dM
o= ME (unit: hil) (2d)

Thereby, we use mass instead of volume to define the “concentrations” x, the
(intensive) reaction rates v, and growth rate p. In practice, cellular composition is often
given in the unit molg=! (dry weight).

Finally, we recall the chain rule (of differentiation),

dX 14X X du
dtM M dt M2 dt’
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Equations (1), (2), and the chain rule yield the dynamic model of cellular growth:

i—f = Nv(z) — px
and
w z =1

Thereby, we assume given cell density. Recall that reaction rates depend on
(volumetric) concentrations X/V/,

R=R(X/V)=RM/V-X/M)=R(pz)

(unit: gL~1). Hence,

with volume V' (unit: L) and cell density p = %

R R(px)
V=r = T =v(px).

For constant cell density p, v = v(x) only depends on concentrations.
For alternative derivations, see e.g. [2] or [1].
By multiplying the mass balance equation with a vector ¢ € RM°! we obtain

d(cT'z)
dt
We highlight two observations that hold for any model of cellular growth.

=c'No(z) — p(Tx).

Fact (conservation laws). In a model of cellular growth, there cannot be any
conservation laws. In mathematical terms, ker N7 0 R¥! = {0}.

To see this, assume ¢/ N = 0 with 0 # ¢ > 0, for exz;mple7 assume ¢; = co = 1 and
¢; = 0, otherwise. Then, d(‘iw) = d(wng)
r1 = xo = 0 at steady state.

= —p(x1 +22) <0, and g > 0 implies

Fact (dependent concentrations). In a model of cellular growth, there can be
dependent concentrations. In mathematical terms, ker N7 # {0}.
To see this, assume ¢/ N = 0 with 0 # ¢, for example, assume ¢; = 1, ¢ = —1, and
d(cTz)  d(zi—=z2)
a - T At

¢; = 0, otherwise. Then,
steady state.

—u(x1 —x2), and p > 0 implies x1 = x5 at

B Example: membrane constraints

For the small model of a self-fabricating cell studied in the main text, we derive the
membrane constraints (7¢) and (7d).
The cell membrane area A is formed by lipids L and importers |G and IN,

A= AL-#L+ A - (#IG + #IN),

where A and A denote the areas of lipids and importers, respectively, and #X denotes
the number of molecule X. After division by Avogadro’s number N4, we have

Na AL sL+ Al (sig + sin),

where sx = % denotes the amount of substance. Further, after division by cell
mass m, we have

A
mNA

= AL L+ A| (JC|G + x|N)7
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where zx = %X denotes the (mass-specific) concentration. Finally, using cell volume V/,
the surface-to-volume ratio r = é, and cell density p = {7, we obtain —7’2 = é —XI =z
P
and hence
r ALz + Al (216 + Zin)
= ALz 1 (TG + ZIN)-
pNa

Additionally, we require that a minimum fraction « of the surface area is formed by
lipids,
AL-#L>aA=a(AL-#L+ A - (#1G+#IN)),
that is,
ALz > a(ALoL + A (26 + 2iv))

where we use concentrations instead of numbers of molecules. Equivalently,

(1—-—a)ALzL > a4 (xig + xIn).

C Example: figures and tables

’ Name ‘ (In)equality
mass balance G UIG — VEAA — NLVELD = 0
mass balance N YN — VEaa > 0
mass balance AA | veaa — 1y (wig + win) — e (WeaA + WELD + WEL) — NRWR > 0
mass balance LD | vgp —vgL >0
capacity 1G 6 < Keat TiG
capacity IN UIN < Kcat TIN
capacity EAA VEAA < Kcat TEAA
capacity ELD VELD < Kcat TELD
capacity EL veEL < Keat TEL
capacity R ny (wig + win) + ne (wWeaa + weLp + weL) + nr wr < ke TR
membrane L (1—a)A Lz > a4 (T + 7IN)
membrane ALz + Ar (g + oin) = S5
(dry) mass wlhe =1

Table A. Essential constraints for the small model of a self-fabricating cell.

Mass balance constraints (Nv), > 0 are stated only for metabolites s € {G, N, AA, LD},
since lipids L and macromolecules Mac = {IG, IN, EAA, ELD, EL, R} are products of
exactly one reaction each and not educts of any reaction. The corresponding constraints
veL > 0 and wg > 0 for s € Mac are covered by the irreversibility of all reactions, v > 0.
The last two constraints are equality constraints (which are always active).
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Fig C. (Scaled) fluxes for (a) the 8 EGVs that exist for all growth rates and (b) the 16
EGVs that exist in regime L plus the 2 EGVs that exist in regime H.
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D Minimal growth model with alternative pathways
Consider the following minimal model of cellular growth with two alternative pathways:
R }» El

R
Eo AA——R
TONRL
The cell takes up external substrates and forms amino acids (AA) via two “reactions”,

T ELAA  and ro: E—2>AA7

catalyzed by the “enzymes” E1 and E2, respectively. Amino acids are then used by the
ribosome (R) to synthesize the enzymes and the ribosome itself,

s1: AA S EL 5o AADE2 sk: AARR

The set of molecular species is Mol = {AA,E1,E2, R}, and the set of reactions is
Rxn = Rmet U Rsyn with metabolic reactions Rmet = {r1, 72} and synthesis reactions
Rsyn = {s1, $2, sr}-

The resulting stoichiometric matrix and the corresponding flux vector are given by

Ty T2 S1 Sa SR
AA 1 1 -1 -1 -1
E 0 0 1 0 0
1 N
E2 0O 0 O 1 0
R 0O 0 0 0 1

and

(v1, v2; w1, wa, wr)! = 0.

By mass conservation (for the synthesis reactions), the molar masses obey
w=0u-(1,1,1,1)T. The growth cone is given by

Cy = {(vl,vg;wl,wg,wR)T S R;X" | v1 4+ v2 — wy; — we — wr > 0}.

As it turns out, there are 4 x 2 = 8 EGMs (up to scaling), corresponding to the four
species and the two alternative pathways, that is, e*’ € R®" with s € Mol and
i € {1,2}. Explicitly,

M = /@ (1,050,0,0)",
M2 = pjw- (0,1;0,0,0)7,
et = pjw- (1,0;1,0,0)7,
eFl2 — w/w - (0,1;1,070)T,
B2l = p/w- (1,0;0,1,0)7,
eF2? = p/w- (0,1;0,1,0)7,
Rl = p/w- (1,0;0,0,1)7,
eR? = /- (0,1;0,0,1)7T.
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Every EGM “produces” exactly one molecular species, as indicated by its name, thereby
using either pathway 1 or 2. (For every EGM, there is exactly one species with nonzero
associated concentration.) Due to the factor u/@, all EGMs have associated growth
rate p.

GMs need not be AC, in particular, no EGM is AC. In fact, every (nonzero) GM is
BC, since all reactions are catalytic, however, a GM need not be CC. MAC subsets of
reactions are the supports of AC GMs. There are two MAC sets, namely
My = {r1,s1,sr} and My = {ra, $2, sr}, corresponding to the two alternative pathways.
AC GMs with support M) are generated by the EGMs eA1 eELL Rl (Analogously
for the MAC set Ms.)

For a GM v € Cj, the associated growth rate amounts to

p=wlNv=a v +vs),

determined by the “exchange” fluxes v; and vy. For fixed growth rate p, the growth
cone becomes a growth polytope,
Py(p) = {(v1,v25w1, w2, wr)” € RE™ Jwy + wy +wr < v1 + 02,
v +vg = p/w}.

Further, for scaled fluxes ¢ = @/u - v, the polytope becomes independent of p,

Py = {(01, b5 b1, 2, 0R)T € RE™ |1y + by + dr < 1,
01+ 09 =1 }

In particular, its projection to the synthesis fluxes w € Risy" is the “growth simplex”

Py = {(t1,12,10r)" € Rgsy" | 1 + g + iR < 13,

spanned by the projections of the scaled EGMs,

The “projections” of the MAC sets M7 and Mj to the synthesis reactions are

my = {s1,sr} and my = {s2, sg}. Scaled projections of AC GMs with support m; lie in

the (two-dimensional) simplex generated by e**, eE1 eR. (Analogously for ms.)
Catalytic closure can be ensured by additional constraints.

e In a constraint-based model, one considers inequality enzyme capacity constraints,
v; < k' xgy
for i € {1,2}, whereas

e in a (semi-)kinetic model, one considers equality constraints arising from enzyme
and ribosome kinetics,

v; = Ki(zaa) 2e;  and  w; = o; 7j(zAa) ZR

for i € {1,2} and j € {1,2,R}. Thereby, x,, 7; are functions of the amino acid
concentration xaa, and «; are control parameters (ribosome fractions) for
studying growth rate maximization, cf. [1,3].
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Moreover, one often considers ribosome capacity constraints: wy + ws + wr < kg TR in
constraint-based models and > jef1,2ry @ < 1in (semi-)kinetic models. However, the
(inequality) ribosome capacity constraint is treated separately in the (semi-)kinetic
model, and for reasons of comparison, we just require zg > 0 in the constraint-based
model.

Additional constraints involve concentrations. For a GM v € Cy, the associated
concentrations x are given by

Nv = (*7w17w2;wR)T =pr = M(IAA,IE1,$E27IR)T-

In particular, zg; = wy/p and xgp = wa/p.
In the following, we consider the growth polyhedra and EGVs arising from the
additional constraints.

Constraint-based model. For fixed growth rate p > 0, the growth polytope Py (1)
above is further restricted by inequality constraints,
P> (1) = {(v1, v2;w1, w3, wr)" € RE™ |wy + wy + wr < v1 + vg,
v] + vy = /@,
vr < K w [, vz < K wa /i }

For scaled fluxes © = @/u - v, the polytope becomes

Py > (1) = {(01, D2, 01,102, 0R)" € RE™ |4y + 1 + g < 1,
U1 + 09 =1,
piy < kP, piy < k5 g )

Its projection to the synthesis fluxes @ € R is given by

Py (1) = {(wl,wz,wR)T € RE™ |y 4y + g < 1,
n< k‘%at w1 + kgat Wa } .
(Scaled) EGVs are the ccND vectors of a (scaled) growth polytope. (Here, since Py > (1)
is contained in the nonnegative orthant, EGVs are the vertices.) The number of EGVs

depends on pu. For small p, there are 8 EGVs. As it turns out, there are at most two
EGVs with nonzero ribosome concentration/flux, namely

(1, 05 p/k§™, 0, 1 — pu/k§™)T,
(0, 1; 0, p/kS™, 1 — p/k5*)".

Only these EGVs can fulfill the additional ribosome capacity constraint. They are AC,
and their supports are the MAC sets M7 and M,. Their projections are

61 = (:u/kiat? 07 1- :U’/k(lzat)Ty
e’ = (0, :u/kgat7 1- M/kgat)T7

which have supports m; and ms, respectively.
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(Semi-)kinetic model. For fixed growth rate 1 > 0 and fixed amino acid
concentration zaa =: Z (and hence fixed functions k;(Z) =: &;), the growth polytope
P, () is further restricted by equality constraints,

Py (11, %) = {(v1, v2;w1, w2, wr)" € RE™ [y + vy — w1 —wo —wr = .7,
v + Vg = /@,
vy = Riwy/p, v = Rowa/p ).
For scaled fluxes & = @/p - v, the polytope becomes

pg,:(/hif) = { (b1, Do, W1, 12, R)" € RR;‘ |01 + D2 — Wy — Wy — WR = W1,
1+02 =1,

’lA)l :/?6112)1/[1,, 7}2 :EQZDQ/M}.

>

Since 91, 02 depend on w1, w2, the polytope is in one-to-one correspondence with its
projection to the synthesis fluxes w € RR;Y“’

P~ (1, T) = {(w17w271ﬁR)T € R |1 — 1y — 1y — iR = @7,
/?;112)1—1—/?;212)2 :,u}

Again, scaled EGVs are vertices of the scaled polytope Pg;(,u, Z). As it turns out, there
are at most two EGVs, in particular, at most two EGVs with nonzero ribosome
concentration/flux, namely

(1’ 0; /’L/E/la 0, 1-wz _M/RI)T7
(0, 1; 0, p/Ro, 1 —@Z — pu/Ro)"
These EGVs are AC, and their supports are the MAC sets M; and Ms. They are in
one-to-one correspondence with their projections,

61 = (M/R:l? 0, 1-wz - I’L/Rl)T7
e? = (0, p/fa, 1 — 0T — p/Rs)"

)

the vertices of the polytope Py —(u, Z), which are called elementary growth states
(EGSs) in [1]. (In fact, EGSs are defined via the control parameters «, which are,
however, in one-to-one correspondence with the synthesis fluxes w.)

The supports of the EGSs €1 and e4, that is, m; and mg, the projections of the
MAC sets, are called elementary growth modes in [1].
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