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A The dynamic model of cellular growth

We derive the dynamic model of cellular growth (1), studied in the main text.
We denote fundamental objects and quantities as follows:

Mol set of molecular species
Rxn set of chemical reactions

N ∈ RMol×Rxn stoichiometric matrix (unit: 1)
ω ∈ RMol

> molar masses (unit: g mol−1)

X ∈ RMol
≥ amounts of substance (unit: mol)

R(·) ∈ RRxn reaction rates (extensive) (unit: mol h−1)

The chemical reactions induce the dynamical system

dX

dt
= NR. (1)

We define mass,

M =
∑
i

ωiXi = ωTX, (unit: g) (2a)

the intensive quantities

x =
X

M
∈ RMol

≥ , (unit: mol g−1) (2b)

v =
R

M
∈ RRxn, (unit: mol g−1 h−1) (2c)

and growth rate

µ =
1

M

dM

dt
. (unit: h−1) (2d)

Thereby, we use mass instead of volume to define the “concentrations” x, the
(intensive) reaction rates v, and growth rate µ. In practice, cellular composition is often
given in the unit mol g−1 (dry weight).

Finally, we recall the chain rule (of differentiation),

d

dt

X

M
=

1

M

dX

dt
− X

M2

dM

dt
.
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Equations (1), (2), and the chain rule yield the dynamic model of cellular growth:

dx

dt
= Nv(x)− µx

and
ωTx = 1.

Thereby, we assume given cell density. Recall that reaction rates depend on
(volumetric) concentrations X/V ,

R = R(X/V ) = R(M/V ·X/M) = R(ρ x)

with volume V (unit: L) and cell density ρ = M
V (unit: g L−1). Hence,

v =
R

M
=
R(ρ x)

M
= v(ρ x).

For constant cell density ρ, v = v(x) only depends on concentrations.
For alternative derivations, see e.g. [2] or [1].
By multiplying the mass balance equation with a vector c ∈ RMol, we obtain

d(cTx)

dt
= cTNv(x)− µ (cTx).

We highlight two observations that hold for any model of cellular growth.

Fact (conservation laws). In a model of cellular growth, there cannot be any
conservation laws. In mathematical terms, kerNT ∩ RMol

≥ = {0}.
To see this, assume cTN = 0 with 0 6= c ≥ 0, for example, assume c1 = c2 = 1 and

ci = 0, otherwise. Then, d(cTx)
dt = d(x1+x2)

dt = −µ(x1 + x2) ≤ 0, and µ > 0 implies
x1 = x2 = 0 at steady state.

Fact (dependent concentrations). In a model of cellular growth, there can be
dependent concentrations. In mathematical terms, kerNT 6= {0}.

To see this, assume cTN = 0 with 0 6= c, for example, assume c1 = 1, c2 = −1, and

ci = 0, otherwise. Then, d(cTx)
dt = d(x1−x2)

dt = −µ(x1 − x2), and µ > 0 implies x1 = x2 at
steady state.

B Example: membrane constraints

For the small model of a self-fabricating cell studied in the main text, we derive the
membrane constraints (7c) and (7d).

The cell membrane area A is formed by lipids L and importers IG and IN,

A = AL ·#L +AI · (#IG + #IN),

where AL and AI denote the areas of lipids and importers, respectively, and #X denotes
the number of molecule X. After division by Avogadro’s number NA, we have

A

NA
= AL sL +AI (sIG + sIN),

where sX = #X
NA

denotes the amount of substance. Further, after division by cell
mass m, we have

A

mNA
= AL xL +AI (xIG + xIN),
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where xX = sX
m denotes the (mass-specific) concentration. Finally, using cell volume V ,

the surface-to-volume ratio r = A
V , and cell density ρ = m

V , we obtain A
m = A

V
V
m = r

ρ
and hence

r

ρNA
= AL xL +AI (xIG + xIN).

Additionally, we require that a minimum fraction α of the surface area is formed by
lipids,

AL ·#L ≥ αA = α (AL ·#L +AI · (#IG + #IN)) ,

that is,
AL xL ≥ α (AL xL +AI (xIG + xIN)) ,

where we use concentrations instead of numbers of molecules. Equivalently,

(1− α)AL xL ≥ αAI (xIG + xIN).

C Example: figures and tables

Name (In)equality

mass balance G vIG − vEAA − nLvELD ≥ 0

mass balance N vIN − vEAA ≥ 0

mass balance AA vEAA − nI (wIG + wIN)− nE (wEAA + wELD + wEL)− nR wR ≥ 0

mass balance LD vELD − vEL ≥ 0

capacity IG vIG ≤ kcat xIG
capacity IN vIN ≤ kcat xIN
capacity EAA vEAA ≤ kcat xEAA
capacity ELD vELD ≤ kcat xELD
capacity EL vEL ≤ kcat xEL
capacity R nI (wIG + wIN) + nE (wEAA + wELD + wEL) + nR wR ≤ kel xR
membrane L (1− α)AL xL ≥ αAI (xIG + xIN)

membrane AL xL +AI (xIG + xIN) = r
ρNA

(dry) mass ωTx = 1

Table A. Essential constraints for the small model of a self-fabricating cell.

Mass balance constraints (Nv)s ≥ 0 are stated only for metabolites s ∈ {G,N,AA, LD},
since lipids L and macromolecules Mac = {IG, IN,EAA,ELD,EL,R} are products of
exactly one reaction each and not educts of any reaction. The corresponding constraints
vEL ≥ 0 and ws ≥ 0 for s ∈ Mac are covered by the irreversibility of all reactions, v ≥ 0.
The last two constraints are equality constraints (which are always active).
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(a)

(b)

Fig C. (Scaled) fluxes for (a) the 8 EGVs that exist for all growth rates and (b) the 16
EGVs that exist in regime L plus the 2 EGVs that exist in regime H.
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D Minimal growth model with alternative pathways

Consider the following minimal model of cellular growth with two alternative pathways:

AA

E1

R

E2

R

R

R

E1

E2

The cell takes up external substrates and forms amino acids (AA) via two “reactions”,

r1 :
E1→ AA and r2 :

E2→ AA,

catalyzed by the “enzymes” E1 and E2, respectively. Amino acids are then used by the
ribosome (R) to synthesize the enzymes and the ribosome itself,

s1 : AA
R→ E1, s2 : AA

R→ E2, sR : AA
R→ R.

The set of molecular species is Mol = {AA,E1,E2,R}, and the set of reactions is
Rxn = Rmet ∪ Rsyn with metabolic reactions Rmet = {r1, r2} and synthesis reactions
Rsyn = {s1, s2, sR}.

The resulting stoichiometric matrix and the corresponding flux vector are given by



r1 r2 s1 s2 sR

AA 1 1 −1 −1 −1

E1 0 0 1 0 0

E2 0 0 0 1 0

R 0 0 0 0 1

 = N

and

(v1, v2; w1, w2, wR)T = v.

By mass conservation (for the synthesis reactions), the molar masses obey
ω = ω̄ · (1, 1, 1, 1)T . The growth cone is given by

Cg = {(v1, v2;w1, w2, wR)T ∈ RRxn
≥ | v1 + v2 − w1 − w2 − wR ≥ 0}.

As it turns out, there are 4× 2 = 8 EGMs (up to scaling), corresponding to the four
species and the two alternative pathways, that is, es,i ∈ RRxn

≥ with s ∈ Mol and
i ∈ {1, 2}. Explicitly,

eAA,1 = µ/ω̄ · (1, 0; 0, 0, 0)T ,

eAA,2 = µ/ω̄ · (0, 1; 0, 0, 0)T ,

eE1,1 = µ/ω̄ · (1, 0; 1, 0, 0)T ,

eE1,2 = µ/ω̄ · (0, 1; 1, 0, 0)T ,

eE2,1 = µ/ω̄ · (1, 0; 0, 1, 0)T ,

eE2,2 = µ/ω̄ · (0, 1; 0, 1, 0)T ,

eR,1 = µ/ω̄ · (1, 0; 0, 0, 1)T ,

eR,2 = µ/ω̄ · (0, 1; 0, 0, 1)T .
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Every EGM “produces” exactly one molecular species, as indicated by its name, thereby
using either pathway 1 or 2. (For every EGM, there is exactly one species with nonzero
associated concentration.) Due to the factor µ/ω̄, all EGMs have associated growth
rate µ.

GMs need not be AC, in particular, no EGM is AC. In fact, every (nonzero) GM is
BC, since all reactions are catalytic, however, a GM need not be CC. MAC subsets of
reactions are the supports of AC GMs. There are two MAC sets, namely
M1 = {r1, s1, sR} and M2 = {r2, s2, sR}, corresponding to the two alternative pathways.
AC GMs with support M1 are generated by the EGMs eAA,1, eE1,1, eR,1. (Analogously
for the MAC set M2.)

For a GM v ∈ Cg, the associated growth rate amounts to

µ = ωTN v = ω̄ (v1 + v2),

determined by the “exchange” fluxes v1 and v2. For fixed growth rate µ, the growth
cone becomes a growth polytope,

Pg(µ) =
{

(v1, v2;w1, w2, wR)T ∈ RRxn
≥ |w1 + w2 + wR ≤ v1 + v2,

v1 + v2 = µ/ω̄ } .

Further, for scaled fluxes v̂ = ω̄/µ · v, the polytope becomes independent of µ,

P̂g =
{

(v̂1, v̂2; ŵ1, ŵ2, ŵR)T ∈ RRxn
≥ | ŵ1 + ŵ2 + ŵR ≤ 1,

v̂1 + v̂2 = 1 } .

In particular, its projection to the synthesis fluxes ŵ ∈ RRsyn
≥ is the “growth simplex”

Pg = {(ŵ1, ŵ2, ŵR)T ∈ RRsyn
≥ | ŵ1 + ŵ2 + ŵR ≤ 1},

spanned by the projections of the scaled EGMs,

eAA = (0, 0, 0)T ,

eE1 = (1, 0, 0)T ,

eE2 = (0, 1, 0)T ,

eR = (0, 0, 1)T .

The “projections” of the MAC sets M1 and M2 to the synthesis reactions are
m1 = {s1, sR} and m2 = {s2, sR}. Scaled projections of AC GMs with support m1 lie in
the (two-dimensional) simplex generated by eAA, eE1, eR. (Analogously for m2.)

Catalytic closure can be ensured by additional constraints.

• In a constraint-based model, one considers inequality enzyme capacity constraints,

vi ≤ kcati xEi

for i ∈ {1, 2}, whereas

• in a (semi-)kinetic model, one considers equality constraints arising from enzyme
and ribosome kinetics,

vi = κi(xAA)xEi and wj = αj τj(xAA)xR

for i ∈ {1, 2} and j ∈ {1, 2,R}. Thereby, κi, τj are functions of the amino acid
concentration xAA, and αj are control parameters (ribosome fractions) for
studying growth rate maximization, cf. [1, 3].
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Moreover, one often considers ribosome capacity constraints: w1 + w2 + wR ≤ ktl xR in
constraint-based models and

∑
j∈{1,2,R} αj ≤ 1 in (semi-)kinetic models. However, the

(inequality) ribosome capacity constraint is treated separately in the (semi-)kinetic
model, and for reasons of comparison, we just require xR > 0 in the constraint-based
model.

Additional constraints involve concentrations. For a GM v ∈ Cg, the associated
concentrations x are given by

Nv = (∗, w1, w2, wR)T = µx = µ (xAA, xE1, xE2, xR)T .

In particular, xE1 = w1/µ and xE2 = w2/µ.
In the following, we consider the growth polyhedra and EGVs arising from the

additional constraints.

Constraint-based model. For fixed growth rate µ > 0, the growth polytope Pg(µ)
above is further restricted by inequality constraints,

Pg,≥(µ) =
{

(v1, v2;w1, w2, wR)T ∈ RRxn
≥ |w1 + w2 + wR ≤ v1 + v2,

v1 + v2 = µ/ω̄,

v1 ≤ kcat1 w1/µ, v2 ≤ kcat2 w2/µ } .

For scaled fluxes v̂ = ω̄/µ · v, the polytope becomes

P̂g,≥(µ) =
{

(v̂1, v̂2, ŵ1, ŵ2, ŵR)T ∈ RRxn
≥ | ŵ1 + ŵ2 + ŵR ≤ 1,

v̂1 + v̂2 = 1,

µ v̂1 ≤ kcat1 ŵ1, µ v̂2 ≤ kcat2 ŵ2 } .

Its projection to the synthesis fluxes ŵ ∈ RRsyn
≥ is given by

Pg,≥(µ) =
{

(ŵ1, ŵ2, ŵR)T ∈ RRsyn
≥ | ŵ1 + ŵ2 + ŵR ≤ 1,

µ ≤ kcat1 ŵ1 + kcat2 ŵ2 } .

(Scaled) EGVs are the ccND vectors of a (scaled) growth polytope. (Here, since P̂g,≥(µ)
is contained in the nonnegative orthant, EGVs are the vertices.) The number of EGVs
depends on µ. For small µ, there are 8 EGVs. As it turns out, there are at most two
EGVs with nonzero ribosome concentration/flux, namely

(1, 0; µ/kcat1 , 0, 1− µ/kcat1 )T ,

(0, 1; 0, µ/kcat2 , 1− µ/kcat2 )T .

Only these EGVs can fulfill the additional ribosome capacity constraint. They are AC,
and their supports are the MAC sets M1 and M2. Their projections are

e1 = (µ/kcat1 , 0, 1− µ/kcat1 )T ,

e2 = (0, µ/kcat2 , 1− µ/kcat2 )T ,

which have supports m1 and m2, respectively.
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(Semi-)kinetic model. For fixed growth rate µ > 0 and fixed amino acid
concentration xAA =: x̄ (and hence fixed functions κi(x̄) =: κ̄i), the growth polytope
Pg(µ) is further restricted by equality constraints,

Pg,=(µ, x̄) =
{

(v1, v2;w1, w2, wR)T ∈ RRxn
≥ |v1 + v2 − w1 − w2 − wR = µ x̄,

v1 + v2 = µ/ω̄,

v1 = κ̄1 w1/µ, v2 = κ̄2 w2/µ } .

For scaled fluxes v̂ = ω̄/µ · v, the polytope becomes

P̂g,=(µ, x̄) =
{

(v̂1, v̂2, ŵ1, ŵ2, ŵR)T ∈ RRxn
≥ | v̂1 + v̂2 − ŵ1 − ŵ2 − ŵR = ω̄ x̄,

v̂1 + v̂2 = 1,

v̂1 = κ̄1 ŵ1/µ, v̂2 = κ̄2 ŵ2/µ } .

Since v̂1, v̂2 depend on ŵ1, ŵ2, the polytope is in one-to-one correspondence with its
projection to the synthesis fluxes ŵ ∈ RRsyn

≥ ,

Pg,=(µ, x̄) =
{

(ŵ1, ŵ2, ŵR)T ∈ RRsyn
≥ |1− ŵ1 − ŵ2 − ŵR = ω̄ x̄,

κ̄1 ŵ1 + κ̄2 ŵ2 = µ } .

Again, scaled EGVs are vertices of the scaled polytope P̂g,=(µ, x̄). As it turns out, there
are at most two EGVs, in particular, at most two EGVs with nonzero ribosome
concentration/flux, namely

(1, 0; µ/κ̄1, 0, 1− ω̄ x̄− µ/κ̄1)
T
,

(0, 1; 0, µ/κ̄2, 1− ω̄ x̄− µ/κ̄2)
T
.

These EGVs are AC, and their supports are the MAC sets M1 and M2. They are in
one-to-one correspondence with their projections,

ε1 = (µ/κ̄1, 0, 1− ω̄ x̄− µ/κ̄1)
T
,

ε2 = (0, µ/κ̄2, 1− ω̄ x̄− µ/κ̄2)
T
,

the vertices of the polytope Pg,=(µ, x̄), which are called elementary growth states
(EGSs) in [1]. (In fact, EGSs are defined via the control parameters α, which are,
however, in one-to-one correspondence with the synthesis fluxes w.)

The supports of the EGSs ε1 and ε2, that is, m1 and m2, the projections of the
MAC sets, are called elementary growth modes in [1].
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