Supplementary Material

Tumor Immunology CRISPR Screening: Present, Past, and Future

Matthew B. Dong ^{1,2,3,4,5,6}, Kaiyuan Tang ^{1,2,3,7}, Xiaoyu Zhou ^{1,2,3}, Jingjia J. Zhou ^{1,2,3}, and Sidi Chen ^{1,2,3,4,6,7,8,9,10,11,@,#}

Affiliations

- 1. Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- 2. System Biology Institute, Yale University, West Haven, CT, USA
- 3. Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- 4. Immunobiology Program, Yale University, New Haven, CT, USA
- 5. Department of Immunobiology, Yale University, New Haven, CT, USA
- 6. M.D.-Ph.D. Program, Yale University, West Haven, CT, USA
- 7. Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA
- 8. Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
- 9. Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
- 10. Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA
- 11. Yale Center for Biomedical Data Science, Yale University School of Medicine, New Haven, CT, USA

@ Correspondence:

Sidi Chen (<u>sidi.chen@yale.edu</u>)

Table S1. Exhaustive list of cancer-immune CRISPR screens.

Citation	Cell Type	Species & Condition (in vitro/in vivo)	CRISPR Library	Brief Description	Read-out
[S1]	K562 monocytic cell line	Human in vitro	Whole genome CRISPRi library	To identify Siglec-7 ligands, dCas9- KRAB K562 cells were stained with recombinant Siglec-7-Fc protein	FACS sorting on K562 cells with Siglec-7-Fc low staining
[S2]	B16F10 melanoma cell line	Murine in vivo	Integrated computational analysis of 8 different whole genome screens and 12 published ICB clinical studies	Integrated computation analysis to identify N-linked glycoproteins that are depleted in ICB responsive tumors, identifying MAN2A1	Tumor growth kinetics and survival of <i>MAN2A1</i> perturbation in the presence or absence of ICB therapy compared to control
[S3]	Ramos: Burkitt's lymphoma cell line	Human in vitro	Whole genome CRISPR-ko library; whole genome CRISPRa library	To identify intrinsic regulators of cancer cell phagocytosis, Cas9-Ramos cells were incubated with anti-CD20 (rituximab) antibody and J774 macrophages in the presence or absence of anti-CD47 antibodies.	crRNA libraries were prepared from suviving cells and compared to untreated Ramos cell controls. For validate gene, authors specifically looked at genes depleted in CRISPR- ko cells to identify mutated genes that sensitize cancer cells to macrophage- mediated phagocytosis
[S4]	THP-1 monocytic cell line	Human in vitro	Whole genome CRISPR-ko library	To identify genes involved with monocyte/macrophage activation, Cas9- THP-1 cells were sorted based on inducible CD14 in the presence or absence of PMA stimulation	Identified druggable kinases that were selectively enriched in CD14-low expressing THP-1 cells that were stimulated with PMA
[85]	U937 monocytic cell line	Human in vitro	Whole genome CRISPR-ko library	To enrich for genes involved with LPS- induced cell death, Cas9-U937 cells were serially electroporated in the presence of LPS four times	Identified genes enriched in LPS- treated U937 cells compared to untreated U937 control

Citation	Cell Type	Species & Condition (in vitro/in vivo)	CRISPR Library	Brief Description	Read-out
[S6]	RAW 264.7 monocytic cell line	Murine in vitro	Whole genome CRISPR-ko library	To identify genes required for NLRP1B- mediated pyroptosis, Cas9-RAW 264.7 cells were treated with either nonselective- NLRP1B inflammasome inducer (DPP8/9 inhibitor) or selective-NLRP1B inflammasome inducer (anthrax lethal factor)	Genes enriched in response to both treatments were broadly involved with inflammasome activation. Gene enriched in lethal factor treatment only group identified genes involved selectively with NLRP1B-mediated pyroptosis
[S7]	Cas1-/-Casp11-/- immortal macrophages (iMacs)	Murine in vitro	Whole genome CRISPR-ko library	To delinate genes involved with different inflammasome-specific processes, Cas9- iMacs were created from Cas1-/-; Cas11-/- mice and electroporated with or without flagellin	Identified genes enriched in flagellin- treated samples compared to untreated controls
[S8]	Tlr4 –/- iMacs	Murine in vitro	Whole genome CRISPR-ko library	To identify genes with NLRP1B-mediated pyroptosis, Cas9-iMacs cells were treated with lethal toxin.	Surviving cells were sequenced for crRNA enrichment compared to untreated controls
[S9]	iMacs	Murine in vitro	crRNAs targeting upregulated lncRNAs	To identify the role of lncRNAs in NF-kB regulation, iMacs were transfected with a synthetic NF-kB promoter to drive GFP expression and used fur CRISPR screen in the context of different TLR stimulation	Small library of guides allowed researchers to study each crRNA individually using NF-kB reporter, as previously discussed
[S10]	iMacs	Murine in vitro	Whole genome CRISPR-ko library and library of essential genes targeting 3' UTR	Performed multiple screens: To identify genes involved with cell viability, Cas9- iMacs were taken on day 0 and day 21 to look for crRNAs enriched in later time point. To identify regulatory regions of essential genes, they designed select library targeting 3' UTR of genes. To identify modulator of NF-kB, they stimulated NF-kB-GFP-reporter iMacs with various TLR stimuli.	Negative regulators of essential genes were positively enriched for while positive regulators of essential genes were negatively selected. Positive regulators of NF-kB resulted in low GFP expression in response to stimulation while negative regulators were enriched in GFP-high expressing cells.

Citation	Cell Type	Species & Condition (in vitro/in vivo)	CRISPR Library	Brief Description	Read-out
[S 11]	Ba/F3 pro-B cell line	Murine in vitro	Whole genome CRISPR-ko library	To identify positive regulators of NF-kB, they stimulated NF-kB-GFP reporter B cell lines with TLR5, TLR7 and TLR9 agonist and serially sorted on GFP low cells	Identified genes enriched in GFP low cells to identify positive regulators of TLR signaling
[S 12]	KBM7 myeloid cell line (near haploid)	Human in vitro	Whole genome CRISPR-ko library	To identify regulators of TLR3 pathway, Cas9-KBM7 cell lines expressing NF-kB- GFP reporter were sequentially stimulated with poly(I:C) and sorted on GFP-negative cells	Positive regulators were identified by sorting on GFP-low KBM7 cells after sequential rounds of stimluation and sorting
[S 13]	THP-1 monocytic cell line	Human in vitro	Whole genome CRISPRi library	Cyclic dinucleotides (CDN) are potent inducers of the cGas-STING pathway. To identify genes involved with CDN uptake and metabolism, Cas9-THP-1 were transduced with a CDN-inducible reporter and cocultured with various CDNs	Genes involved with CDN uptake/metabolism were enriched in reporter low cells compared to reporter high cells.
[S14]	U937 monocytic cell line	Human in vitro	Whole genome CRISPR-ko library	To identify genes involved with CDN uptake and metabolism, Cas9-U937 cells were serially treated with lethal doses of cGAMP	Genes involved with CDN uptake/metabolism were enriched in surviving cells compared to untreated controls
[\$15]	THP-1 monocytic cell line	Human in vitro	Whole genome CRISPR-ko library	To identify modulators of phagocytosis in monocytes, Cas9-THP-1 cells were incubated with <i>S. aureus</i> labeled with pHrodo red, which increases in intensity with decreasing pH levels	Positive regulators of phagocytosis were identified in the pHrodo red-low group and negative regulators of phagocytosis were identified in the pHrodo-red high group
[\$16]	U937 monocytic cell line	Human in vitro	crRNAs targeting solute carriers (SLCs)	To identify SLC that modulate phagocytosis in monocytes, Cas9-U937 cells were incubated with latex beads labeled with pHrodo red, which increases in intensity with decreasing pH levels, and pH-insensitive YG dye	Positive regulators of phagocytosis were depleted in pHrodo-red+; YG+ cells but enriched in pHrodo-red-; YG- cells

Citation	Cell Type	Species & Condition (in vitro/in vivo)	CRISPR Library	Brief Description	Read-out
[S 17]	U937 monocytic cell line	Human in vitro	Whole genome CRISPR-ko library	To identify modulators of phagocytosis, Cas9-U937 were treated with different antigens conjugated to different iron reagents and sorted through magnetic separation	Genes enriched in the unbound magnetic fraction were determined to be positive regulators of phagocytosis and genes enriched in the magnetically bound fraction were consider to be negative regulators of phagocytosis
[S18]	KPCY+ pancreatic ductal adenocarcinoma (PDA) tumor cell line	Mouse in vivo	crRNAs targeting 850 epigenetic factors	To identify epigenetic factors modulating antitumor immunity, the author subcutaneously or orthotopically transplanted Cas9-PDA cells and treated the mice with gemcitabine, abraxane, CD40-agonist, CTLA4-inhibition, and PD- 1-inhibition (GAFCP)	Genes depleted in GAFCP-treated tumors conferred sensitivity to antitumor immunity
[S 19]	E0771 Triple Negative Breast Cancer cell line, Pan02 PDA cell line, B16F10 melanoma cell line	Mouse in vivo	Whole genome CRISPRa library	Demonstrating the utility of gene activation via CRISPRa to elicit antitumor immunity	Tumor growth curves to test efficacy of gene activation
[S20]	Juso melanoma cell line	Mouse in vitro	Whole genome CRISPR-ko library	To identify regulators of MHCII, Cas9- Juso cells were transduced with SteD- GFP, which is a bacterial pathogenic factor that downregulates MHCII, and stained for MHCII	MHCII-high expressing cells were serially sorted to identify negative regulators of MHCII expression
[S21]	Primary conventional dendritic cells	Mouse in vitro	Pathway specific, transcriptome-based focused CRISPR-ko library	To identify regulators of cross presentation, sorted cDC2s were individually infected with crRNAs and then cocultured with antigen-specific CD4 T cells.	Regulators of cross presentation were identified by crRNAs that attenuated T cell proliferation in the presence of antigen via CFSE cell proliferation assay.

Citation	Cell Type	Species & Condition (in vitro/in vivo)	CRISPR Library	Brief Description	Read-out
[\$22]	Daudi: Burkitt's lymphoma cell line	Human in vitro	Whole genome CRISPR-ko library	To identify positive and negative regulators of CD40 responses, Cas9-Daudi cells were stimulated with CD40L, which induced Fas surface expression. Cells were sorted on their ability or inability to induce high levels of Fas expression.	Negative regulators of CD40 expression were identified as inducing high levels of Fas expression. Positive regulators of CD40 expression failed to induce high levels of CD40 expression.
[\$23]	OCI-Ly-7: diffuse large B-cell lymphoma (DLBCL) line	Human in vitro	Whole genome CRISPR-ko library	To identify genes conferring resistance to anti-CD20 (rituximab) treatment, OCI-Ly- 7 cells were treated with short-term (24-72 hours followed by 14-days rest) and long- term exposure (21-day continuous treatment) to rituximab treatment. Cell death was induced by complement activation; complement is found in human serum	crRNAs enriched with rituximab treatment represents genes involved with treatment sensitivity. crRNAs depleted in the rituximab treatment group represent genes that confer resistance to anti-CD20 therapy
[S24]	Ramos: Burkitt's lymphoma cell line	Human in vitro	Whole genome CRISPR-ko library	To identify regulators of antibody-drug conjugated toxicity, Cas9-Ramos cells were serially treated with anti-CD22 maytansine to induce cell cytotoxcity in vitro	crRNAs enriched in surviving cells revealed genes involved endolyosomal regulators that when knocked out prevented the endocytosis and subsequent activation of anti-CD22 maytansine
[\$25]	JeKo-1: Mantle cell lymphoma line	Human in vitro	Whole genome CRISPRa library	To identify genes that confer resistance to bispecific antibody therapy (CD20xCD3), dCas9-MS2-JeKo-1 cells were serially treated with bispecific antibody and coincubated with cytotoxic CD8 T cells to induce JeKo-1 cell killing	Because this is CRISPRa, enriched crRNAs represent genes that confer resistance to bispecific T cell killing compared to untreated cell.

Citation	Cell Type	Species & Condition (in vitro/in vivo)	CRISPR Library	Brief Description	Read-out
[826]	MOLM-13: acute myeloid leukemia cell line	Human in vitro	Whole genome CRISPR-ko library	To identify genes that confer resistance to bispecific antibody therapy (CD123xCD3), Cas9-MOLM13 cells were treated with anti-CD123 antibodies followed by the addition of CD8 T cells. Surviving cells were allowed to expand for 2 weeks before NGS sequencing	Resistant hits are enriched crRNAs of genes that normally confer sensitivity to bispecific antibody treatment. Sensitization hits are depleted crRNAs of normal genes that would confer resistance to bispecific antibody treatment
[S27]	Jurkat: T acute lymphoblastic leukemia cell line	Human in vitro	Whole genome CRISPR-ko library	To identify genes involved with proximal T cell antigen receptor signaling, Cas9- Jurkat T cells were stimulated with anti- TCR antibody to induce TCR crosslinking and subsequent upregulation of CD69.	crRNAs enriched in CD69 high cells respresent negative regulators of TCR signaling whereas crRNAs enriched in CD69 low cells respresent positive regulator of TCR signaling
[S28]	68-41 T cell line	Mouse in vitro	Whole genome CRISPR-ko library	To identify genes involved with PD-1 expression, Cas9-68-41 T cells were serially sorted on PD-1 negative to low expression	Enriched crRNAs in PD-1 negative to low expressing cells represent genes augment PD-1 expression
[\$29]	Primary CD8 T cells	Human in vitro	Whole genome CRISPR-ko library	To identify genes involved with T cell proliferation, Cas9-CD8 T cells were stained with the cytoplasmic CSFE proliferation dye prior to being stimulated with anti-CD3/CD28 bead to induce T cell activation and proliferation. Nonproliferating cells were sorted on CFSE-hi expression and Proliferating cells were sorted on CFSE-lo expression	crRNAs enriched in nonproliferating T cells represent positive regulators of TCR signaling. crRNAs enriched in proliferating T cells represent regulatory genes that suppresses TCR signaling and proliferation.

Citation	Cell Type	Species & Condition (in vitro/in vivo)	CRISPR Library	Brief Description	Read-out
[S30]	Primary CD8 T cells	Mouse in vitro and in vivo	Whole genome CRISPR-ko library	To identify genes involved with tumor killing, Cas9-CD8 T cells were coincubated with cancer cells expressing their cognate antigen and stained with anti-CD107a antibody to capture TCR- induced degranulation/killing. To identify genes involved with tumor infiltration, Cas9-CD8 T cells were injected into antigen-expressing tumor-bearing mice and after several days tumors were extracted to identify T cells that were enriched in tumors	crRNAs enriched in CD107a-high cells represent negative regulators of T cell degranulation/killing. crRNAs enriched in tumors represent negative regulators of T cell infiltration
[\$31]	Primary CD8 T cells	Mouse in vivo	Whole genome CRISPR-ko library and library targeting metabolic genes	To identify metabolic genes involved with antitumor activity, Cas9-CD8 T cells were injected into antigen-expressing tumor- bearing mice and after several days tumors were extracted to identify T cells that were enriched in tumors	crRNAs enriched in tumors represent metabolic regulators that suppress T cell activity within tumors
[\$32]	Primary CD8 T cells	Mouse in vitro	CRISPR-ko library targeting kinases	Multiple flow cytometric assays were designed to identify genes involved with cell proliferation (CFSE), memory formation (CD62L), oxidative stress (DCFDA), and genomic stability (gH2AX).	Favorable crRNAs were enriched in cell that induced high cell expansion and increased memory formation while limiting oxidative stress and genome instability. These crRNAs represent genes that normally inhibit these functions due to the ability of the crRNAs to induce silencing frameshift mutations
[\$33]	NALM6: B acute lymphoblastic leukemia	Human in vitro	Whole genome CRISPR-ko library	To identify genes essential for CAR-T cytotoxicity, Cas9-NALM 6 cells were either treated with anti-CD19 CAR-T cells alone or treated with anti-CD19 CAR-T plus an apoptotic sensitizer (SMAC)	Enriched crRNAs represent mutated genes that confer resistance to CAR-T cell killing in the presence or absence of SMACs

Citation	Cell Type	Species & Condition (in vitro/in vivo)	CRISPR Library	Brief Description	Read-out
[\$34]	ID8: murine serous ovarian carcinoma cell line	Mouse in vitro	Curated CRISPR-ko library of control genes, immune modulators, epigenetic regulators, and MHC genes	To identify mutated genes that confer sensitivity to T cell killing, Cas9-ID8 cells were coincubated with T cells	crRNAs depleted in surviving cells reveal mutated genes that confer sensitization to T cell killing, which was confirmed by drug inhibition
[\$35]	B16F10 melanoma cell line	Mouse in vitro	Whole genome CRISPR-ko library	To identify genes that modulate PD-1 and MHC-I upregulation in response to IFN- gamma, Cas9-B16F10 cells were treated with high- and low-dose IFN-gamma and stained with anti-PD-1 and anti-MHC-I antibodies	The readout for this screen is quite complex and is better illustrated in the primary text. Briefly, regulatory genes involved with MHC-I expression, PD-1 expression, and MHC-I; PD-1 double expression were identified in B16 cells that behave contrary to what was expected with each treatment
[\$36]	THP-1, K562, KG-1, and U937 monocytic cell lines	Human in vitro	Curated CRISPR-ko library of transcription factors, chromatin regulators, signaling regulators, and modifiers of protein stability	This study was designed to generate a platform for single cell RNA-sequencing that simultaneously allows researchers to perform CRISPR screening, transcriptional analysis, and protein analysis	The readout is deconvolution of NGS data to identify crRNAs that downregulate PD-L1 expression at both the transcript and protein level
[\$37]	ALK+ anaplastic large cell lymphoma	Human in vitro	Whole genome CRISPR-ko library	To identify genetic modifiers involved with PD-L1 expression, Cas9-ALK+ ALCL cells were serially sorted on PD- L1-low expression	Enriched crRNAs are regulatory genes involved with repressing PD-L1 expression
[S38]	GIMEN: neuroblastoma cell line	Human in vitro	Whole genome CRISPR-ko library	To identify gene modulating MHC-I expression and NF-kB activity, Cas9- GIMEN cells were transduced with NF- kB-GFP reporter and stained with anti- MHC-I antibody	Positive regulators of MHC-I and NF- kB activity were identified in MHC-I; GFP double negative cells whereas negative regulators were enriched in MHC-I; GFP double positive cells.

Citation	Cell Type	Species & Condition (in vitro/in vivo)	CRISPR Library	Brief Description	Read-out
[\$39]	p53-/-; Myc+ heptocellular carcinoma cell line	Mouse in vivo	Whole genome CRISPR-ko library	To identify tumor-intrinsic factors that modulate antitumor immunity in vivo, Cas-HCC cell lines were subcutaneously transferred to immunocompetent and immunoincompetent mice. WT Cas9-HCC cells were rejected in immunocompetent mice while library-infected Cas9-HCC cells grew.	crRNAs in tumors that grew in immunocompetent mice were sequenced and compared to initial cell input. Enriched crRNAs represent genes that confer immune resistance in immunocompetent mice that when mutated allow HCCs to grow.
[S40]	B16F10 melanoma cell line	Mouse in vitro and in vivo	Whole genome CRISPR-ko library	To identify genes involved with T cell evasion, Cas9-B16F10-OVA cells were either subcutaneously transplanted into C57B6 mice or treated with OT-1 T cells. Resistance cells were obtained and placed under another round of T cell selection	Surviving cells were sequenced to determine crRNA enrichment compared to untreated controls, which identifies mutated genes that confer T cell resistance
[S41]	MC38 colon adenocarcinoma cell line	Mouse in vitro	Whole genome CRISPR-ko library	Cas9-MC38-OVA cells were treated with OT-1 T cells isolated from different genetic backgrouds in order to delinate genes involved with specific types of evasion mechanisms	Surviving cells were sequenced to determine crRNA enrichment compared to untreated controls, which identifies mutated genes that confer T cell resistance
[\$42]	B16F10 melanoma cell line	Mouse in vivo	Whole genome CRISPR-ko library	Cas9-B16F10 melanoma cell lines were subcutaneously transplanted into Tcra-/- mice, C57BL6 mice treated with GM-CSF + irradiated B16F10 (GVAX), or C57BL6 mice treated with GVAX + anti-PD-1	Surviving cells from different treatment groups were sequenced. Enriched crRNAs in GVAX or GVAX + anti-PD-1 treatment compared to Tcra-/- represent mutated genes that confer immune escape.
[S43]	B16F10 melanoma cell line; 4T1 and EMT6 breast cancer cell lines; CT26 and MC38 colon adenocarcinoma cell line; RenCa renal cell carcinoma cell line	Mouse in vitro	Whole genome CRISPR-ko library	To identify genes involved with T cell evasion, Cas9-expressing cell lines were treated with OT-1 T cells	Sensitizer genes are mutated genes that were depleted under T cell selection; resistor genes are mutated genes that were enriched under T cell selection

Citation	Cell Type	Species & Condition (in vitro/in vivo)	CRISPR Library	Brief Description	Read-out
[S44]	B16F10 melanoma cell line	Mouse in vitro	Whole genome CRISPR-ko library	To identify genes involved with T cell evasion, Cas9-B16F10-OVA cell lines were treated with OT-1 T cells	Sensitive cell represent cells bearing mutated genes that were depleted under T cell selection; Resistant cells possess mutated genes that were enriched under T cell selection
[S45]	K562 monocytic cell line	Human in vitro	Whole genome CRISPR-ko library	To identify mutated genes that confer sensitivity to NK cell-mediated killing, Cas9-K562 cells were coincubated with primary NK cells	Surviving cells were sequenced to determine crRNA enrichment compared to untreated controls, which identifies mutated genes that confer NK cell resistance
[S46]	K562 monocytic cell line	Human in vitro	Whole genome CRISPR-ko library	To identify mutated genes that confer sensitivity to NK cell-mediated killing, Cas9-K562 cells were coincubated with primary NK cells. To identify mutated genes that affect MHC-I processing and presentation, Cas9-K562 cells were treated with IFN-gamma	Depleted mutated genes after NK-92 challenge represent genes that confer sensitivity to NK cells; Enriched mutated genes after NK-92 challenge represent genes that confer NK cell resistance; Genes enriched in MHC-I- low cells are reflected in the impaired MHC-I response and those from the MHC-I-high cells are represented in exaggerated MHC-I response
[S47]	B16F10 melanoma cell line	Mouse in vitro	Whole genome CRISPR-ko library	To identify mutated genes that confer sensitivity to NK cell-mediated killing, Cas9-B16F10 cells were coincubated with primary NK cells. To identify mutated genes that affect MHC-I processing and presentation, Cas9-B16F10 cells were treated with IFN-gamma	Depleted mutated genes after NK cell challenge represent genes that confer sensitivity to NK cells; Enriched mutated genes after NK cell challenge represent genes that confer NK cell resistance; Genes enriched in MHC-I- low cells are reflected in the impaired MHC-I response and those from the MHC-I-high cells are represented in exaggerated MHC-I response

Citation	Cell Type	Species & Condition (in vitro/in vivo)	CRISPR Library	Brief Description	Read-out
[S48]	Patient-derived GBM cells and primary CAR-T cells	Human in vitro	Whole genome CRISPR-ko library	To identify genes that negatively regulate CAR-T activity, primary CAR-T cells were incubated with GBM cells and stained for PD-1 expression. To identify mutated genes that confer resistance to CAR-T cell therapy, Cas9-GBM cells were incubated with CAR-T cells	crRNAs in PD-1-negative expressing cells represent genes that negatively regulate T cell activity; crRNAs enriched in surviving GBM cells reflect mutated genes that confer GMB survival in response to CAR-T cell therapy
[S49]	Primary CD8 T cells	Human in vitro	CAR-T cell library	Performed various functional flow cytometric assays	Sorted on cells that express the higheset favorable phenotype or express the lowest unwanted phenotype
[851]	HEK293T: human embryonic kidney cell line	Human in vitro	Whole genome CRISPR-ko library	To identify the ligand of non-MHCI binding CD8 TCR, Cas9-HEK293T cells were coincubated with MC.7.G5- expressing T cells	crRNAs enriched in surviving cells reveal genes encoding potential ligand for MC.7.G5 TCR
[851]	Primary CD8 T cells	Mouse in vivo	Library targeting surface receptor proteins	To identify surface protein regulators of CD8 T cell activity, CD8 T cells were injected into GMB bearing mice	crRNAs enriched in GBM tumors encode for potential genes that negatively regulate CD8 T cell activity

Supplemental References

S1. Wisnovsky, S. *et al.* (2021) Genome-wide CRISPR screens reveal a specific ligand for the glycan-binding immune checkpoint receptor Siglec-7. *Proceedings of the National Academy of Sciences* 118. 10.1073/pnas.2015024118

S2. Shi, S. *et al.* (2020) Inhibition of MAN2A1 Enhances the Immune Response to Anti-PD-L1 in Human Tumors. *Clinical Cancer Research: An Official Journal of the American Association for Cancer Research* 26, 5990-6002. 10.1158/1078-0432.CCR-20-0778

S3. Kamber, R.A. *et al.* (2021) Inter-cellular CRISPR screens reveal regulators of cancer cell phagocytosis. *Nature* 597, 549-554. 10.1038/s41586-021-03879-4

S4. Jimenez-Duran, G. *et al.* (2020) Pharmacological validation of targets regulating CD14 during macrophage differentiation. *EBioMedicine* 61. 10.1016/j.ebiom.2020.103039

S5. Benaoudia, S. *et al.* (2019) A genome-wide screen identifies IRF2 as a key regulator of caspase-4 in human cells. *EMBO reports* 20, e48235. 10.15252/embr.201948235

S6. Chui, A.J. et al. (2019) N-terminal degradation activates the NLRP1B inflammasome. Science 364, 82-85. 10.1126/science.aau1208

S7. Lee, B.L. *et al.* (2018) ASC- and caspase-8-dependent apoptotic pathway diverges from the NLRC4 inflammasome in macrophages. *Scientific Reports* 8, 3788. 10.1038/s41598-018-21998-3

S8. Xu, H. *et al.* (2019) The N-end rule ubiquitin ligase UBR2 mediates NLRP1B inflammasome activation by anthrax lethal toxin. *The EMBO journal* 38, e101996. 10.15252/embj.2019101996

S9. Covarrubias, S. *et al.* (2017) CRISPR/Cas-based screening of long non-coding RNAs (lncRNAs) in macrophages with an NF-κB reporter. *The Journal of Biological Chemistry* 292, 20911-20920. 10.1074/jbc.M117.799155

S10. Covarrubias, S. *et al.* (2020) High-Throughput CRISPR Screening Identifies Genes Involved in Macrophage Viability and Inflammatory Pathways. *Cell Reports* 33, 108541. 10.1016/j.celrep.2020.108541

S11. Sato, R. *et al.* (2017) Requirement of glycosylation machinery in TLR responses revealed by CRISPR/Cas9 screening. *International Immunology* 29, 347-355. 10.1093/intimm/dxx044

S12. Zablocki-Thomas, L. *et al.* (2020) A genome-wide CRISPR screen identifies regulation factors of the TLR3 signalling pathway. *Innate Immunity* 26, 459-472. 10.1177/1753425920915507

S13. Luteijn, R.D. et al. (2019) SLC19A1 transports immunoreactive cyclic dinucleotides. Nature 573, 434-438. 10.1038/s41586-019-1553-0

S14. Ritchie, C. *et al.* (2019) SLC19A1 Is an Importer of the Immunotransmitter cGAMP. *Molecular Cell* 75, 372-381.e375. 10.1016/j.molcel.2019.05.006

S15. Lindner, B. *et al.* (2021) A genome-wide CRISPR/Cas9 screen to identify phagocytosis modulators in monocytic THP-1 cells. *Scientific Reports* 11, 12973. 10.1038/s41598-021-92332-7

S16. Sedlyarov, V. *et al.* (2018) The Bicarbonate Transporter SLC4A7 Plays a Key Role in Macrophage Phagosome Acidification. *Cell Host & Microbe* 23, 766-774.e765. 10.1016/j.chom.2018.04.013

S17. Haney, M.S. *et al.* (2018) Identification of phagocytosis regulators using magnetic genome-wide CRISPR screens. *Nature Genetics* 50, 1716-1727. 10.1038/s41588-018-0254-1

S18. Li, J. *et al.* (2021) Epigenetic and Transcriptional Control of the Epidermal Growth Factor Receptor Regulates the Tumor Immune Microenvironment in Pancreatic Cancer. *Cancer Discovery* 11, 736-753. 10.1158/2159-8290.CD-20-0519

S19. Wang, G. *et al.* (2019) Multiplexed activation of endogenous genes by CRISPRa elicits potent antitumor immunity. *Nature Immunology* 20, 1494-1505. 10.1038/s41590-019-0500-4

S20. Alix, E. *et al.* (2020) The Tumour Suppressor TMEM127 Is a Nedd4-Family E3 Ligase Adaptor Required by Salmonella SteD to Ubiquitinate and Degrade MHC Class II Molecules. *Cell Host & Microbe* 28, 54-68.e57. 10.1016/j.chom.2020.04.024

S21. Theisen, D.J. *et al.* (2018) WDFY4 is required for cross-presentation in response to viral and tumor antigens. *Science* 362, 694-699. 10.1126/science.aat5030

S22. Jiang, C. *et al.* (2019) CRISPR/Cas9 Screens Reveal Multiple Layers of B cell CD40 Regulation. *Cell Reports* 28, 1307-1322.e1308. 10.1016/j.celrep.2019.06.079

S23. Thomsen, E.A. *et al.* (2020) Identification of BLNK and BTK as mediators of rituximab-induced programmed cell death by CRISPR screens in GCB-subtype diffuse large B-cell lymphoma. *Molecular Oncology* 14, 1978-1997. 10.1002/1878-0261.12753

S24. Tsui, C.K. *et al.* (2019) CRISPR-Cas9 screens identify regulators of antibody–drug conjugate toxicity. *Nature Chemical Biology* 15, 949-958. 10.1038/s41589-019-0342-2

S25. Decker, C.E. *et al.* (2019) Genome-scale CRISPR activation screen uncovers tumor-intrinsic modulators of CD3 bispecific antibody efficacy. *Scientific Reports* 9, 20068. 10.1038/s41598-019-56670-x

S26. Liu, S.-Q. *et al.* (2021) A CRISPR Screen Reveals Resistance Mechanisms to CD3-Bispecific Antibody Therapy. *Cancer Immunology Research* 9, 34-49. 10.1158/2326-6066.CIR-20-0080

S27. Shang, W. *et al.* (2018) Genome-wide CRISPR screen identifies FAM49B as a key regulator of actin dynamics and T cell activation. *Proceedings of the National Academy of Sciences* 115, E4051-E4060. 10.1073/pnas.1801340115

S28. Okada, M. *et al.* (2017) Blockage of Core Fucosylation Reduces Cell-Surface Expression of PD-1 and Promotes Anti-tumor Immune Responses of T Cells. *Cell Reports* 20, 1017-1028. 10.1016/j.celrep.2017.07.027

S29. Shifrut, E. *et al.* (2018) Genome-wide CRISPR Screens in Primary Human T Cells Reveal Key Regulators of Immune Function. *Cell* 175, 1958-1971 e1915. 10.1016/j.cell.2018.10.024

S30. Dong, M.B. *et al.* (2019) Systematic Immunotherapy Target Discovery Using Genome-Scale In Vivo CRISPR Screens in CD8 T Cells. *Cell* 178, 1189-1204.e1123. 10.1016/j.cell.2019.07.044

S31. Gurusamy, D. *et al.* (2020) Multi-phenotype CRISPR-Cas9 Screen Identifies p38 Kinase as a Target for Adoptive Immunotherapies. *Cancer Cell* 37, 818-833.e819. 10.1016/j.ccell.2020.05.004

S32. Wei, J. *et al.* (2019) Targeting REGNASE-1 programs long-lived effector T cells for cancer therapy. *Nature* 576, 471-476. 10.1038/s41586-019-1821-z

S33. Dufva, O. *et al.* (2020) Integrated drug profiling and CRISPR screening identify essential pathways for CAR T-cell cytotoxicity. *Blood* 135, 597-609. 10.1182/blood.2019002121

S34. Lizotte, P.H. *et al.* (2018) A High-Throughput Immune-Oncology Screen Identifies EGFR Inhibitors as Potent Enhancers of Antigen-Specific Cytotoxic T-lymphocyte Tumor Cell Killing. *Cancer Immunology Research* 6, 1511-1523. 10.1158/2326-6066.CIR-18-0193

S35. Gu, S.S. *et al.* (2021) Therapeutically Increasing MHC-I Expression Potentiates Immune Checkpoint Blockade. *Cancer Discovery* 11, 1524-1541. 10.1158/2159-8290.CD-20-0812

S36. Papalexi, E. *et al.* (2021) Characterizing the molecular regulation of inhibitory immune checkpoints with multimodal single-cell screens. *Nature Genetics* 53, 322-331. 10.1038/s41588-021-00778-2

S37. Zhang, J.-P. *et al.* (2019) A novel model of controlling PD-L1 expression in ALK+ anaplastic large cell lymphoma revealed by CRISPR screening. *Blood* 134, 171-185. 10.1182/blood.2019001043

S38. Spel, L. *et al.* (2018) Nedd4-Binding Protein 1 and TNFAIP3-Interacting Protein 1 Control MHC-1 Display in Neuroblastoma. *Cancer Research* 78, 6621-6631. 10.1158/0008-5472.CAN-18-0545

S39. Codina, A. *et al.* (2019) Convergent Identification and Interrogation of Tumor-Intrinsic Factors that Modulate Cancer Immunity In Vivo. *Cell Systems* 8, 136-151.e137. 10.1016/j.cels.2019.01.004

S40. Han, P. *et al.* (2019) Genome-Wide CRISPR Screening Identifies JAK1 Deficiency as a Mechanism of T-Cell Resistance. *Frontiers in Immunology* 10, 251. 10.3389/fimmu.2019.00251

S41. Kearney, C.J. *et al.* (2018) Tumor immune evasion arises through loss of TNF sensitivity. *Science Immunology* 3. 10.1126/sciimmunol.aar3451

S42. Manguso, R.T. *et al.* (2017) In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. *Nature* 547, 413-418. 10.1038/nature23270

S43. Lawson, K.A. *et al.* (2020) Functional genomic landscape of cancer-intrinsic evasion of killing by T cells. *Nature* 586, 120-126. 10.1038/s41586-020-2746-2

S44. Pan, D. *et al.* (2018) A major chromatin regulator determines resistance of tumor cells to T cell-mediated killing. *Science (New York, N.Y.)* 359, 770-775. 10.1126/science.aao1710

S45. Zhang, X. *et al.* (2019) Synergized regulation of NK cell education by NKG2A and specific Ly49 family members. *Nature Communications* 10, 5010. 10.1038/s41467-019-13032-5

S46. Pech, M.F. *et al.* (2019) Systematic identification of cancer cell vulnerabilities to natural killer cell-mediated immune surveillance. *eLife* 8, e47362. 10.7554/eLife.47362

S47. Freeman, A.J. *et al.* (2019) Natural Killer Cells Suppress T Cell-Associated Tumor Immune Evasion. *Cell Reports* 28, 2784-2794.e2785. 10.1016/j.celrep.2019.08.017

S48. Wang, D. *et al.* (2021) CRISPR Screening of CAR T Cells and Cancer Stem Cells Reveals Critical Dependencies for Cell-Based Therapies. *Cancer Discovery* 11, 1192-1211. 10.1158/2159-8290.CD-20-1243

S49. Roth, T.L. *et al.* (2020) Pooled Knockin Targeting for Genome Engineering of Cellular Immunotherapies. *Cell* 181, 728-744.e721. 10.1016/j.cell.2020.03.039

S50. Crowther, M.D. *et al.* (2020) Genome-wide CRISPR–Cas9 screening reveals ubiquitous T cell cancer targeting via the monomorphic MHC class I-related protein MR1. *Nature Immunology* 21, 178-185. 10.1038/s41590-019-0578-8

S51. Ye, L. *et al.* (2019) In vivo CRISPR screening in CD8 T cells with AAV–Sleeping Beauty hybrid vectors identifies membrane targets for improving immunotherapy for glioblastoma. *Nature Biotechnology* 37, 1302-1313. 10.1038/s41587-019-0246-4