Supplementary Information

Heterotypic interactions drive antibody synergy against a malaria vaccine candidate

Robert J. Ragotte, David Pulido, Amelia M. Lias, Doris Quinkert, Daniel G.W. Alanine, Abhishek Jamwal, Hannah Davies, Adéla Nacer, Edward D. Lowe, Geoffrey W. Grime, Joseph J. Illingworth, Robert F. Donat, Elspeth F. Garman, Paul W. Bowyer, Matthew K. Higgins^{*}, Simon J. Draper^{*}

A.	HCDR1 HCDR1	(Cy.004) (Cy.009)	-	45 45	GFDFSSYA 52 GFTFSDYA 52		LCDR1 LCDR1	(Cy.004) (Cy.009)	-	45 45	STYN 48 SSYS 48	
	HCDR2 HCDR2	(Cy.004) (Cy.009)	-	70 70	I <mark>RN</mark> DGSFTL 78 I <mark>KS</mark> DGSFTL 78		LCDR2 LCDR2	(Cy.004) (Cy.009)	-	67 67	YND 69 YND 69	
	HCDR3 HCDR3	(Cy.004) (Cy.009)	-	116 116	TKSADDGGHYSDFSGEIDA AKSDDNGGHYSDFSGEIDA	134 134	LCDR3 LCDR3	(Cy.004) (Cy.009)	-	106 106	GNSDSRN <mark>V</mark> A GNSDSRN <mark>A</mark> A	114 114

Supplementary Figure 1. (A) Comparison of CDR loops of Cy.004 and Cy.009 with amino acid changes indicated in red. (B) SPR sensorgrams of anti-CyRPA mAb binding to CyRPA across a 6-step 2-fold dilution series starting at either 125 nM for higher affinity mAbs (Cy.002, Cy.003, Cy.005, Cy.010, c12, 8A7) or 500 nM for lower affinity mAbs (Cy.004, Cy.007, Cy.009). (C) Steady state affinity determination of Cy.004 and Cy.009 from a 7-step 2-fold dilution series starting at 4 μ M. (D) ELISA of mAb binding to native state or boiled and reduced CyRPA. Bars indicate the mean and error bars show the standard deviation across three replicates. R5.011 is an anti-RH5 mAb not expected to bind to CyRPA.

Supplementary Figure 2. Structures of CyRPA (blue) bound to growth inhibitory monoclonal antibodies. Cy.003 (yellow), Cy.004 (dark pink), and Cy.007 (light blue) are from this study while c12 (light pink) and 8A7 (gold) are from previous studies ^{22,26}.

Supplementary Figure 3. MicroPIXE data showing the absolute abundance of different metal ions within the Cy.009:CyRPA complex. Bars indicate the mean and error bars show the standard deviation across three replicate measurements.

Supplementary Figure 4. *In vitro* GIA mAb synergy evaluations with one mAb titrated across a 7-step 4-fold dilution curve starting at 2 mg/ml with a second mAb held constant at ~20 % GIA (blue). Red indicates predicted Bliss additivity. Black indicates the inhibition curve of the titrated mAb alone from the same experiment. Pink dashed line indicates measured inhibition of the antibody held constant on its own. Each point is the mean across triplicates with error bars indicating the standard deviation. (A) Inhibitory mAb combinations. (B) mAbs in combination with Cy.002. (C) Summary of k_a and K_D changes of Cy.003 and Cy.007 binding to CyRPA and Fab:CyRPA complexes (representative sensorgrams in Figure 5C) across two replicate experiments with the mean and standard deviation shown by the horizontal line and error bars. (D) SPR sensorgrams of Cy.004 and Cy.009 binding to CyRPA complexes, all in the absence of CaCl₂. Black lines indicate the measured response while red lines indicate the curve fit. (E) Summary of k_d , k_a , and K_D changes of Cy.004 and Cy.009 binding to CyRPA and Fab:CyRPA and Fab:CyRPA complexes (representative sensorgrams in panel D) across three replicate experiments with the mean and standard deviation shown by the horizontal line and cy.009 binding to CyRPA and Fab:CyRPA complexes (representative sensorgrams in panel D) across three replicate experiments with the mean and standard deviation shown by the horizontal line and error bars.

Supplementary Table 1: Antibody binding kinetics summary table

mAb	Buffer	Ligand	Figure	$k_a (M^{-1}s^{-1})$	$k_{d}(s^{-1})$	K _D (M)
Cy.002	PBS+P20	CyRPA	1	3.1×10^{5}	2.9×10^{-4}	9.4×10^{-10}
Cy.003	PBS+P20	CyRPA	1	1.2×10^5	4.7×10^{-3}	3.8×10^{-8}
Cy.004	PBS+P20	CyRPA	1	1.6×10^5	4.4×10^{-1}	2.8×10^{-6}
Cy.005	PBS+P20	CyRPA	1	1.4×10^5	$4.1 imes 10^{-4}$	2.8×10^{-9}
Cy.007	PBS+P20	CyRPA	1	1.0×10^{5}	1.1×10^{-2}	1.1×10^{-7}
Cy.009	PBS+P20	CyRPA	1	1.0×10^{5}	1.5×10^{-1}	1.5×10^{-6}
Cy.010	PBS+P20	CyRPA	1	2.2×10^5	$4.7 imes 10^{-4}$	2.1×10^{-9}
c12	PBS+P20	CyRPA	1	$7.4 imes 10^5$	$5.3 imes 10^{-4}$	7.2×10^{-10}
8A7	PBS+P20	CyRPA	1	2.5×10^5	2.9×10^{-4}	1.2×10^{-9}
Cy.004	TBS+P20	CyRPA	3	$8.7 imes 10^4$	2.7×10^{-1}	3.1×10^{-6}
Cy.004	TBS+P20 (1mM MgCl ₂)	CyRPA	3	6.9×10^{5}	1.7×10^{-1}	2.4×10^{-7}
Cy.004	TBS+P20 (1mM CaCl ₂)	CyRPA	3	5.4×10^5	6.7×10^{-4}	1.2×10^{-9}
Cy.003	TBS+P20 (1mM CaCl ₂)	CyRPA	5	$7.4 imes 10^4$	5.1×10^{-3}	7.0×10^{-8}
Cy.003	TBS+P20 (1mM CaCl ₂)	Cy.002:CyRPA	5	6.5×10^{4}	4.8×10^{-3}	7.7×10^{-8}
Cy.003	TBS+P20 (1mM CaCl ₂)	Cy.004:CyRPA	5	$4.8 imes 10^4$	$5.7 imes 10^{-4}$	1.3×10^{-8}
Cy.003	TBS+P20 (1mM CaCl ₂)	Cy.009:CyRPA	5	3.2×10^4	2.7×10^{-4}	8.6×10^{-9}
Cy.007	TBS+P20 (1mM CaCl ₂)	CyRPA	5	2.9×10^5	1.6×10^{-3}	5.4×10^{-9}
Cy.007	TBS+P20 (1mM CaCl ₂)	Cy.002:CyRPA	5	2.4×10^5	2.4×10^{-3}	1.1×10^{-8}
Cy.007	TBS+P20 (1mM CaCl ₂)	Cy.004:CyRPA	5	$1.5 imes 10^5$	2.4×10^{-4}	1.6×10^{-9}
Cy.007	TBS+P20 (1mM CaCl ₂)	Cy.009:CyRPA	5	$1.5 imes 10^5$	$3.8 imes 10^{-4}$	2.6×10^{-9}
Cy.004	PBS+P20	CyRPA	S4	3.1×10^{5}	4.9×10^{-1}	1.3×10^{-6}
Cy.004	PBS+P20	Cy.002:CyRPA	S4	1.7×10^{5}	3.9×10^{-1}	1.8×10^{-6}
Cy.004	PBS+P20	Cy.003:CyRPA	S4	1.2×10^5	5.9×10^{-2}	4.1×10^{-7}
Cy.004	PBS+P20	Cy.007:CyRPA	S4	$3.4 imes 10^4$	1.5×10^{-2}	3.9×10^{-7}
Cy.009	PBS+P20	CyRPA	S4	$1.1 imes 10^5$	1.4×10^{-1}	8.9×10^{-7}
Cy.009	PBS+P20	Cy.002:CyRPA	S4	$5.1 imes 10^4$	1.7×10^{-1}	1.5×10^{-6}
Cy.009	PBS+P20	Cy.003:CyRPA	S4	$5.0 imes 10^4$	1.3×10^{-2}	2.6×10^{-7}
Cy.009	PBS+P20	Cy.007:CyRPA	S4	1.3×10^4	2.7×10^{-2}	2.1×10^{-6}
1						

Supplementary Table 2: Interacting residues of mAb:CyRPA complexes.

	CyRPA			Cy.002		
Chain	Residue	Group	Chain	Residue	Group	Type of interaction
A/D	Y185	Side chain	C/F	S51	Side chain	Hydrogen bond
A/D	K188	Side chain	B/E	D123	Side chain	Hydrogen bond
A/D	D189	Side chain	C/F	R74	Side chain	Hydrogen bond
A/D	K220	Side chain	B/E	T51	Main chain	Hydrogen bond
A/D	K220	Side chain	B/E	D71	Side chain	Hydrogen bond
A/D	L221	Main chain	B/E	D50	Main chain	Hydrogen bond
A/D	L221	Side chain	B/E	V119	Side chain	Hydrophobic
A/D	G222	Side chain	B/E	V119	Side chain	Hydrophobic
A/D	D245	Side chain	B/E	R69	Side chain	Hydrogen bond
A/D	D245	Main chain	C/F	R119	Side chain	Hydrogen bond
A/D	N246	Side chain	C/F	S115	Main chain	Hydrogen bond
A/D	N246	Main chain	C/F	D118	Main chain	Hydrogen bond
A/D	N248	Main chain	C/F	D118	Side chain	Hydrogen bond
	CyRPA			Cy.003		
Chain	Residue	Group	Chain	Residue	Group	Type of interaction
A/D/G/J	R135	Side chain	B/E/H/K	D124	Main chain	Hydrogen bond
A/D/G/J	Y137	Side chain	C/F/I/L	Y49	Side chain	Hydrogen bond
A/D/G	E143	Side chain	C/F/I	K84	Side chain	Hydrogen bond
A/D/G/J	N145	Side chain	B/E/H/K	W125	Side chain	Hydrogen bond
A/D/G/J	N145	Side chain	C/F/I/L	S48	Side chain	Hydrogen bond
A/D/J	N146	Main chain	C/F/L	R109	Side chain	Hydrogen bond
A/D/G/J	D203	Side chain	B/E/H/K	S72	Side chain	Hydrogen bond
A/D/G/J	K204	Side chain	B/E/H/K	N121	Main chain	Hydrogen bond
A/D/G/J	E206	Side chain	B/E/H/K	S126	Side chain	Hydrogen bond
G/J	E206	Side chain	H/K	<u>\$126</u>	Main chain	Hydrogen bond
	CyRPA	~		Cy.004	~	
Chain	Residue	Group	Chain	Residue	Group	Type of interaction
A A/D	E96	Main chain	C D/F	Y4/	Side chain	Hydrogen bond
A/D	D98	Side chain	B/E	S126	Main chain	Hydrogen bond
A/D	D98	Main chain	B/E	¥125	Main chain	Hydrogen bond
A/D	D98	Side chain	C/F C/F	S108	Side chain	Hydrogen bond
A/D	L99 T100	Main chain	C/F D/E	C122	Side chain	Hydrogen bond
A/D	T100	Side chain	B/E D/E	G122 C122	Main chain	Hydrogen bond
A/D	E120	Niain chain	D/E D/E	D120	Niain chain	Matal accordination
A/D	E120	Side chain	D/L D/E	D120	Side chain	Metal coordination
A/D	E120 E122	Side chain	D/L D/E	D121	Side chain	Metal coordination
A/D A/D	N126	Side chain	B/E	S50	Main chain	Hydrogen bond
D	F94	Main chain	E E	R111	Side chain	Hydrogen bond
D	T 97	Main chain	F	R111 R111	Side chain	Hydrogen bond
D	D98	Side chain	F	\$126	Side chain	Hydrogen bond
	CvRPA	Side entitie		Cy.007	Side entern	
Chain	Residue	Group	Chain	Residue	Group	Type of interaction
А	K43	Side chain	В	D122	Side chain	Hydrogen bond
А	E96	Side chain	С	R108	Side chain	Hydrogen bond
А	K142	Side chain	В	T126	Side chain	Hydrogen bond
A/D	Y78	Side chain	B/E	R120	Side chain	Hydrogen bond
A/D	K81	Side chain	B/E	Y76	Side chain	Hydrogen bond
A/D	T89	Main chain	B/E	C124	Main chain	Hydrogen bond
A/D	D140	Main chain	B/E	Y76	Side chain	Hydrogen bond
D	N45	Side chain	E	S121	Main chain	Hydrogen bond
	RH5			R5.015		
Chain	Residue	Group	Chain	Residue	Group	Type of interaction
А	K378	Side chain	В	D36	Side chain	Hydrogen bond
А	Q389	Side chain	В	F107	Main chain	Hydrogen bond
А	Q389	Side chain	В	F107	Main chain	Hydrogen bond
A	L393	Side chain	В	W106	Side chain	Hydrophobic
A	N396	Side chain	C	831	Side chain	Hydrogen bond
A	N396	Side chain	C	D50	Side chain	Hydrogen bond
A	K400	Side chain	C	G28	Main chain	Hydrogen bond
A	K400	Side chain	U	D50	Side chain	Hydrogen bond
A	N491	Side chain	В	S110	Main chain	Hydrogen bond
A	F494	Side chain	В	W 106	Side chain	Hydrophobic
A	F494	Side chain	В	P112	Side chain	Hydrophobic
A	Q302	Side chain	C	W 90 TO2	Side chain	Hydrogen bond
A A	Q302 N506	Side chain	C	192 N25	Side chain	Hydrogen bond
А	1,000	Side cham	C	1 120	Side cham	riyarogen bonu

	Cy.004			Cy.007		
Region	Residue	Group	Region	Residue	Group	Type of interaction
LCDR3	D109	Side chain	LC Framework	S86	Side chain	Hydrogen bond
LCDR3	D109	Side chain	LC Framework	S86	Main chain	Hydrogen bond
LCDR3	S110	Side chain	LC Framework	K83	Side chain	Hydrogen bond
LCDR3	N112	Side chain	LC Framework	G85	Main chain	Hydrogen bond
	Cy.003			Cy.007		
Region	Residue	Group	Region	Residue	Group	Type of interaction
LCDR1	G45	Main chain	LCDR3	N111	Side chain	Hydrogen bond
LC Framework	S87	Side chain	LCDR3	N112	Side chain	Hydrogen bond
LC Framework	T90	Side chain	HC framework	K84	Side chain	Hydrogen bond
	Cy.003			Cy.004		
Region	Residue	Group	Region	Residue	Group	Type of interaction
HC framework	K84	Side chain	LC Framework	K83	Main chain	Hydrogen bond
LCDR3	N111	Side chain	LCDR1	T46	Side chain	Hydrogen bond
LCDR3	S112	Side chain	LC Framework	S84	Side chain	Hydrogen bond

Supplementary Table 3: Heterotypic interactions between mAbs binding adjacent epitopes

Supplementary Table 4: Data collection and refinement statistics

	R5.015:R5.016:RH5	Cy.002:CyRPA	Cy.003:CyRPA	Cy.004:CyRPA	Cy.007:CyRPA	Cy.003:Cy.004: Cy.007:CyRPA
Space group	C 2 2 21	C 1 2 1	C121	P 1 21 1	P 21 21 21	P 43
Cell dimensions						
a, b, c	97.74, 163.30,	205.05, 80.69,	354.30, 71.04,	103.06, 80.32,	74.10, 87.00,	164.84,
	176.82	117.36	164.79	114.91	342.77	164.84, 382.30
α, β, γ (°)	90, 90, 90	90, 108.73, 90	90, 91.16, 90	90, 115.23, 90	90, 90, 90	90, 90, 90
Wavelength (Å)	0.9795	1.0000	0.97624	0.97857	0.97857	0.97950
Resolution (Å)	48.22 - 2.53	48.55 - 2.72	164.76 - 3.14	47.11 - 2.79	48.97 - 3.09	164.84 - 3.27
	(2.57 - 2.53)	(2.81 - 2.72)	(3.21 - 3.14)	(2.87 - 2.79)	(3.22 - 3.09)	(3.28 - 3.27)
Total Observations	316074	169805	239064	284862	564609	1115594
	(16521)	(15709)	(15017)	(13827)	(62331)	(11407)
Total Unique	47342 (2383)	49035 (4407)	72415 (4491)	42022 (2741)	41692 (4590)	156679 (1589)
$R_{\rm pim}(\%)$	4.1 (74.8)	4.7 (48.7)	13.6 (94.8)	10.4 (73.7)	14.4 (99.3)	4.9 (80.5)
R_{merge} (%)	9.9 (184.3)	4.9 (52.4)	13.9 (96.5)	16.7 (106.3)	35.7 (248.0)	12.0 (201.3)
$R_{ m meas}(\%)$	10.7 (199.0)	6.8 (71.7)	19.5 (135.4)	19.7 (129.9)	38.5 (267.3)	12.9 (216.8)
$CC_{1/2}$	0.999 (0.575)	0.999 (0.864)	0.956 (0.425)	0.992 (0.757)	0.969 (0.733)	0.998 (0.586)
$I/\sigma(I)$	13.1 (1.2)	13.3 (1.8)	7.2 (1.3)	6.8 (0.9)	5.1(1.0)	9.4 (0.8)
Completeness (%)	99.6 (99.4)	99.6 (97.2)	99.9 (99.9)	99.9 (87.3)	99.9 (99.5)	99.9 (100.0)
Multiplicity	6.7 (6.9)	3.5 (3.6)	3.3 (3.3)	6.8 (5.0)	13.5 (13.6)	7.1 (7.2)
Wilson B factor (Å ²)	60	65	60	61	109	113.8
Refinement Reflections	47308	48960	72368	42008	41616	156578
Average B factor $(Å^2)$	63	99 99	89	90	176	187
Number of						
residues						
Protein	1172	1501	3002	1494	1476	6419
Water	127	76				
Ca ²⁺				4		8
R.m.s deviations Bond lengths (Å)	0.009	0.009	0.009	0.009	0.008	0.007
Bond angles	1.04	1.07	1.06	1.06	0.95	0.90
(°)						
Ramachandran plot						
Favored (%)	96.5	93.1	94.8	94.9	92.8	93.0
Allowed (%)	3.5	6.9	5.2	5.1	1.2	7.0
Outliers (%)	U	U	U	U	0.0	U

Values in parentheses indicate the highest resolution shell.

Supplementary Table 5: Monoclonal antibody sequences

mAb	Heavy Chain Sequence	Light Chain Sequence
	MKCSWVIFFLMAVVSGVNSEVQLQQSGAELVK	METDTLLLWVLLLWVPGSTGDIVLTQ
	PGASVKLSCTASGFNIKDTYIHWVKQRPEQGL	SPASLAVSLGQRATISCRASESVDSY
	EWIGRIDPANGNTYSDPKFQDKATIKADTSSN	GNSFMHWYQQKPGQPPKLLISRASNL
	TAYLQLSSLTSEDTAVYYCARDVLYFDVWGAG	ESGIPARFSGSGSRTDFTLTINPVEA
	TTVTVSSASTKGPSVFPLAPSSKSTSGGTAAL	DDVATYYCQQSNEDRTFGGGTKLEIE
	GCLVKDYFPEPVTVSWNSGALTSGVHTFPAVL	RTVAAPSVFIFPPSDEQLKSGTASVV
	QSSGLYSLSSVVTVPSSSLGTQTYICNVNHKP	CLLNNFYPREAKVQWKVDNALQSGNS
Cy.002	SNTKVDKKVEPKSCDKTHTCPPCPAPELLGGP	QESVTEQDSKDSTYSLSSTLTLSKAD
	SVFLFPPKPKDTLMISRTPEVTCVVVDVSHED	YEKHKVYACEVTHQGLSSPVTKSFNR
	PEVKENWYVDGVEVHNAKTKPREEQYNSTYRV	GEC
	VSVLTVLHQDWLNGKEYKCKVSNKALPAPIEK	
	TISKAKGQPREPQVITLPPSRDELTKNQVSLT	
	DSDGSFFLISKLIVDKSKWQQGNVFSCSVMHE	
	TLBLOLNNLBAEDTGTYYCAKHGVNGCDWSYS	SGSKSGSTGTLTITGVOAEDEAVYFC
	VGCVDAWGHGTEVIVSSASTKGPSVFPLAPSS	GSRDNSGGIFGAGTTLTVLRTVAAPS
	KSTSGGTAALGCLVKDYFPEPVTVSWNSGALT	VFIFPPSDEOLKSGTASVVCLLNNFY
	SGVHTFPAVLOSSGLYSLSSVVTVPSSSLGTO	PREAKVOWKVDNALOSGNSOESVTEO
Cv.003	TYICNVNHKPSNTKVDKKVEPKSCDKTHTCPP	DSKDSTYSLSSTLTLSKADYEKHKVY
0,000	CPAPELLGGPSVFLFPPKPKDTLMISRTPEVT	ACEVTHQGLSSPVTKSFNRGEC
	CVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPR	
	EEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVS	
	NKALPAPIEKTISKAKGQPREPQVYTLPPSRD	
	ELTKNQVSLTCLVKGFYPSDIAVEWESNGQPE	
	NNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG	
	NVFSCSVMHEALHNHYTQKSLSLSPGK	
	MEWSWVFLFFLSVTTGVHSAVTLDESGGGLQT	MSVPTQVLGLLLLWLTDARCALTQPS
	PGGALSLVCKASGFDFSSYAMGWVRQAPGKGL	SVSANPGETVKITCSGSTYNYGWYQQ
	EYVAGIRNDGSFTLYTPAVKGRATISRDNGQS	KSPGSAPVTVIYYNDKRPSDIPSRFS
	TVRLQLNNLRAEDTATYFCTKSADDGGHYSDF	GSKSGSTGTLTITGVQAEDEAVYYCG
	SGEIDAWGHGTEVIVSSASTKGPSVFPLAPSS	NSDSRNVAFGAGTTLTVLRTVAAPSV
		FIF PPSDEQLKSGTASVVCLLNNFIP
Cy 004		KEAKVQWKVDNALQSGNSQESVIEQD
Cy.004		CEVTHOGLSSPUTKSENRGEC
	CVVVDVSHEDPEVKENWYVDGVEVHNAKTKPR	
	EEOYNSTYRVVSVLTVLHODWLNGKEYKCKVS	
	NKALPAPIEKTISKAKGOPREPOVYTLPPSRD	
	ELTKNOVSLTCLVKGFYPSDIAVEWESNGOPE	
	NNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG	
	NVFSCSVMHEALHNHYTQKSLSLSPGK	
	MNFGLSLIFLALILKGVQCEVQLVESGGDLVK	MAWTPLFFFFVLHCSGSFSQLVLTQS
	PGGSLKLSCAASGFTFSNYGLSWVRQTPDKRL	SSASFSLGASAKLTCTLSSQHSTYTI
	EWVAAISSGGSYTYYPDSVKGRFTISRDNAKN	EWYQQQPLKPPKYVMELKKDGSHSTG
	TLYLQMSSLKSADTAMYYCARHTGSHRYAWFT	DGIPDRFSGSSSGADRYLSISNIQPE
	YWGQGTLVTVSAASTKGPSVFPLAPSSKSTSG	DEAIYICGVVDTIKEQFVYVFGGGTK
Cy.005	GTAALGCLVKDYFPEPVTVSWNSGALTSGVHT	VTVLRTVAAPSVFIFPPSDEQLKSGT
	FPAVLQSSGLYSLSSVVTVPSSSLGTQTYICN	ASVVCLLNNFYPREAKVQWKVDNALQ
	VNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPE	SGNSQESVTEQDSKDSTYSLSSTLTL
		SKADYEKHKVYACEVTHQGLSSPVTK
		SENKGEC
1	I STIKAASATIATUÕNNUGVĘIKCKASNKUTA	

	APIEKTISKAKGQPREPQVYTLPPSRDELTKN	
	TPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSC	
	SVMHEALHNHITQKSLSLSPGK	
		MSVPTQVLGLLLLWLTDAKCALTQPS
		2 A SANEGET ANTICSGGSSDIGMIQQ
		ETEDROPEOI KRCTARVICI I NNEVD
	CVHTEPAVLOSSCI.VSI.SSVVTVPSSSI.CTOT	REAKVOWKVDNALOSCNSOESVTEOD
Cy 007	YICNVNHKPSNTKVDKKVEPKSCDKTHTCPPC	SKDSTYSI.SSTLTI.SKADYEKHKVYA
Cy.007	PAPELLGGPSVFLFPPKPKDTLMISRTPEVTC	CEVTHOGLSSPVTKSFNRGEC
	VVVDVSHEDPEVKENWYVDGVEVHNAKTKPRE	
	EOYNSTYRVVSVI,TVI,HODWI,NGKEYKCKVSN	
	KALPAPIEKTISKAKGOPREPOVYTLPPSRDE	
	LTKNOVSLTCLVKGFYPSDIAVEWESNGOPEN	
	NYKTTPPVLDSDGSFFLYSKLTVDKSRWOOGN	
	VFSCSVMHEALHNHYTQKSLSLSPGK	
	MEWSWVFLFFLSVTTGVHSAVTLDESGGGLQT	MSVPTQVLGLLLLWLTDARCALTQPS
	PGGALSLVCKASGFTFSDYAMGWVRQAPGKGL	SVSANPGETVKITCSGSSYSYGWYQQ
	EYVAGIKSDGSFTLYGSTVKGRATISRDNGQS	KSPGSAPVTVIYYNDKRPSDIPSRFS
	IVRLQLNNLRAEDTGTYYCAKSDDNGGHYSDF	GSKSGSTGTLTITGVQAEDEAVYFCG
	SGEIDAWGHGTEVIVSSASTKGPSVFPLAPSS	NSDSRNAAFGAGTTLTVLRTVAAPSV
	KSTSGGTAALGCLVKDYFPEPVTVSWNSGALT	FIFPPSDEQLKSGTASVVCLLNNFYP
	SGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQ	REAKVQWKVDNALQSGNSQESVTEQD
Cy.009	TYICNVNHKPSNTKVDKKVEPKSCDKTHTCPP	SKDSTYSLSSTLTLSKADYEKHKVYA
	CPAPELLGGPSVFLFPPKPKDTLMISRTPEVT	CEVTHQGLSSPVTKSFNRGEC
	CVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPR	
	EEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVS	
	NKALPAPIEKTISKAKGQPREPQVYTLPPSRD	
	ELTKNQVSLTCLVKGFYPSDIAVEWESNGQPE	
	NNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG	
	NVFSCSVMHEALHNHYTQKSLSLSPGK	
	MNLGLSFIFLALILKGVQCEVQLVESGGGLVQ	MLHRDMNMLTQLLGLLLLWFAGGKCD
	PGGSLKLSCAASGETFSTYGMSWVRQTPDKRL	IQMTQSPASQSASLGESVTTTCLASQ
	ELVATINSNGGNTYYPDSVKGRFTMSRDNAKN	TIGIWLAWYQQKPGKSPQLLIYAASS
	TLYLQMSSLKSEDTAMYYCAREGYYYGGYSYA	
	MDYWGQGTSVTVSSASTKGPSVFPLAPSSKST	AEDFVSYYCQQLYSTPWTFGGGTKLE
	SGGTAALGCLVKDYFPEPVTVSWNSGALTSGV	
C 010		
Cy.010		NSQESVIEQUSKUSIISLSSILILSK
		NDCEC
		NKGEC
	RNUASTALT ARCEADED LYALE COLOGNIA	
	000 ALUITINII I AKOTOTOL GIV	