Supplementary Information for

Unexpectedly minor nitrous oxide emissions from fluvial networks draining permafrost catchments of the East Qinghai-Tibet Plateau

Liwei Zhang^{1§,†}, Sibo Zhang^{2§}, Xinghui Xia¹*, Tom J. Battin³, Shaoda Liu¹, Qingrui Wang¹, Ran Liu⁴, Zhifeng Yang², Jinren Ni⁵ and Emily H. Stanley⁶

¹Key Laboratory of Water and Sediment Sciences of Ministry of Education & State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China

²Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, China

 ³Stream Biofilm and Ecosystem Research Laboratory, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
 ⁴Department of Mathematics, Beijing Jiaotong University, Beijing, China
 ⁵Key Laboratory of Water and Sediment Sciences of Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, China
 ⁶Center for Limnology, University of Wisconsin-Madison, Madison, Wisconsin, USA

[§]Liwei Zhang and Sibo Zhang contributed equally to this work.

[†]Present address: Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China.

*To whom correspondence may be addressed. Email: <u>xiaxh@bnu.edu.cn</u>.

This file includes:

Supplementary Methods

- 1. Dissolved N₂ concentrations.
- 2. Determination of benthic N₂O production rates.
- 3. Sample collection, DNA extraction, and real-time quantitative PCR.

Supplementary Discussion

- 1. Asynchronous seasonal patterns between concentrations and fluxes.
- 2. Anthropogenic N inputs on the QTP.
- 3. Patterns of gene abundances of (nirS + nirK) and *nosZ*.
- 4. Uncertainties.

Supplementary Figures

Fig 1. Names and locations of sampling stations (upper), and total vegetation cover (lower) in the four headwater watersheds of the EQTP, China.

Fig 2. Box plots of seasonal and regional patterns of N_2O concentrations (a) and fluxes (b) from EQTP rivers.

Fig 3. Photographs of intermediate runoff above the permafrost active layer in the Yangtze River Catchment.

Fig 4. DIN in relation to stream order across EQTP rivers.

Fig 5. Relationship between N₂O saturation and fluxes.

Fig 6. Relationships between dissolved oxygen saturation (%O₂) and gene abundances of (*nirS* + *nirK*) and *nosZ*.

Supplementary Tables

Table 1. Summary information on sampling sites.

Table 2. Characteristics of the headwater catchments on the EQTP.

Table 3. N₂O data for EQTP rivers and other lotic systems worldwide.

Table 4. Simple linear regression of N₂O concentration as functions of environmental variables.

Table 5. N₂O yields in EQTP rivers and existing reports for other lotic settings.

Table 6. Laboratory-measurement of benthic N₂O production rates by Yellow River sediments compared to measured field (*in situ*) fluxes and the estimated contribution of benthic fluxes to total N₂O emissions.

Table 7. Summary of *nir* and *nosZ* gene abundances for EQTP riverbed sediments and other lotic systems worldwide.

Table 8. The results of stepwise selection of predictive variables in multiple linear regression with N₂O flux.

Table 9. N_2O emissions in per unit stream/river surface area and basin area from EQTP waterways and other lotic settings worldwide.

Table 10. Primer pairs used in this study and corresponding amplification protocols.

Supplementary References

Supplementary Methods

1. Dissolved N₂ concentrations. Triplicate samples for dissolved N₂ were collected from surface water by completely filling 12 mL glass vials (Labco Exetainer®) at wrist depth below water surface at each site, then preserved by adding 100 μ L saturated ZnCl₂ and stored at ambient temperature in the dark. Dissolved N₂ concentrations were analyzed with a membrane inlet mass spectrometer (MIMS; PrismaPlus®, Pfeiffer Vacuum)^{1,2}. In brief, we measured ratios of N₂/Ar concentration using MIMS, then calculated Ar concentrations at *in situ* water temperature, pressure, and salinity³. Finally, dissolved N₂ concentrations were obtained by multiplying N₂/Ar with calculated Ar concentrations. The excess N₂ concentration (Δ N₂) was then calculated as: Δ N₂ = [N₂]_{measured} - [N₂]_{eq}.

2. Determination of benthic N₂O production rates. In September 2018, nine sediment samples were collected in the Yellow River for sedimentary N₂O production rate determination. Briefly, approximately 10 g homogenized sediment samples were placed into 60 mL glass vials, and the remaining volume was filled with overlying water from the collection location. Before being transferred into glass vials, overlying water samples were adjusted to allow DO concentration in the laboratory to match field concentrations as closely as possible⁴. Vials were subsequently capped with silicone rubber septa and crimp-sealed with an aluminum closure then incubated at *in situ* temperature in the dark. The incubation vials were sacrificially sampled by injecting 300 μL of a saturated ZnCl₂ solution at 0, 4, 6, 10, and 18 h. At least four incubations were conducted for each specific sampling point, one of which was used to quantify changes in DO concentration, and the remaining replicates were used for N₂O analysis. N₂O concentrations in the glass vials were determined using the headspace equilibrium technique⁵ on a GC-μECD. N₂O production rates were determined based on the linear increase of N₂O concentrations in the glass vials. Within the sampling period used for the N₂O production rate calculation, DO variation did not exceed 30% of its original concentration and final DO concentrations were consistently higher than 3.5 mg L⁻¹.

3. Sample collection, DNA extraction, and real-time quantitative PCR. A total of 26 riverbed sediment samples collected across the four rivers from 2016 to 2018 were prepared in triplicate. These samples were transported to the laboratory at -20 °C in a vehicle freezer prior to being stored at -80 °C in the laboratory. Genomic DNA was extracted from approximatively 0.5 g fresh homogenized sediment using the FastDNA® SPIN Kit for Soil (MP Biomedicals, USA) following the manufacturer's instructions; DNA extraction for each sample was performed in triplicate.

Real-time quantitative PCR (qPCR) was employed to estimate the abundances of dissimilatory nitrite reductase (*nirS* and *nirK*)⁶ and clade I and II nitrous oxide reductase (*nosZ*) genes⁷ in riverbed sediments. The *nirS* and *nirK* genes were amplified using currently available primer pair sets of cd3aF/R3cd and F1aCu/R3Cu, respectively⁸. Primer sets of nosZ2F/nosZ2R⁹ and nosZ_{II}-F/nosZ_{II}-R¹⁰, which encompass the known diversity of the *nosZ* gene, were used to quantify the nosZ_I and nosZ_{II} gene abundances. The 25 μ L qPCR reaction mixtures consisted of 12.5 μ L SYBR® Premix Ex TaqTM II (TaKaRa, Japan), 0.2 μ L Bovine Serum Albumin (TaKaRa), 0.5 μ L of each primer (5 μ M), and 2 μ L DNA template (~30–50 ng). All amplifications were performed in triplicate on a C1000TM Thermal Cycler (BioRad, CA, USA) according to the protocols described in Supplementary Table 10. The 10-fold serial dilutions of plasmid DNA containing cloned fragments of targeted genes were used to construct standard curves. Negative controls without DNA template were added to check potential DNA contamination. PCR amplification efficiencies for *nirS*, *nirK*, *nosZ*_I and *nosZ*_{II} genes all were higher than 85%, 90%, 86%, and 69%, respectively, with R² greater than 0.95 for each gene.

Supplementary Discussion

1. Asynchronous seasonal patterns between concentrations and fluxes.

The highest N₂O concentration occurred in spring, while the highest diffusive N₂O flux occurred in summer (Supplementary Fig. 2). This phenomenon is likely the result of temperature-driven differences in gas solubility. Cooler temperatures in the spring (ice-out season) led higher gas solubility and thus greater N₂O retention in the water column. In contrast, N₂O solubility was lower in warmer waters in summer. Once sediments are warmed and become saturated with N₂O, any additional N₂O delivered to and/or produced in channels readily escapes to the atmosphere. Lower N₂O concentration in summer may also be attributed to dilution due to seasonal maxima in precipitation (Supplementary Table 2), increased gas exchange, and reduced sediment-water contact.

In addition, a small number of our flux measurements were negative (i.e., N₂O entering the water from the atmosphere), yet all N₂O concentrations were supersaturated (Supplementary Fig. 5). The possible explanation may be that measured N₂O reflect transient concentrations, but N₂O consumption through complete denitrification may occur during 60-min floating chamber deployments. This hypothesis is consistent with results of low N₂O yield, small ratio of *nir/nos*, and laboratory benthic production rates.

2. Anthropogenic N inputs on the QTP.

Tibetan nomadic herdsmen have been active on the QTP for thousands of years, so livestock grazing is the most important anthropogenic influence on the plateau's biogeochemical cycles¹¹. But human population densities are low at higher altitudes (Supplementary Table 2), because of the harsh environmental stressors that are distinct from lowlands¹². Likewise, domestic livestock (yaks and sheep) are bred in lower altitude basins, whereas wild animals (Tibetan antelopes, Tibetan gazelles, kiangs, and wild yaks) are distributed at higher altitudes. There is a strong negative correlation between distribution of livestock and wild animals, illustrating that their habitats rarely overlap due to the competition for forage resources¹³. Based on human population density in each catchment

(Supplementary Table 2), we deduce that manure N in the Yangtze and Upper Yellow Catchments was mainly derived from wild animals (natural sources); manure N in the Nu and Lancang Catchments came from both wild animals and domestic livestock (mixed sources); manure N in the Lower Yellow Catchment originated from livestock and belonged to anthropogenic sources.

The DIN pool in EQTP rivers is dominated by NO₃⁻ (represent an average of 86% of DIN), and anthropogenic NO₃⁻ inputs to aquatic systems on the QTP are derived from human sewage, livestock manure, and synthetic fertilizers. Among these sources, livestock manure N is currently the largest input to EQTP waterways. However, manure largely represents internal source of N in the alpine grassland systems, as it originates from plant N uptake from soils. Stable isotopes of NO₃⁻ (δ^{15} N, Δ^{17} O and δ^{18} O) combined with the above deduction indicate that sites underlain by continuous permafrost in the Yangtze Catchment receive substantial natural NO₃⁻ inputs from permafrost soils (47.1 ± 1.2%), wild animal manure (33.4 ± 3.3%), and atmospheric precipitation (18.5 ± 1.3%), but little anthropogenic NO₃⁻ input from sewage (1.0 ± 0.8%) and none from livestock manure or fertilizers¹⁴. By comparison, anthropogenic NO₃⁻ inputs from livestock manure (34.9 ± 10.0%), sewage (5.6 ± 2.3%), and fertilizers (14.9 ± 5.4%) became dominant in the Lancang (site LTJ) and Lower Yellow Rivers in non-continuous permafrost zone, and the contribution of natural NO₃⁻ inputs [permafrost soils (37.7 ± 3.9%) and atmospheric precipitation (6.9 ± 1.6%)] were reduced accordingly^{14,15}. Above all, both natural and anthropogenic N can be taken up by plants, thus a part of terrestrial N can be sequestered before entering rivers.

3. Patterns of gene abundances of (*nirS* + *nirK*) and *nosZ*.

The relationship in Supplementary Fig. 6 was driven by a decline in gene abundances of *nir* genes when $\%O_2 > 110\%$, while *nos* gene abundances were not apparently responsive to the degree of $\%O_2$. When $\%O_2 \ge 100\%$, *nos* of some denitrifiers is still functional at the transcriptional and metabolic levels, albeit at low rates, and may even have a higher tolerance to oxygen than *nir*^{16,17}.

7

4. Uncertainties.

Upscaling N₂O emissions from headwater streams is a challenging task because the contribution of 1^{st} - and 2^{nd} - order streams to total efflux incorporates uncertainties in both gas fluxes and surface area. To reduce the uncertainty associated with the estimate of the total surface area of 1^{st} - and 2^{nd} - order streams, we surveyed river width in the headwater fluvial networks from 3^{rd} - to 7^{th} - order across the EQTP in combination with extracting 50 width measurement from each order (1–7) from Google Earth Map. We assumed that stream lengths derived from GIS were constant and that error from this step was not propagated through to the upscaling. Our approach yielded a mean 1^{st} stream channel width of 1.78 m, which is similar with the stream width reported by Downing and colleagues¹⁸, but wider than those reported more recently by Allen and colleagues¹⁹. A possible explanation for this difference may be that channel width to depth ratios at most of our sites are extremely high (> 60; see Supplementary Table 1), indicating that channels on the EQTP tend to adjust to increases in discharge by becoming wider rather than deeper.

Although our sampled streams and rivers were constrained to $3^{rd}-7^{th}$ order sites on the EQTP, N₂O fluxes were measured in four catchments with distinct alpine landscape and different amounts of permafrost areas, capturing at least part of the spatiotemporal heterogeneity of the fluvial networks. In addition, a Monte Carlo simulation based on our data was used to provide upper and lower limits on the total flux estimate of $1^{st}-7^{th}$ order streams and rivers to bound the uncertainty. Despite current uncertainties, our range of the total value given for the region seems reasonable.

Supplementary Figures

Supplementary Figure 1 | Map of the four headwater basins on the East Qinghai-Tibet Plateau (EQTP), China. Names and locations of sampling stations (upper), and total vegetation cover (lower) in the four headwater basins of the EQTP.

Supplementary Figure 2 | Box plots of seasonal and regional patterns of N₂O concentrations (a) and fluxes (b) from EQTP rivers. Boxes represent the 25th and 75th percentiles, and error bars show the 95th percentiles; black circles and horizontal lines indicate the arithmetic means and medians, respectively. Grey circles are outliers. (one-way ANOVA with Tukey post hoc test, *P < 0.05; **P < 0.01; ***P < 0.001).

Supplementary Figure 3 | **Photographs of intermediate runoff above the permafrost active layer in the Yangtze River Catchment.** The photos were taken in late October 2020.

Supplementary Figure 4 | DIN in relation to stream order across EQTP rivers. Data points are the means and error bars represent ± 1 SE.

Supplementary Figure 5 | Relationship between N_2O saturation and fluxes. The red line represents the fit of a linear regression through the observed data.

Supplementary Figure 6 | Relationships between dissolved oxygen saturation (%O₂) and gene abundances of (*nirS* + *nirK*) and *nosZ*. The red lines represent the fit of linear regressions through the observed data.

Supplementary Tables

Supplementary Table 1. Summary mormation on sampling sites (see Supplementary Fig. 1 for site loc

Head	water Basins	Sampling Sites	Longitude (E)	Latitude (N)	Stream/river Reaches	Strahler Stream Order	Elevation (m)	Water depth (m)	River width (m)	Flow velocity (m/s)	Discharge (m³/s)	Sediment type	SS concentration (mg/L)
		ТТН	92°26'37"	34°13'15"	Tuotuo River	6	4550	0.34	75.5	0.72	18.5	Muck	99
er	Mainstem	QML	95°49'17"	34°04'01"	Upper Tongtian River	7	4080	2.07 ± 1.06	174 ± 44.5	1.67 ± 0.7	711.9 ± 790.5	Muck	198
° Ri ≷		ZMD	97°14'50"	33°00'32"	Lower Tongtian River	7	3540	2.59 ± 1.31	157 ± 15.7	1.89 ± 0.73	847.3 ± 906.3	Gravel/cobble	208
ngtze		LB	96°28'23"	33°13'26"	Longbao Creek	3	4210	0.64	15.4	1.2	9.28	Gravel/cobble	7
≺a	Tributaries	BT	97°02'28"	33°00'56"	Batang Stream	4	3674	0.63 ± 0.18	37.0 ± 9.12	1.41 ± 0.4	34.2 ± 9.68	Gravel/cobble	29
		вм	100°44'45"	32°55'43"	Markog River	5	3555	0.6 ± 0.12	61.2 ± 21.2	1.08 ± 0.04	57 ± 38.2	Muck/sand	79
		MD	98°10'16"	34°53'08"	Uppermost Yellow River	5	4274	0.65 ± 0.44	43.1 ± 29.8	0.65 ± 0.13	24.4 ± 55	Muck	27 ± 30.4
		DR	99°39'24"	33°46'02"	Upper Yellow River	6	4008	0.97 ± 0.26	93.5 ± 28	1.23 ± 0.2	146.2 ± 122.8	Muck	90.4 ± 92.5
		МТ	101°02'39"	33°46'30"	Upper Yellow River	6	3715	1.91 ± 0.46	108 ± 23.5	1.42 ± 0.47	283.3 ± 265.8	Fine sand	30.8 ± 15.6
		MQ	102°04'47"	33°59'46"	Upper Yellow River	6	3469	2.4 ± 0.88	257 ± 11.5	0.69 ± 0.19	553 ± 457.4	Muck	144.5 ± 73.6
5	Mainstem	JG	100°38'42"	34°41'02"	Lower Yellow River	7	3126	2.2 ± 1.01	153 ± 15.1	1.95 ± 0.39	694.8 ± 573.6	Coarse sand	328.4 ± 277.4
Rive		BD	100°15'49"	35°19'17"	Lower Yellow River	7	2760	1.83 ± 0.23	140 ± 12.5	1.73 ± 0.68	509 ± 127.7	Fine sand	628 ± 673.1
allow		TNH	100°09'51"	35°29'60"	Lower Yellow River	7	2711	2.67 ± 1.1	146 ± 2.79	2.1 ± 0.1	886.8 ± 2.79	Coarse sand	354.5 ± 337.3
ř		XH	102°26'41"	35°52'13"	Lower Yellow River	7	1880	2.67 ± 0.24	118 ± 7	1.32 ± 0.38	463 ± 200.2	Gravel/cobble	23.7 ± 17.4
		XC	103°19'02"	35°56'22"	Lower Yellow River	7	1650	4.5 ± 1.06	146 ± 1.53	1.14 ± 0.65	934 ± 464.5	1	40 ± 14.1
		RQ	98°15'52"	34°36'05"	Re Qu	5	4255	0.66 ± 0.39	81.3 ± 3.99	0.73 ± 0.2	35 ± 44.9	Fine sand	19.7 ± 23.1
	Tributaries	JZ	101°28'59"	33°25'58"	Sharkog Stream	3	3653	0.55 ± 0.19	39.5 ± 3.48	1.12 ± 0.3	21.8 ± 21.6	Muck	15.8 ± 2.3
		тк	102°27'42"	33°24'38"	White River	5	3520	0.56 ± 0.26	225 ± 28.6	0.63 ± 0.13	62.3 ± 36.6	Muck	56 ± 11.9
		XD	96°27'07"	32°18'53"	Zha Qu	6	3690	1.45 ± 0.4	104 ± 3.39	1.47 ± 0.11	248 ± 112.9	Coarse sand	194.3 ± 36.1
River	Mainstem	CD	97°10'44"	31°07'38"	Uppermost Lancang River	7	3190	3.61 ± 0.7	89.9 ± 10.7	2.28 ± 0.4	846.3 ± 442	Gravel/cobble	198
ang F		LTJ	98°47'24"	28°33'08"	Upper Lancang River	7	2079	8.67 ± 1.69	70.5 ± 9.79	2.38 ± 1.74	1141.7 ± 544.1	1	241
anc	Tributorios	XLX	96°34'17"	32°35'20"	Zi Qu	4	3798	0.96 ± 0.09	46.8 ± 6.88	1.34 ± 0.13	65 ± 27	Gravel/cobble	38.3 ± 21.4
_	Tributaries	LWQ	96°36'24"	31°13'17"	Purple Stream	5	3803	1.09 ± 0.2	66.3 ± 3.67	1.64 ± 0.17	124.7 ± 58.4	Coarse sand	89 ± 17
		NQ	91°58'54"	31°25'20"	Na Qu	5	4601	0.83	80.5	1.38	79.6	Muck	15.6
di di	Mainstem	JYQ	96°14'01"	30°52'38"	Upper Nu River	7	3198	6.33 ± 0.85	89.7 ± 3.18	2.35±0.21	1390 ± 340.4	Coarse sand	153
I Rive		GS	98°41'	27°44'	Mid Nu River	7	1712	9.52 ± 0.83	114 ± 4.95	1.97	2167.5 ± 512.7	Fine sand	174
Γ	- - - - -	LL	95°49'24"	30°44'30"	Dromarangtso Creek	4	3639	0.63 ± 0.15	17.9 ± 7.02	1.7 8± 0.23	17.9 ± 7.02	Gravel/cobble	39 ± 34.8
	i ributaries	ZG	97°50'49"	29°40'10"	Yu Qu	5	3775	0.76 ± 0.26	71.6 ± 6.26	1.32 ± 0.68	71.6 ± 6.26	Fine sand	104.3 ± 0.72

	Yangtze	Uppe Yello	er w	Nu	Lanc	ang	Lower Yellow
Catchment area (km ²)	216,108	193,0	16	143,255	106,	996	76,995
Mean catchment altitude (m)	3,935	3,84	2	3,385	3,3	12 2,425	
Permafrost coverage (km ²)	205,735	140,1	30	87,959	56,2	264	16,400
Permafrost fraction	95.2%	72.69	%	61.4%	52.0	5%	21.3%
Vegetation coverage (km ²)*	184,988	154,2	20	87,099	60,6	667	18,941
Vegetation fraction	85.6%	79.99	%	60.8%	56.7	7%	24.6%
Barren land (km ²)*	9,295	4,87	8	11,904	3,0	72	966
Barren land fraction	4.3%	2.5%	6	8.3%	2.9	%	1.3%
Human population (× 10^4)†	28.8	20.1	l	36.2	39	.3	65.0
Population density (km ⁻²)	1.3	1.3		2.5	3.	7	8.4
Annual temperature (°C)§	1.4	1.2		7.1	6.	4	5.1
Annual precipitation (mm)§	1,855.8	2,768	.3	2,102.3	1,61	9.3	1,541.7
Spring	609.3	858.9		745.5		.7	436.4
Summer	718.3	1,086.0		845.2	709	.4 792.7	
Fall	528.2	528.2 823.4		511.6	418	3.2	312.6
Means (\pm standard de	eviation) of ph	ysicocher	mical p	property meas	ured in st	reams a	nd rivers
DOC (mgC/L)	7.18 ± 3.26	5.34 ± 2	2.08	4.42 ± 2.61	4.52 ±	1.94	5.24 ± 2.35
DIN (mgN/L)	0.62 ± 0.22	0.44 ± 0	0.23	0.47 ± 0.23	$0.59 \pm$	0.19	0.71 ± 0.51
TP (mg/L)	0.25 ± 0.36	0.12 ± 0	0.14	0.23 ± 0.23	0.14 ±	0.12	0.25 ± 0.43
pН	8.22 ± 0.16	8.34 ± 0	0.20	8.37 ± 0.17	8.22 ±	0.12	8.40 ± 0.16
DO (mg/L)	6.87 ± 0.89	6.87 ± 0	0.68	7.13 ± 0.89	$6.97 \pm$	0.67	7.59 ± 0.61
Conductivity (µS/cm)	1003.8 ± 784.5	277.2 ± 2	202.5	486.5 ± 194.2	227.2 ±	194.7	398.8 ± 98.2
ORP (mV)	150.8 ± 26.0	$151.7 \pm$	56.2	139.1 ± 31.6	140.4 =	± 21.2	154.0 ± 98.8
Water temperature (°C)	12.3 ± 3.5	$12.1 \pm$	3.4	14.6 ± 2.6	13.6 =	± 3.1	13.4 ± 3.1
		Sampli	ng Tin	ne			
	2	016		2017	,		2018
	Spring	Summer	Fall	Spring	Summer	Spring	Fall
Yangtze				\checkmark	\checkmark	\checkmark	\checkmark
Yellow	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Lancang					\checkmark	\checkmark	\checkmark
Nu					\checkmark	\checkmark	\checkmark

Supplementary Table 2. Characteristics of the headwater catchments on the EQTP.

Note that the Yellow River was divided into Upper and Lower Yellow Catchments at JG site based on the permafrost fraction (Supplementary Fig. 1 and Table 1).

*Vegetation coverage and barren land was calculated from ref²⁰.

[†]Human population was obtained from National Bureau of Statistics (www.stats.gov.cn/).

[§]Average annual temperature and precipitation was obtained from National Meteorological Information Center (<u>http://data.cma.cn/</u>).

				N2O		N2O-N		
Latitude	Regions	Lotic Systems	Concentrations	Fluxes [µr	nol/(m²·d)]	$/(\mathbf{m}^2 \cdot \mathbf{d})] \qquad \qquad \mathbf{EF}_{5-r} = \frac{1}{NO_3^3 - N}$ (mass ratio)		
			(nM)	Diffusion	Ebullition	(muss ratio)	$\begin{array}{c c} \underline{0-N} \\ \hline 3-N \\ io \end{array} \\ \hline 21 \\ \hline 22 \\ \hline 23 \\ \hline 24,25 \\ \hline 26 \\ \hline 27 \\ \hline 28 \\ 29 \\ \hline 30 \\ \hline 31 \\ \hline 32 \\ \hline 30 \\ \hline 31 \\ \hline 32 \\ \hline 33 \\ 34 \\ \hline 35 \\ \hline 36 \\ \hline 37 \\ \hline 6 \\ 38 \\ 39 \\ \hline 6 \\ 40 \\ \hline 7 \\ 6 \\ 41 \\ \hline 6 \\ 42,43 \\ \hline 6 \\ 44 \\ \hline 45 \\ 46,47 \\ \hline 6 \\ 48 \\ 49 \\ 50 \\ \hline \end{array}$	
	Sub-Saharan	Sub-Saharan African rivers	9.2	13.0	/	/	21	
	Africa	Congo River	7.9	22.0	/	0.28%	22	
< 24°	Kenya	Mara River	18.2	13.7	/	0.05%	23	
	Malaysia	Malaysian rivers	11.7	21.3	/	0.10%	24,25	
	Ecuador	Cuenca River	/	30.0		/	26	
		Adyar River	26.5	21.0	/	0.26%	27	
	South Asia	Ganges River	31.2	13.7		0.03%	28	
		Sênggê Tsangpo-Indus River	0.21 µatm	4.6	/	/	29	
	Southeast Asia	Mekong River	30.7	13.6	/	0.14%	28	
_		Jiulong River	59.1	13.5	/	0.03%	30	
		Wu River	33.3	15.3	/	0.16%	31	
		Yongan River	16.9	20.1	/	0.04%	32	
		Chongqing river network	113.8	261.6	/	0.47%	33	
		Shanghai river network	/	68.2	/	/	34	
	China	Beijing river network	42.5	83.4	/	0.10%	35	
		Yarlung Tsangpo	13.4	5.7-13.2	/	0.17%	36	
		EQTP rivers	12.4 (0.34 μatm)	9.4	0.74	0.17%	This study	
		Yangtze River (lowland)	15.9	12.1	/	0.04%	37	
24-54°		Yellow River (lowland)	22.4	42.6	/	0.03%	38	
		Xilin River	/	24.3	/	/	39	
	1112	Upper Thurne River	82.3	129.8	/	0.27%	40	
	UK	Wensum, Eden & Avon River	51.7	50.0	/	0.024%	41	
	France	Seine River	36.8	69.9	/	0.02%	42,43	
	Belgium	Meuse River	42.9	/	/	0.37%	44	
	C 1	Grand River	/	-35-4,200	/	/	45	
	Canada	Ontario streams	/	-3.2-776	< 0.004	/	46,47	
		San Joaquin River	32.5	8.1–318.9	/	0.28%	48	
		Agricultural streams in Illinois	71.4	102.9	/	/	49	
		Hudson River	0.58 µatm	5.5	/	/	50	
	USA	Kalamazoo River	28.9	30.2	/	0.20%	51	
		Connecticut River	15.4	28.9	/	0.22%	52	
		Lamprey River	0.8 µatm	46.8	/	/	53	

Supplementary Table 3. N₂O data for EQTP rivers and other lotic systems worldwide.

		Upper Mississippi River	/	0.72	/	/	54
		Streams within the Corn Belt	/	0.03-49.7	/	/	55
		Agricultural headwater streams	/	41.8	/		
		Urban headwater streams	/	49.2	/	0.75%	56
		Pristine headwater streams	/	4.2	/		
	Australia	New South Waters	/	4.0	/	/	57
New		LII river	46.9	96.7	7.9 µL/L	0.03%	58,59
	Zealand	Ashburton River	12.3	14.6–27	/	0.06%	60
	Sweden	Swedish low-order streams	50.0	141.5	/	0.63%	61,62
> 54°	Canada	Québec streams & rivers	5.9	9.4	/	0.86%	63
	USA	Water tracks within the Upper Kuparuk River	/	-10.3	/	/	64

Note that grey shaded are mountain streams and rivers.

Supplementary Table 4. Simple linear regression of N2O concentration as functions of

environmental variables. R^2 values are shown for regressions with *P* values. Direction of correlations is indicated as '+' for positive and '-' for negative. Significant relationships are shaded.

Environmental variables	R ²	P value	Direction of the correlation
Air pressure	0.02	> 0.05	+
Water temperature	0.02	> 0.05	_
pH	0.004	> 0.05	+
DO	0.004	> 0.05	_
$%O_2$	0.2	< 0.001	-
DOC	0.03	0.049	_
NH_{4}^+	0.1	< 0.001	+
NO ₃ -	0.23	< 0.001	+
Log TP	0.07	0.004	+

I otio gottinga	N_2O	Def	
Loue settings	Mean	Range	Kel.
Lower Yangtze River	0.82	0.51-1.12	37
Yellow River (lowland)	1.13	0.06-6.24	38
Beijing river networks	1.6	0.01-23.1	35
US headwater streams	0.9	0.04–5.6	56
Choptank & Nanticoke River	2.60	0.48-6.11	66
Tippecanoe River	0.94	0.78-1.1	67
Kalamazoo River	12.0	0.9–53.8	68
Seine River	1.5	≤ 7.0	69
UK estuaries	0.7	0.52–0.77	70
EQTP rivers	0.23	0.003–0.87	This study

Supplementary Table 5. N₂O yields in EQTP rivers and existing reports for other lotic settings.

Supplementary Table 6. Laboratory-measurement of benthic N₂O production rates by the Yellow River sediments compared to measured field (*in situ*) fluxes and the estimated contribution of benthic fluxes to total N₂O emissions.

	Sites	Lab benthic F _{N2O} (µmol m ⁻² d ⁻¹)	<i>in situ</i> F _{N2O} (µmol m ⁻² d ⁻¹)	Contribution (%)
	MD	-1.45	13.44	-10.8
sites	RQ	-0.62	14.06	-4.4
ich s	DR	-0.76	8.77	-8.7
ost-r	MT*	22.14	10.83	204.4
nafro	JZ	-1.37	9.14	-15.0
Pern	MQ*	17.06	18.56	91.9
	TK	0.04	7.08	0.6
Permafrost-	JG	-0.69	8.85	-7.8
poor sites	TNH	-1.24	9.90	-12.5

*The ratios of (nirS + nirK)/nosZ for MT and MQ were 2.6 times higher than those for other sites, suggesting the N₂O yields were higher at the two sites.

T	Functio	nal gene abur	idances (copi	es/g dw)	Rat	Def	
Lotic systems	nirS	nirK	nosZ _I	nosZ _{II}	$(nirS + nirK)/nosZ_{I}$	(nirS + nirK)/nosZ	Kei.
Pearl River	166×10^{8}	7.12×10^8	8.05×10^8	/	21.5	21.5	71
Nanfei River	3.6×10^{8}	$0.8 imes 10^8$	$1.3 imes 10^8$	/	3.38	3.38	72
Tama River*	3.31×10^5	3.80×10^5	3.10×10^5	$0.19 imes 10^5$	2.29	2.16	73
Olentangy River	14.3×10^8	2.1×10^8	$0.3 imes 10^8$	/	54.7	54.7	74
Deba River	9.17×10^{11}	$6.95 imes 10^9$	2.93×10^5	/	$3.24 imes 10^6$	$3.24 imes 10^6$	75
Rhône River	2.4×10^7	0.2×10^7	0.1×10^7	0.7×10^7	26.0	3.25	76
Garonne River	5.2×10^9	6.3×10^9	0.72×10^9	/	16.0	16.0	77
EQTP rivers	6.32×10^7	2.60×10^7	4.44×10^7	0.11×10^7	2.01	1.96	This study

Supplementary Table 7. Summary of *nir* and *nosZ* gene abundances for EQTP riverbed sediments and other lotic systems worldwide.

Note that some studies failed to quantify $nosZ_{II}$, so we also compared our ratio of $(nirS + nirK)/nosZ_{I}$ with this subset of references. Our ratio is still the smallest, even lower than those for Tama River.

*Functional gene abundances for the Tama River (copies/L) were measured in the overlying water instead of sediments, so both functional genes abundances and ratios of (nirS + nirK)/nosZ were much lower than those of other studies. Despite this sampling difference, the ratios still exceed that observed in EQTP rivers.

Supplementary Table 8. The results of stepwise selection of predictive variables in multiple linear regression with N₂O flux.

Environmental	Unstar Coet	ndardized fficients	Standardized Coefficients	t	Sig.
variables	Beta	Std. Error	Beta		8
%O ₂	-0.150	0.028	-0.259	-5.352	< 0.001
pH	3.078	0.721	0.202	4.270	< 0.001
Water temperature	0.235	0.072	0.155	3.271	0.001
ТР	-1.491	0.560	-0.132	-2.665	0.008
NO ₃ -	2.569	1.113	0.112	2.308	0.022
Constant	-6.369	6.938		-0.918	0.359
	0.000				

	Stream/river	Basin Area	N ₂ O	Per unit river	Per unit hasin area	Percentage of	
Streams & rivers	surface area	$(\times 10^4 \text{ km}^2)$	emissions surface area		$[k_{\alpha}N_{\alpha}O N/(km^2 vr)]$	N ₂ O in GHG	Ref.
	(km^2)	(^ 10 KIII)	(GgN ₂ O-N/yr)	$[tN_2O-N/(km^2 \cdot yr)]$		emissions	
Congo River*	23,209	370.5	5.16	0.22	1.39	0.2%	22
Malaysian rivers	790	6.06	0.35	0.44	5.78	4.6%	25,78
Adyar River	6.9	0.05	1.53×10^{-3}	0.22	2.89	7.2%	27,79
Yongan River	/	0.25	6.56×10^{-3}	/	2.65	/	32
Shanghai river network	570	/	0.29	0.51	/	2.8%	34,80
Beijing river network	216	/	0.14	0.65	/	13.9%	35,81
Seine River	283	7.17	0.24	0.85	3.35	4.9%	42,43
Rabbit River	3.6	0.07	1.09×10^{-3}	0.30	1.56	/	51
Grand River	/	0.68	0.01	/	1.37	/	45
Swedish low-order streams	697	/	1.78	2.55	/	7.5%	62,82
Boreal rivers in Québec*	1,445	20.4	0.11	0.08	0.55	1.2%	63,83
EQTP 3rd_7th rivers*	2,603	72 (0.21	0.08	0.28	1.0%	
EQTP 1st-7th waterways*	3,049	/3.0	0.28	0.09	0.37	0.4%	This study
QTP 1st-7th waterways*	5,141	116.7	0.43-0.46	0.09	0.37	/	unu rei.

Supplementary Table 9. N₂O emissions in per unit stream/river surface area and basin area from EQTP waterways and other lotic settings worldwide.

*The Congo River, Québec rivers and QTP rivers are pristine (limited anthropogenic influence) rivers; the remaining rivers are human-impacted systems.

Supplementary Table 10. Primer pairs used in this study and corresponding amplification protocols.

Specificity	Primer	Sequence (5'-3')	Thermal conditions	Ref.
minC	cd3af	GTSAACGTSAAGGARACSGG	(95 °C, 3 min) × 1	
ntrs	R3cd	GASTTCGGRTGSGTCTTGA	(95 °C, 30 s; 58 °C, 40 s; 72 °C, 40 s) × 40	8
nirK	FlaCu	ATCATGGTSCTGCCGCG	(95 °C, 3 min) × 1	-
	R3Cu	GCCTCGATCAGRTTGTGGTT	(95 °C, 30 s; 60 °C, 30 s; 72 °C, 40 s) × 40	
nos7.	nosZ2F	CGCRACGGCAASAAGGTSMSSGT	(95 °C, 3 min) × 1	9
noszl	nosZ2R	CAKRTGCAKSGCRTGGCAGAA	(95 °C, 30 s; 60 °C, 30 s; 72 °C, 30 s) × 40	
nos7.	nosZ _{II} -F	CTIGGICCIYTKCAYAC	(95 °C, 3 min) × 1	10
nosz	nosZ _{II} -R	GCIGARCARAAITCBGTRC	(95 °C, 30 s; 54 °C, 45 s; 72 °C, 45 s) × 40	10

Supplementary References

- Kana, T. M. *et al.* Membrane inlet mass spectrometer for rapid high-precision determination of N₂, O₂, and Ar in environmental water samples. *Analytical Chemistry* 66, 4166-4170, doi:10.1021/ac00095a009 (1994).
- 2 Laursen, A. E. & Seitzinger, S. P. Measurement of denitrification in rivers: an integrated, whole reach approach. *Hydrobiologia* **485**, 67-81, doi:10.1023/A:1021398431995 (2002).
- Weiss, R. F. The solubility of nitrogen, oxygen and argon in water and seawater. *Deep Sea Research and Oceanographic Abstracts* **17**, 721-735, doi:10.1016/0011-7471(70)90037-9 (1970).
- 4 Zhang, S. *et al.* Both microbial abundance and community composition mattered for N2 production rates of the overlying water in one high-elevation river. *Environmental Research* **189**, 109933, doi:10.1016/j.envres.2020.109933 (2020).
- 5 Johnson, K. M., Hughes, J. E., Donaghay, P. L. & Sieburth, J. M. Bottle-calibration static head space method for the determination of methane dissolved in seawater. *Analytical Chemistry* **62**, 2408-2412, doi:10.1021/ac00220a030 (1990).
- 6 Zumft, W. G. Cell biology and molecular basis of denitrification. *Microbiology and Molecular Biology Reviews* **61**, 533-616 (1997).
- Hallin, S., Philippot, L., Löffler, F. E., Sanford, R. A. & Jones, C. M. Genomics and ecology of novel N₂O-reducing microorganisms. *Trends in Microbiology* 26, 43-55, doi:10.1016/j.tim.2017.07.003 (2018).
- Throbäck, I. N., Enwall, K., Jarvis, Å. & Hallin, S. Reassessing PCR primers targeting *nirS*, *nirK* and *nosZ* genes for community surveys of denitrifying bacteria with DGGE. *FEMS Microbiology Ecology* 49, 401-417, doi:10.1016/j.femsec.2004.04.011 (2004).
- 9 Henry, S., Bru, D., Stres, B., Hallet, S. & Philippot, L. Quantitative detection of the *nosZ* gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, *narG*, *nirK*, and *nosZ* genes in soils. *Applied and Environmental Microbiology* **72**, 5181-5189, doi:10.1128/aem.00231-06 (2006).
- 10 Jones, C. M., Graf, D. R. H., Bru, D., Philippot, L. & Hallin, S. The unaccounted yet abundant nitrous oxide-reducing microbial community: a potential nitrous oxide sink. *The ISME Journal* 7, 417-426, doi:10.1038/ismej.2012.125 (2013).
- 11 Chen, H. *et al.* The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau. *Global Change Biology* **19**, 2940-2955, doi:10.1111/gcb.12277 (2013).
- 12 Tremblay, J. C. & Ainslie, P. N. Global and country-level estimates of human population at high altitude. *Proceedings of the National Academy of Sciences* **118**, e2102463118, doi:10.1073/pnas.2102463118 (2021).
- 13 Li, X., Gao, E., Li, B. & Zhan, X. Estimating abundance of Tibetan wild ass, Tibetan gazelle and Tibetan antelope using species distribution model and distance sampling (in Chinese). SCIENTIA SINICA Vitae 49, 151, doi:10.1360/N052018-00171 (2019).
- 14 Xia, X. *et al.* Triple oxygen isotopic evidence for atmospheric nitrate and its application in source identification for river systems in the Qinghai-Tibetan Plateau. *Science of The Total Environment* **688**, 270-280, doi:10.1016/j.scitotenv.2019.06.204 (2019).
- Guo, X. *et al.* Using stable nitrogen and oxygen isotopes to identify nitrate sources in the Lancang River, upper Mekong. *Journal of Environmental Management* 274, 111197, doi:10.1016/j.jenvman.2020.111197 (2020).
- 16 Körner, H. & Zumft, W. G. Expression of denitrification enzymes in response to the dissolved oxygen

level and respiratory substrate in continuous culture of *Pseudomonas stutzeri*. Applied and *Environmental Microbiology* **55**, 1670-1676 (1989).

- 17 Qu, Z., Bakken, L. R., Molstad, L., Frostegård, Å. & Bergaust, L. L. Transcriptional and metabolic regulation of denitrification in *Paracoccus denitrificans* allows low but significant activity of nitrous oxide reductase under oxic conditions. *Environmental Microbiology* 18, 2951-2963, doi:10.1111/1462-2920.13128 (2016).
- 18 Downing, J. A. *et al.* Global abundance and size distribution of streams and rivers. *Inland Waters* **2**, 229-236, doi:10.5268/IW-2.4.502 (2012).
- 19 Allen, G. H. *et al.* Similarity of stream width distributions across headwater systems. *Nature Communications* **9**, 610, doi:10.1038/s41467-018-02991-w (2018).
- 20 Wang, Z. *et al.* Mapping the vegetation distribution of the permafrost zone on the Qinghai-Tibet Plateau. *Journal of Mountain Science* **13**, 1035-1046, doi:10.1007/s11629-015-3485-y (2016).
- 21 Borges, A. V. *et al.* Globally significant greenhouse-gas emissions from African inland waters. *Nature Geoscience* **8**, 637-642, doi:10.1038/ngeo2486 (2015).
- 22 Borges, A. V. *et al.* Variations in dissolved greenhouse gases (CO₂, CH₄, N₂O) in the Congo River network overwhelmingly driven by fluvial-wetland connectivity. *Biogeosciences* 16, 3801-3834, doi:10.5194/bg-16-3801-2019 (2019).
- 23 Mwanake, R. M. *et al.* Land use, not stream order, controls N₂O concentration and flux in the Upper Mara River Basin, Kenya. *Journal of Geophysical Research: Biogeosciences* **124**, 3491-3506, doi:10.1029/2019JG005063 (2019).
- 24 Müller, D. *et al.* Nitrous oxide and methane in two tropical estuaries in a peat-dominated region of northwestern Borneo. *Biogeosciences* **13**, 2415-2428, doi:10.5194/bg-13-2415-2016 (2016).
- 25 Bange, H. W. *et al.* Nitrous oxide (N₂O) and methane (CH₄) in rivers and estuaries of northwestern Borneo. *Biogeosciences* **16**, 4321-4335, doi:10.5194/bg-16-4321-2019 (2019).
- 26 Ho, L. *et al.* Effects of land use and water quality on greenhouse gas emissions from an urban river system. *Biogeosciences Discuss.* **2020**, 1-22, doi:10.5194/bg-2020-311 (2020).
- 27 Nirmal Rajkumar, A., Barnes, J., Ramesh, R., Purvaja, R. & Upstill-Goddard, R. C. Methane and nitrous oxide fluxes in the polluted Adyar River and estuary, SE India. *Marine Pollution Bulletin* 56, 2043-2051, doi:10.1016/j.marpolbul.2008.08.005 (2008).
- Begum, M. S. *et al.* Localized pollution impacts on greenhouse gas dynamics in three anthropogenically modified Asian river systems. *Journal of Geophysical Research: Biogeosciences* 126, e2020JG006124, doi:10.1029/2020JG006124 (2021).
- 29 Qu, B. *et al.* Greenhouse gases emissions in rivers of the Tibetan Plateau. *Scientific Reports* 7, 16573, doi:10.1038/s41598-017-16552-6 (2017).
- 30 Chen, N., Wu, J., Zhou, X., Chen, Z. & Lu, T. Riverine N₂O production, emissions and export from a region dominated by agriculture in Southeast Asia (Jiulong River). Agriculture, Ecosystems & Environment 208, 37-47, doi:10.1016/j.agee.2015.04.024 (2015).
- 31 Liang, X. *et al.* Control of the hydraulic load on nitrous oxide emissions from cascade reservoirs. *Environmental Science & Technology* **53**, 11745-11754, doi:10.1021/acs.est.9b03438 (2019).
- 32 Hu, M. *et al.* Modeling riverine N₂O sources, fates, and emission factors in a typical river network of Eastern China. *Environmental Science & Technology* 55, 13356-13365, doi:10.1021/acs.est.1c01301 (2021).
- He, Y. *et al.* Effect of watershed urbanization on N₂O emissions from the Chongqing metropolitan river network, China. *Atmospheric Environment* **171**, 70-81, doi:10.1016/j.atmosenv.2017.09.043

(2017).

- 34 Yu, Z. *et al.* Nitrous oxide emissions in the Shanghai river network: Implications for the effects of urban sewage and IPCC methodology. *Global Change Biology* **19**, 2999-3010, doi:10.1111/gcb.12290 (2013).
- 35 Wang, G. *et al.* Distinctive patterns and controls of nitrous oxide concentrations and fluxes from urban inland waters. *Environmental Science & Technology* 55, 8422-8431, doi:10.1021/acs.est.1c00647 (2021).
- 36 Ye, R. *et al.* Concentrations and emissions of dissolved CH₄ and N₂O in the Yarlung Tsangpo River. *Chinese Journal of Ecology* **38**, 791-798 (2019).
- 37 Yan, W., Yang, L., Wang, F., Wang, J. & Ma, P. Riverine N₂O concentrations, exports to estuary and emissions to atmosphere from the Changjiang River in response to increasing nitrogen loads. *Global Biogeochemical Cycles* 26, doi:10.1029/2010gb003984 (2012).
- Xia, X. *et al.* Nitrogen loss from a turbid river network based on N₂ and N₂O fluxes: Importance of suspended sediment. *Science of The Total Environment* **757**, 143918, doi:10.1016/j.scitotenv.2020.143918 (2021).
- 39 Hao, X. *et al.* Greenhouse gas emissions from the water-air interface of a grassland river: a case study of the Xilin River. *Scientific Reports* **11**, 2659, doi:10.1038/s41598-021-81658-x (2021).
- 40 Outram, F. N. & Hiscock, K. M. Indirect nitrous oxide emissions from surface water bodies in a lowland arable catchment: A significant contribution to agricultural greenhouse gas budgets? *Environmental Science & Technology* **46**, 8156-8163, doi:10.1021/es3012244 (2012).
- 41 Cooper, R. J., Wexler, S. K., Adams, C. A. & Hiscock, K. M. Hydrogeological controls on regionalscale indirect nitrous oxide emission factors for rivers. *Environmental Science & Technology* 51, 10440-10448, doi:10.1021/acs.est.7b02135 (2017).
- 42 Garnier, J. *et al.* Nitrous oxide (N₂O) in the Seine river and basin: Observations and budgets. *Agriculture, Ecosystems & Environment* **133**, 223-233, doi:10.1016/j.agee.2009.04.024 (2009).
- 43 Marescaux, A., Thieu, V. & Garnier, J. Carbon dioxide, methane and nitrous oxide emissions from the human-impacted Seine watershed in France. *Science of The Total Environment* **643**, 247-259, doi:10.1016/j.scitotenv.2018.06.151 (2018).
- 44 Borges, A. V. *et al.* Effects of agricultural land use on fluvial carbon dioxide, methane and nitrous oxide concentrations in a large European river, the Meuse (Belgium). *Science of The Total Environment* **610-611**, 342-355, doi:10.1016/j.scitotenv.2017.08.047 (2018).
- 45 Rosamond, M. S., Thuss, S. J. & Schiff, S. L. Dependence of riverine nitrous oxide emissions on dissolved oxygen levels. *Nature Geoscience* **5**, 715-718, doi:10.1038/ngeo1556 (2012).
- 46 Baulch, H. M., Schiff, S. L., Maranger, R. & Dillon, P. J. Nitrogen enrichment and the emission of nitrous oxide from streams. *Global Biogeochemical Cycles* **25**, doi:10.1029/2011gb004047 (2011).
- 47 Baulch, H. M., Dillon, P. J., Maranger, R. & Schiff, S. L. Diffusive and ebullitive transport of methane and nitrous oxide from streams: Are bubble-mediated fluxes important? *Journal of Geophysical Research: Biogeosciences* **116**, n/a-n/a, doi:10.1029/2011JG001656 (2011).
- Hinshaw, S. E. & Dahlgren, R. A. Dissolved nitrous oxide concentrations and fluxes from the eutrophic San Joaquin River, California. *Environmental Science & Technology* 47, 1313-1322, doi:10.1021/es301373h (2013).
- 49 Davis, M. P. & David, M. B. Nitrous oxide fluxes from agricultural streams in east-central Illinois. *Water, Air, & Soil Pollution* **229**, 354, doi:10.1007/s11270-018-4007-7 (2018).
- 50 Cole, J. J. & Caraco, N. F. Emissions of nitrous oxide (N₂O) from a tidal, freshwater river, the Hudson

River, New York. Environmental Science & Technology 35, 991-996, doi:10.1021/es0015848 (2001).

- 51 Beaulieu, J. J., Arango, C. P., Hamilton, S. K. & Tank, J. L. The production and emission of nitrous oxide from headwater streams in the Midwestern United States. *Global Change Biology* **14**, 878-894, doi:10.1111/j.1365-2486.2007.01485.x (2008).
- 52 Aho, K. S. *et al.* An intense precipitation event causes a temperate forested drainage network to shift from N₂O source to sink. *Limnology and Oceanography* $\mathbf{n/a}$, doi:10.1002/lno.12006.
- 53 Schade, J. D., Bailio, J. & McDowell, W. H. Greenhouse gas flux from headwater streams in New Hampshire, USA: Patterns and drivers. *Limnology and Oceanography* **61**, S165-S174, doi:10.1002/lno.10337 (2016).
- 54 Turner, P. A. *et al.* Regional-scale controls on dissolved nitrous oxide in the Upper Mississippi River. *Geophysical Research Letters* **43**, 4400-4407, doi:10.1002/2016gl068710 (2016).
- 55 Turner, P. A. *et al.* Indirect nitrous oxide emissions from streams within the US Corn Belt scale with stream order. *Proceedings of the National Academy of Sciences* **112**, 9839-9843, doi:10.1073/pnas.1503598112 (2015).
- 56 Beaulieu, J. J. et al. Nitrous oxide emission from denitrification in stream and river networks. Proceedings of the National Academy of Sciences 108, 214-219, doi:10.1073/pnas.1011464108 (2011).
- 57 Andrews, L. F. *et al.* Hydrological, geochemical and land use drivers of greenhouse gas dynamics in eleven sub-tropical streams. *Aquatic Sciences* **83**, 40, doi:10.1007/s00027-021-00791-x (2021).
- 58 Clough, T. J., Bertram, J. E., Sherlock, R. R., Leonard, R. L. & Nowicki, B. L. Comparison of measured and EF_{5-r}-derived N₂O fluxes from a spring-fed river. *Global Change Biology* 12, 352-363, doi:10.1111/j.1365-2486.2005.01089.x (2006).
- 59 Clough, T. J., Buckthought, L. E., Kelliher, F. M. & Sherlock, R. R. Diurnal fluctuations of dissolved nitrous oxide (N₂O) concentrations and estimates of N₂O emissions from a spring-fed river: implications for IPCC methodology. *Global Change Biology* 13, 1016-1027, doi:10.1111/j.1365-2486.2007.01337.x (2007).
- 60 Clough, T. J., Buckthought, L. E., Casciotti, K. L., Kelliher, F. M. & Jones, P. K. Nitrous oxide dynamics in a braided river system, New Zealand. *Journal of Environmental Quality* **40**, 1532-1541, doi:10.2134/jeq2010.0527 (2011).
- 61 Audet, J., Wallin, M. B., Kyllmar, K., Andersson, S. & Bishop, K. Nitrous oxide emissions from streams in a Swedish agricultural catchment. *Agriculture, Ecosystems & Environment* **236**, 295-303, doi:10.1016/j.agee.2016.12.012 (2017).
- 62 Audet, J. *et al.* Forest streams are important sources for nitrous oxide emissions. *Global Change Biology* **26**, 629-641, doi:10.1111/gcb.14812 (2020).
- 63 Soued, C., del Giorgio, P. A. & Maranger, R. Nitrous oxide sinks and emissions in boreal aquatic networks in Québec. *Nature Geoscience* **9**, 116-120, doi:10.1038/ngeo2611 (2016).
- 64 Harms, T. K., Rocher-Ros, G. & Godsey, S. E. Emission of greenhouse gases from water tracks draining Arctic hillslopes. *Journal of Geophysical Research: Biogeosciences* **125**, e2020JG005889, doi:10.1029/2020JG005889 (2020).
- 65 Hu, M., Chen, D. & Dahlgren, R. A. Modeling nitrous oxide emission from rivers: A global assessment. *Global Change Biology* 22, 3566-3582, doi:10.1111/gcb.13351 (2016).
- 66 Gardner, J. R., Fisher, T. R., Jordan, T. E. & Knee, K. L. Balancing watershed nitrogen budgets: accounting for biogenic gases in streams. *Biogeochemistry* 127, 231-253, doi:10.1007/s10533-015-0177-1 (2016).

- 67 Dee, M. M. & Tank, J. L. Inundation time mediates denitrification end products and carbon limitation in constructed floodplains of an agricultural stream. *Biogeochemistry*, doi:10.1007/s10533-020-00670-x (2020).
- 68 Beaulieu, J. J., Arango, C. P. & Tank, J. L. The effects of season and agriculture on nitrous oxide production in headwater streams. *Journal of Environmental Quality* 38, 637-646, doi:10.2134/jeq2008.0003 (2009).
- 69 Billen, G. *et al.* Modeling indirect N₂O emissions along the N cascade from cropland soils to rivers. *Biogeochemistry* **148**, 207-221, doi:10.1007/s10533-020-00654-x (2020).
- 70 Dong, L. F., Nedwell, D. B. & Stott, A. Sources of nitrogen used for denitrification and nitrous oxide formation in sediments of the hypernutrified Colne, the nutrified Humber, and the oligotrophic Conwy estuaries, United Kingdom. *Limnology and Oceanography* **51**, 545-557, doi:10.4319/lo.2006.51.1_part_2.0545 (2006).
- 71 Huang, S., Chen, C., Yang, X., Wu, Q. & Zhang, R. Distribution of typical denitrifying functional genes and diversity of the *nirS*-encoding bacterial community related to environmental characteristics of river sediments. *Biogeosciences* 8, 3041-3051, doi:10.5194/bg-8-3041-2011 (2011).
- 72 Zhang, M. *et al.* Response of chemical properties, microbial community structure and functional genes abundance to seasonal variations and human disturbance in Nanfei River sediments. *Ecotoxicology and Environmental Safety* **183**, 109601, doi:10.1016/j.ecoenv.2019.109601 (2019).
- 73 Thuan, N. C. *et al.* N₂O production by denitrification in an urban river: evidence from isotopes, functional genes, and dissolved organic matter. *Limnology* **19**, 115-126, doi:10.1007/s10201-017-0524-0 (2018).
- 74 Ligi, T. *et al.* Effects of soil chemical characteristics and water regime on denitrification genes (*nirS*, *nirK*, and *nosZ*) abundances in a created riverine wetland complex. *Ecological Engineering* **72**, 47-55, doi:10.1016/j.ecoleng.2013.07.015 (2014).
- 75 Martínez-Santos, M. *et al.* Treated and untreated wastewater effluents alter river sediment bacterial communities involved in nitrogen and sulphur cycling. *Science of The Total Environment* **633**, 1051-1061, doi:10.1016/j.scitotenv.2018.03.229 (2018).
- 76 Mahamoud Ahmed, A., Lyautey, E., Bonnineau, C., Dabrin, A. & Pesce, S. Environmental concentrations of copper, alone or in mixture with arsenic, can impact river sediment microbial community structure and functions. *Frontiers in Microbiology* 9, doi:10.3389/fmicb.2018.01852 (2018).
- Lyautey, E. *et al.* Abundance, activity and structure of denitrifier communities in phototrophic river biofilms (River Garonne, France). *Hydrobiologia* 716, 177-187, doi:10.1007/s10750-013-1561-2 (2013).
- 78 Wit, F. *et al.* The impact of disturbed peatlands on river outgassing in Southeast Asia. *Nature Communications* **6**, 10155, doi:10.1038/ncomms10155 (2015).
- 79 Panneer Selvam, B., Natchimuthu, S., Arunachalam, L. & Bastviken, D. Methane and carbon dioxide emissions from inland waters in India – implications for large scale greenhouse gas balances. *Global Change Biology* 20, 3397-3407, doi:10.1111/gcb.12575 (2014).
- 80 Yu, Z. et al. Carbon dioxide and methane dynamics in a human-dominated lowland coastal river network (Shanghai, China). Journal of Geophysical Research: Biogeosciences 122, 1738-1758, doi:10.1002/2017jg003798 (2017).
- 81 Wang, G. *et al.* Intense methane ebullition from urban inland waters and its significant contribution to greenhouse gas emissions. *Water Research* **189**, 116654, doi:10.1016/j.watres.2020.116654 (2021).

- 82 Wallin, M. B. *et al.* Carbon dioxide and methane emissions of Swedish low-order streams—A national estimate and lessons learnt from more than a decade of observations. *Limnology and Oceanography Letters* **3**, 156-167, doi:10.1002/lol2.10061 (2018).
- 83 Hutchins, R. H. S., Casas-Ruiz, J. P., Prairie, Y. T. & del Giorgio, P. A. Magnitude and drivers of integrated fluvial network greenhouse gas emissions across the boreal landscape in Québec. *Water Research* 173, 115556, doi:10.1016/j.watres.2020.115556 (2020).
- 84 Zhang, L. *et al.* Significant methane ebullition from alpine permafrost rivers on the East Qinghai-Tibet Plateau. *Nature Geoscience* **13**, 349-354, doi:10.1038/s41561-020-0571-8 (2020).