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Characterization of activated dicarboxylic acids. 

Oxalic acid imidazolide: 1,2-di(1H-imidazol-1-yl)ethane-1,2-dione. 1H NMR (400 MHz, DMSO) δ 8.23 (d, J = 1.1 Hz, 1H), 7.58 (t, J = 
1.4 Hz, 1H), 7.05 – 7.00 (m, 1H). 13C NMR (101 MHz, DMSO) δ 162.39, 138.16, 130.47, 116.87. ESI-MS: [M+H] calculated: 191.1 ; 
Found: 191.8 

Succinic acid imidazolide: 1,4-di(1H-imidazol-1-yl)butane-1,4-dione. 1H NMR (400 MHz, DMSO) δ 8.52 (t, J = 1.1 Hz, 2H), 7.77 (t, J 
= 1.5 Hz, 2H), 7.12 (dd, J = 1.7, 0.8 Hz, 2H), 3.49 (s, 4H). 13C NMR (101 MHz, DMSO) δ 169.98, 137.61, 130.91, 116.99, 29.65. ESI-
MS: [M+H] calculated: 219.1 ; Found: 219.2 

Glutaric acid imidazolide: 1,5-di(1H-imidazol-1-yl)pentane-1,5-dione. 1H NMR (400 MHz, DMSO) δ 8.42 (t, J = 1.1 Hz, 2H), 7.71 (t, J 
= 1.5 Hz, 2H), 7.08 (dd, J = 1.7, 0.8 Hz, 2H), 3.16 (t, J = 7.0 Hz, 4H), 2.06 (p, J = 7.0 Hz, 2H). 13C NMR (101 MHz, DMSO) δ 170.58, 
137.39, 130.69, 116.91, 33.80, 18.27. ESI-MS: [M+H] calculated: 233.1 ; Found: 233.2 

Diglycolic acid imidazolide: 2,2'-oxybis(1-(1H-imidazol-1-yl)ethan-1-one). 1H NMR (400 MHz, DMSO) δ 8.41 (t, J = 1.1 Hz, 2H), 
7.71 (t, J = 1.5 Hz, 2H), 7.10 (dd, J = 1.7, 0.8 Hz, 2H), 5.04 (s, 4H). 13C NMR (101 MHz, DMSO) δ 167.93, 137.10, 130.66, 116.55, 
69.65. ESI-MS: [M+H] calculated: 235.1 ; Found: 235.1 

Terephthalic acid imidazolide: 1,4-phenylenebis((1H-imidazol-1-yl)methanone). 1H NMR (400 MHz, DMSO) δ 8.28 (t, J = 1.1 Hz, 2H), 
8.02 (s, 4H), 7.76 (t, J = 1.5 Hz, 2H), 7.25 – 7.16 (m, 2H). 13C NMR (101 MHz, DMSO) δ 165.97, 139.25, 136.03, 131.20, 130.37, 
118.73. ESI-MS: [M+H] calculated: 267.1 ; Found: 267.0 

Isocinchomeronic acid imidazolide: pyridine-2,5-diylbis((1H-imidazol-1-yl)methanone). 1H NMR (400 MHz, DMSO) δ 9.16 (dd, J = 2.2, 
0.8 Hz, 1H), 8.71 (t, J = 1.0 Hz, 1H), 8.54 (dd, J = 8.1, 2.2 Hz, 1H), 8.37 – 8.31 (m, 2H), 7.97 (dd, J = 1.7, 1.2 Hz, 1H), 7.81 (t, J = 1.5 
Hz, 1H), 7.23 (dd, J = 1.7, 0.8 Hz, 1H), 7.19 (dd, J = 1.7, 0.8 Hz, 1H). 13C NMR (101 MHz, DMSO) δ 164.53, 163.36, 152.20, 149.66, 
140.30, 139.77, 139.32, 131.74, 131.38, 130.69, 126.34, 124.68, 118.68, 118.61. ESI-MS: [M+H] calculated: 268.1 ; Found: 268.2

6,6’-binicotinic acid imidazolide: [2,2'-bipyridine]-5,5'-diylbis((1H-imidazol-1-yl)methanone). 1H NMR (400 MHz, DMSO) δ 9.16 (dd, J 
= 2.2, 0.8 Hz, 2H), 8.69 (dd, J = 8.2, 0.9 Hz, 2H), 8.46 (dd, J = 8.3, 2.3 Hz, 2H), 8.35 (d, J = 1.1 Hz, 2H), 7.81 (t, J = 1.5 Hz, 2H), 
7.22 (d, J = 1.6 Hz, 2H). 13C NMR (101 MHz, DMSO) δ 167.89, 157.57, 150.81, 139.70, 139.09, 131.21, 129.46, 121.58, 118.77. 
ESI-MS: [M+H] calculated: 345.1 ; Found: 345.2

Dipicolinic acid imidazolide (DPI for short): pyridine-2,6-diylbis((1H-imidazol-1-yl)methanone). 1H NMR (400 MHz, dmso) δ 8.67 (dd, 
J = 1.3, 0.8 Hz, 2H), 8.51 – 8.37 (m, 3H), 7.94 (dd, J = 1.7, 1.2 Hz, 2H), 7.18 – 7.11 (m, 2H). 13C NMR (101 MHz, DMSO) δ 163.1, 
148.8, 140.5, 140.1, 130.6, 130.2, 118.8. ESI-MS: [M+H] calculated: 268.1 ; Found: 268.3. 



Supplementary Figure 1. Synthetic Scheme, Mass spectrometry and NMR characterization of SHARC reagents.
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Supplementary Figure 2. Characterization of SHARC chemistry. a, Minimal and maximal possible lengths between the crosslinked 2’ oxygen groups in RNA, estimated in 
PyMOL. Hydroxyl groups are represented by the green oxygen atoms. The minimal distances were set at 2.8, approximately the distance between two oxygens between 
hydrogen-bonded water molecules. b, PAGE analysis of crosslinking efficiency with the different activated dicarboxylic acids (100 mM), with 10 µM model RNA 1 in 0.06 M 
MOPS, pH 7.5; 0.1 M KCl; 2.5 mM MgCl2 at room temperature for 4 hours. The three lanes represent triplicate experiments. c, Reaction scheme of hydrolysis reaction of DPI. 
d, Hydrolysis of DPI in phosphate buffer pH 7.4 analysed by NMR spectroscopy over time. e, Formation of hydrolyzed DPI products over time. After ~30 min all DPI has been 
hydrolyzed. f, Hydrolysis of ApA in 100 mM borate buffer pH 10.0 analysed by NMR spectroscopy over time. g, Formation of hydrolyzed ApA products over time, based on 
quantification of panel f. Even after 48 hours, no hydrolysis products are observed. h, PAGE analysis of crosslink reversal efficiency at different alkaline and temperature 
conditions (37 C or room temperature RT). The three lanes represent triplicate experiments. i, An increase in crosslink reversal (= decrease in crosslinked RNA) is observed at 
increased pH and temperature, based on quantification of gel pictures in panel h. Near complete reversal was achieved at pH 10-11 without obvious damage. Data are mean 
± s.d.; n = 3, technical replicates. Source data are provided as a Source Data file.
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Supplementary Figure 3. Establishing the exo method for PARIS (a-e) and SHARC (f-j). a, RNase R reduces arm length in PARIS-exo. b, RNase R trimming leads to 
enrichment of U at the 5th nucleotide from the 3‘ end. c-e, An example of precise crosslink site identification using PARIS-exo. c, Blue and red vertical lines indicate the 3’ ends 
(median) from PARIS and PARIS-exo reads. d, The PARIS-exo derived 3‘ ends and crosslinking sites are mapped to the H79 and ES31 of human 28S secondary structure. e, 
cryo-EM structure of H79 and ES31 (PDB: 4V6X). f, HEK293 cells are crosslinked with DPI at different concentrations. Total RNA crosslinked cells are fragmented by RNase III 
and separated on a 8% denatured urea-TBE gel. g, RNA fragments from the first dimension (panel f) were electrophoresed again on a second dimension of 16% urea-TBE gel. 
The smear above the diagonal represents crosslinked RNA. h, Quantification of the recovery of crosslinked RNA fragments from the DD2D gel system (replicates n = 9, 16 and 
4 for the 3 conditions, respectively). The increase in yield is not linear in response to higher crosslinker concentration, because most accessible crosslinking sites have reacted 
at lower concentrations, yielding an increase in concentration ineffective. i, To measure protein content in crosslinked and purified RNA samples, we first crosslinked cells with 
5mM DPI. We prepared, in triplicates, (1) total cell lysate in RIPA buffer, (2) RNA extracted using the PK and TNA method, and (3) RNA extracted using standard TRIzol method. 
All samples were measured for protein concentration using the BCA method, and values normalized against the total lysate. Relative protein concentrations for the PK+TNA 
method: 4.66%, 3.58%, 3.41%. Relative protein concentrations for the TRIzol method: 0.28%, 0.66%, 0.34%. Data are mean ± s.d.; n = 3, biological replicates. j, Scatter plot of 
gapped reads in each duplex group (DG) among experiments with different conditions. n=5000 genes. k, The span of SHARC (5mM DPI, no RNase R trimming) and 
SHARC-exo (5mM DPI and 12 hour RNase R) gapped reads mapped to the ribosomal RNAs 18S (1869nt) and 28S (5070nt). The lower panels are the same data as upper, 
with the y-axis rescaled to 5% to show the longer-distance reads. Source data are provided as a Source Data file.
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Supplementary Figure 4. SHARC crosslinking and RNase R trimming reveal crosslink sites with high resolution. The 28S rRNA was analyzed for all SHARC 
experiments.  a, Fraction of single-stranded nucleotides around the 3’ end of the left and right arms. Single stranded nucleotides were defined based on the human ribosome 
cryo-EM structure (PDB: 4V6X). RNase R trimming leads to a drammatic enrichment of single-stranded nucleotides (ss-nts) around the 5th nucleotide, marked by the black 
vertical dashed line. b, Quantification of differences between RNase R trimmed samples vs. non-trimmed PARIS or SHARC data shown in panel a, at the 5th nucleotide position 
upstream of the 3’ end. c, Average icSHAPE reactivity around the 3’ end of the left and right arms, showing better enrichment of accessible nucleotides at the 5th position than 
panel a. d, Quantification of differences between RNase R trimmed samples vs. non-trimmed SHARC data shown in panel c, at the 5th nucleotide position upstream of the 3’ 
end. In panels a and c, the higher signal for the non-trimmed SHARC data between 7 and 15 reflects the diffused higher probability single stranded regions. This higher signal 
collapsed around the 5th nucleotide upon RNase R trimming. a-d, n=2 biological replicates. e, Frequencies of the 4 nucleotides around the 3’ end of the left and right arms. 
Stronger RNase R trimming revealed a slight enrichment of A and U near the 5th nucleotide, likely reflecting the weaker secondary structure constraints near the SHARC 
crosslinking sites. Source data are provided as a Source Data file.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 15 14 13 12 11 10 9 8 7 6 5 4 3 2 115 14 13 12 11 10 9 8 7 6 5 4 3 2 1

nu
cl

eo
tid

e 
fre

qu
en

cy
 (n

or
m

al
iz

ed
 

so
 m

ed
ia

n=
0.

25
 fo

r e
ac

h 
nt

)

nt position from the 3’ end nt position from the 3’ end nt position from the 3’ endnt position from the 3’ end

e
A
G
C
U

0.75
0.50
0.25

0
0.75
0.50
0.25

0
0.75
0.50
0.25

0

3’ endleft & right arms

RNase R 0h (ctrl) RNase R 2h RNase R 12h RNase R 24h
3’ endleft & right arms 3’ endleft & right arms 3’ endleft & right arms

No data

No data

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 +1 +2 +3 +4 +5 +6 +7 +8 +9 +1
0

0.25
0.20
0.15
0.10
0.05
0.00ic

SH
AP

E 
re

ac
tiv

ity

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 +1 +2 +3 +4 +5 +6 +7 +8 +9 +1
0

0.25
0.20
0.15
0.10
0.05
0.00

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 +1 +2 +3 +4 +5 +6 +7 +8 +9 +1
0

0.25
0.20
0.15
0.10
0.05
0.00

RNase R 0h
RNase R 2h

DPI 5 mM DPI 12.5 mM DPI 25 mM

RNase R 12h
RNase R 24h

left & right arms              down stream3’ end left & right arms              down stream3’ end left & right arms              down stream3’ end
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 +1 +2 +3 +4 +5 +6 +7 +8 +9 +1
0

0.70
0.60
0.50
0.40
0.30
0.20fra

ct
io

n 
of

 s
in

lg
e 

st
ra

nd
ed

 n
ts

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 +1 +2 +3 +4 +5 +6 +7 +8 +9 +1
0

0.60
0.50
0.40
0.30
0.20

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 +1 +2 +3 +4 +5 +6 +7 +8 +9 +1
0

0.70
0.60
0.50
0.40
0.30
0.20

a

c

d

b

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 +1 +2 +3 +4 +5 +6 +7 +8 +9 +1
0ic

SH
AP

E 
re

ac
tiv

ity
(re

la
tiv

e 
to

 0
h)

4

3

2

1

0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 +1 +2 +3 +4 +5 +6 +7 +8 +9 +1
0

4

3

2

1

0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 +1 +2 +3 +4 +5 +6 +7 +8 +9 +1
0

4

3

2

1

0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 +1 +2 +3 +4 +5 +6 +7 +8 +9 +1
0si

nl
ge

 s
tra

nd
ed

 n
ts

(re
la

tiv
e 

to
 0

h)

1.75
1.50
1.25
1.00
0.75
0.50

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 +1 +2 +3 +4 +5 +6 +7 +8 +9 +1
0

1.75
1.50
1.25
1.00
0.75
0.50

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 +1 +2 +3 +4 +5 +6 +7 +8 +9 +1
0

1.75
1.50
1.25
1.00
0.75
0.50



R
N

as
e 

R
 0

h
(r

ea
ds

: 5
0,

00
0)

53% 13% 34% (% of reads)

 39% 23% 38% (% of reads)

R
N

as
e 

R
 2

h
(r

ea
ds

: 1
1,

95
6)

R
N

as
e 

R
 1

2h
(r

ea
ds

: 5
03

,4
60

)
R

N
as

e 
R

 2
h

(r
ea

ds
: 2

94
,3

02
)

R
N

as
e 

R
 1

2h
(r

ea
ds

: 6
76

,5
10

)

min distance between two arms’ ss-nts (Å) distance between two arms’ 
[3-7] ss-nts

distribution of two arms’ 
ss-nts with min distance

% reads (min 
distance in [3-7] pos)
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Supplementary Figure 7. SHARC-exo captures spatial distances in the RPPH1 RNA in human RNase P. a, Cryo-EM structure of the RNase P holoenzyme, which contains 
1 RNA and 10 protein partners (PDB: 6AHR). b, The holoenzyme contains an RNA core, the C domain, stabilized by extensive tertiary interactions, and the S domain, which is 
largely exposed and potentially dynamic (The removed protein POP1 is chain B in 6AHR). c, Helices in RPPH1: P1-P19, color-coded blue to red from the 5’ end to the 3’ end. d, 
SHARC-exo data showing all DGs with >5 reads each. e, icSHAPE and SHARC-exo (black lines) data overlapped onto the secondary structure of the RPPH1 RNA. icSHAPE 
data were extracted from our recent study (Lu et al. 2016 Cell, PMID: 27180905). Thickness of the black lines are scaled to the square root of the read numbers shown at the 
bottom. Coord_1 and coord_2 are the two crosslinked nucleotides in each DG. f-g, Crosslinking sites mapped to the 3D structure of RPPH1, in two views rotated horizontally. 
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Supplementary Figure 8. SHARC-exo measures spatial distances in the 7SL RNA. a. Model of the SRP complex, which consists of the 7SL RNA and 6 proteins. These 
components can be organized into 2 major domains, Alu and S, separated by the hinge/elbow. The Alu domain contains helices 2, 3, 4, 5a, 5b, 5c, 5d, and proteins SRP9/14. 
The S domain contains helices 5e, 5f, 6, 7, 8, and proteins SRP19/54 and SRP68/72, where the SRP54 recognizes nascent peptides from ribosome. Redrawn from Grotwinkel 
et al. 2014 (PMID: 24700861). b. Cryo-EM structure of the 7SL RNA on the 28S rRNA (PDB: 6FRK). A section of the Alu domain is not visible based on the cryo-EM data and 
therefore marked missing. In PyMOL: set_view (-0.699150383, -0.621524274, 0.353370398, 0.497510254, -0.067985296, 0.864776254, -0.513455927, 0.780423343, 
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based on the cryo-EM and icSHAPE data (extracted from Lu et al. 2016 Cell, PMID: 27180905). The 5 SHARC-exo crosslinking sites are marked by black lines. t1 and t2 are 
tertiary contacts in the cryo-EM model. d, SHARC-exo data supporting the spatial proxitimities. Top panel shows the secondary structure, where the Alu and S domains are color 
coded. A total of 5 DGs were identified with at least 5 reads in each DG. e, Numbers of reads, sequence coordinates, spatial distances and helices for the 5 DGs. The one on 
the bottom (213-248) likely represents an alternative conformation of the helix 8. f, Mapping the SHARC-exo derived crosslinking sites onto the cryo-EM structure of 7SL. Color 
blue to red, from the 5’ end to the 3’ end. The nucleotide 67 is missing from the cryo-EM, therefore, the distance is a rough estimate. Nucleotides 101 and 251 are right next to 
each other, and overlapped in this view. g, A model of the alternative conformations in 7SL S domain (Redrawn from Kuglstatter et al. 2002). The folded conformation is 
necessary for SRP19 binding, which then recruits SRP54. Unfolding of the packed helices 6 and 8 would allow helix 8 to bend backward to make contact with 5e. This 
alternative open conformation was previously suggested as an assembly precursor of the SRP complex (Kuglstatter et al. 2002, PMID: 12244299). Source data are provided as 
a Source Data file.
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Supplementary Figure 9. SHARC-exo captures intermolecular interactions in the spliceosomal RNAs. a, SHARC-exo data for U4-U6 interactions. The numbers of reads 
and 3’ ends of the two DGs are labeled. b, Secondary structure model of the U4-U6 dimer (redrawn from Patel and Steitz 2003, PMID: 14685174). SHARC-exo crosslinked sites 
are labeled. c-d, Physical locations of SHARC-exo crosslinking sites on the U5.U4/U6 tri-snRNP cryo-EM structure model (PDB:6QW6). The crosslinked sites of DG2 were 
missed in cryo-EM structure, but captured by SHARC-exo (U4:72 vs. U6:37). The diagram in panel d shows estimated locations. Source data are provided as a Source Data file.
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Supplementary Figure 1 O. Using spatial distances captured by SHARC-exo to improve Rosetta 3D modeling. a, Localion of the helices h22-h24 (nucleolides 920-1090) 
in the human 18S rRNA. b, SHARC-exo data (5mM SHARC, 12h RNase R), showing DGs that captured two pairs of nucleotides in spalial proximity. Vertical lines indicate the 3' 
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Supplementary Figure 11. SHARC-exo captures dynamic structures in the human 
ribosome. a, Percentages of reads with between-arm distances in three ranges: 0-20, 20-40 
and ≥40Å. For crosslinks constrained by dsRNAs, the vast majority of distances (96.15%) are 
within 20Å. For tertiary contacts in the core and expansion segments, more distances are >20 
or >40 Å. b, Genome coverage track showing that SHARC-exo reads with larger distance 
between two arms (≥40Å) are primarily mapped to18S and 28S rRNA expansion segments. 
The scales are different between 18S and 28S. c, Violin plot of per-nt reads coverage along 
the 28S, in core and expansion segment intervals. d-e, Locations of the major expansion 
segments on the ribosome cryo-EM structures (only expansion segments >50nts are shown). 
Thin lines with bases represent well positioned regions in the cryo-EM structure, while thick 
lines without bases represent high B values, i.e. flexible regions. Missing segments are listed 
next to the break points. Some of the expansion segments, even though are well positioned in 
this model, may be more flexible in cells, e.g. the roots of 21ES6, 44es12, and 63ES27. For 
example, 63ES27 missed two regions 2952-3241 and 3302-3559, which add up to 548 
nucleotides, the lost of all the missed expansion segments. f, Numbers of reads in the 
hub1-interacting DGs, ranked by coverage. g, Details of all the 6 DGs supporting dynamic 
conformations between 78ES30 and its targets. h-i, Model of the alternative interaction 
between ES30 and ES31, illustrating the lack of clashes with the surface of the ribosome. 
Two views rotated horizontally by 90° are shown. Red: H76-H78 and ES30. Gray: H79 and 
ES31. Source data are provided as a Source Data file.
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Supplementary Figure 12. SHARC-exo captures intermolecular interactions between 5.8S and 28S rRNAs. a, IGV plot showing the interactions between 5.8S and 28S 
rRNA. Only the duplex groups (DGs) with more than 10 reads were showed here. b, Physical locations of top 6 5.8S-28S rRNA interactions on the ribosome cryo-EM structure 
(PDB: 4V6X). Interacting regions are shown in spheres while the rest are in lines. The part of 5.8S involved in all the alternative contacts is exposed to the surface of the 
ribosome, making it possible to reach distant 28S helices. Source data are provided as a Source Data file.
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Supplementary Figure 13. SHARC-exo captures dynamic interactions 
between the 18S and 28S rRNAs. a, DGs connecting 18S and 28S rRNAs 
are clustered based on the left arm positions (18S). Five regions of 18S rRNA 
can dynamically interact with 28S rRNA. DG 6 and 10 in this figure are the 
same as DG 5 and 4 in Fig. 4. DGs with >100 reads are shown. b, Physical 
locations of 18S-28S rRNA interactions on 80S ribosome cryo-EM structure 
(PDB: 4V6X). Top 3 are shown in each group. All the helices involved in 
dynamic inter-subunit interactions are expansion segments. Interacting 
regions are shown in spheres while the rest are shown in lines (cartoon in 
PyMOL). Source data are provided as a Source Data file.
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Supplementary Figure 14. icSHAPE analysis of the human 7SK RNA. a, Secondary structure model from Wassarman and Steitz 1991. SL1-4 are based on recent 
nomenclature in crystallographic studies, not the same as the original helices. b, Secondary structure model from Marz et al. 2009 (PMID: 19734296). The 8 helices are labeled 
M1-8, and their alternative names are indicated in the parentheses (SL1-4). The 3 M2 alternative conformations M2a-c and 4 single stranded regions SS1-4 are illustrated. c-e, 
Comparing the Marz model with (c) with EC and Rfam models (d-e). d-e, Contacts in the 7SK RNA identified by evolutionary coupling (EC) are shown on the top triangles 
(Weinreb et al. 2016. PMID: 27087444), while the Rfam model is on the bottom. The top L/2 contacts (d) are by definition more reliable than the top L contacts (e). Top L/2 
contacts are almost identical with Rfam secondary structure (Rfam: RF00100), which is consistent with Marz 2009 model. However, the terminal helix M1 was not detected in 
either Rfam or EC. The extended M3 is also partially inconsistent with the M3 in the Marz model. f-g, icSHAPE data from Lu et al. 2016 (PMID: 27180905, panel c) mapped to 
the Marz 2009 secondary structure model (panel d). icSHAPE data were from HEK 293 cells, without any special treatment. No data were available in the first 5 and last 35 nts 
due to sliding window processing and primer binding. Constrained regions in the putative single-stranded regions are labeled with thick black curves. These low reactivity 
nucleotides are likely interacting with proteins or forming tertiary RNA structures that were not captured by phylogenetic analyses such as covariation or evolutionary coupling. 
However, icSHAPE alone can neither prove nor disprove long-range or tertiary structures. Source data are provided as a Source Data file.
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Supplementary Figure 15. SHARC-exo data for the human 7SK RNA. a, The Marz model for the 7SK RNA. Blue arcs: M2b. Red arcs: M2c. b, SHARC-exo reads coverage 
and DGs supporting the major helices and interhelical contacts. M8 was not represented in the data due to its small size and tight structure. c, Numbers of reads and start/end 
coordinates for the two arms (L5/L3 for left arm 5’ and 3’ ends. R5/R3 for right arm 5’ and 3’ ends). d, Mapping the crosslinks to the secondary structure model of 7SK. Same as 
Fig. 6a, but with more details, including the two nucleotides in contact and the numbers of reads in parentheses. Thickness of the black lines are proportionate to the square 
root of numbers of reads supporting each contact. An arc format is shown on the right. Source data are provided as a Source Data file.
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Supplementary Figure 16. PARIS analysis 7SK RNA secondary structure. a, The Marz 2009 secondary structure model for the 7SK RNA. Blue arcs: M2b. Red arcs: M2c. 
b, icSHAPE reactivity score from Lu et al. 2016. c, PARIS coverage and single-gap DGs clustered by CRSSANT, divided into the long-range, local and low-abundance groups. 
The 3 long-range DGs represent contacts between the 5’ end and the 3’ end. DG1 confirms the existence of M1, and the high reads coverage suggest that it is highly abundant, 
if not the only conformation. DGs 2 and 3 are not consistent with any secondary structures in the Wassarman and Steitz 1991 model, Marz 2009 model, EC model (Weinreb 
2016), or the Rfam model, suggesting that they came from previously unknown crosslinkable contacts. The PARIS data here lacked the nucleotide resolution in the SHARC-exo, 
making it difficult to detect the exact crosslinked nucleotides. M6 and M8 were missed, probably due to lack of the preferred psoralen crosslinking sites (staggered uridines). The 
low abundance local duplexes were likely from dynamic intermediates of 7SK folding or technical artifacts of proximity ligation. d, Analysis of the span of all PARIS gapped reads 
in human and mouse cells (HEK293 and mouse ES (mES) cells, Lu et al. 2016, PMID: 27180905). There are two types of reads that correspond to local (M3,4,5 and 7) and 
long-range structrues. In particular, the long-range structures are further sub-divided into 4 groups, roughly corresponding to the 3 DGs. The DGs are defined by overlap on the 
two arms, and therefore do not correspond exactly with the groups shown here based on the read span. e, Plotting the start position of the long-range reads as a histogram, 
showing several peaks that roughly correspond to the DGs 1-3. These reads start at several distinct locations between 0-60, but also end at the same region, M7+SS4+M1R 
(see panel c). f, Diagram of multi-segment reads. Stronger crosslinking produces complexes with more than 2 RNA fragments, which can be ligated together and sequenced. 
Such reads indicate that these fragments are in proximity in the same molecule and the same conformation. These multi-segment reads and the 2-segment long-range 
structures (DG1-3) support interhelical packing of the 7SK RNA. Source data are provided as a Source Data file.
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Supplementary Figure 17. LARP7 eCLIP reveals long-range contacts in the 7SK RNA. a, The 
Marz 2009 secondary structure model for the 7SK RNA. Blue arcs: M2b. Red arcs: M2c. b, 
Reanalysis of eCLIP data from K562 and HepG2 cells (Van Nostrand et al. 2016, PMID: 27018577). 
For LARP7 eCLIP in HepG2, total mapped reads are 5674934, 1381014, 446830; 7SK mapped reads 
are: 10706, 71867, 11047. For LARP7 eCLIP in K562, total mapped reads are 7302572, 1790120, 
1554002; 7SK mapped reads are: 50306, 517215, 673789. The samples were normalized so that the 
max is 1. In addition to the primary binding site on the 3’ end M8 region, LARP7 also binds the 5’ end 
helices, including M1L, M2, M3, and between M4/M5/M6. c-d, Gapped reads from LARP7 eCLIP in 
K562 (c) and HepG2 (d) cells were clustered into DGs using CRSSANT. In addition to capturing local 
structures, e.g. M3, M6, M7, these gapped reads revealed long-range structures DG1-3. DG1 again 
confirms the existence of M1 helix, while DGs 2-3 are consistent with newly identified contacts by 
SHARC-exo and PARIS. The total numbers of reads for 7SK were lower for the HepG2 cells, 
however, DGs 1-3 remain identifiable. Source data are provided as a Source Data file.
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Supplementary Figure 18. Analysis of RNA icSHAPE reactivity and limitations of SHARC-exo. a, icSHAPE reactivity for abundant noncoding RNAs was extracted from 
our recently published sequencing data (Lu et al. 2016, PMID: 27180905). Numbers of reactive nucleotides at different cutoff levels are labeled. The 18S and 5.8S rRNAs are 
far less reactive compared to other RNAs. The lower reactivity of 18S compared to 28S is probably due to the lower fraction of expansion segments. Typically <10% nucleotides 
have >0.5 SHAPE reactivity in each RNA. The higher reactivity of the mitochondrial ribosome is likely due to its smaller size and more primitive form. which allows SHAPE 
reagent to access. These distributions both confirmed the applicability of SHARC-exo to various RNAs, and also showed the limitations. b-e, Mapping of icSHAPE reactive 
nucleotides onto the RNase P RNA (RPPH1) cryo-EM structure model (PDB: 6AHR). RNA was colored blue to red from the 5’ end to the 3’ end. Even at a very low threshold, 
many of the critical regions remain non-crosslinkable, due to secondary structure or protein constraints (panel e). Source data are provided as a Source Data file.
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Supplementary Table 1. SHARC-exo library statistics. Unique fraction: reads_unique/reads_raw. Reads_min20: reads with minimal length of 20nts. Total_min20: summing the two libraries for each condition. Min20 fraction: reads_min20/reads_unique 
Gapped fraction: (gap1+gapm+chimeric+overlapping_chimeric)/input. Bad alignments represent a small fraction of all alignments, and therefore they are ignored. 

samples barcodes reads_raw reads_unique unique 
fraction reads_min20 min20 

fraction total_min20 total input nongapped gap1 gapm chimeric overlapping 
chimeric

bad
alignments

 gapped 
fraction

HeLa5mMDPI_exo0h R701 8.995.612 8.023.454 89,19% 5.564.497 69,35% 11.616.794 11.334.506 10.807.624 9.970.086 620.240 8.006 175.680 13.473 20.139 7,56%
HeLa5mMDPI_exo0h R701 9809777 8703404 88,72% 6.052.297 69,54%
HeLa5mMDPI_exo2h R723 2.132.552 1.922.211 90,14% 739.272 38,46% 1.537.923 1.327.685 1.278.072 1.222.774 31.552 299 21.247 178 2.022 4,17%
HeLa5mMDPI_exo2h R723 2313864 2073503 89,61% 798.651 38,52%
HeLa5mMDPI_exo12h R702 14.606.757 12.658.542 86,66% 8.160.003 64,46% 17.028.746 16.066.509 15.464.518 14.517.522 728.442 8.453 186.761 7.030 16.310 6,02%
HeLa5mMDPI_exo12h R702 15913543 13724191 86,24% 8.868.743 64,62%
HeLa12.5mMDPI_exo0h R703 6.385.176 5.838.913 91,44% 4.438.825 76,02% 9.290.218 9.363.603,00 8.903.281 8.145.260 610.889 7.994 110.184 15.334 13.620 8,36%
HeLa12.5mMDPI_exo0h R703 6992022 6367057 91,06% 4.851.393 76,20%
HeLa12.5mMDPI_exo2h R708 7.135.624 6.690.540 93,76% 4.583.161 68,50% 9.569.696 8.518.901 8.024.575 7.193.377 630.395 14.432 168.430 5.584 12.357 10,20%
HeLa12.5mMDPI_exo2h R708 7779168 7270955 93,47% 4.986.535 68,58%
HeLa12.5mMDPI_exo12h R707 11.974.629 10.483.576 87,55% 5.523.174 52,68% 11.513.789 10.699.524 10.094.922 9.027.326 861.318 16.856 160.613 12.517 16.292 10,41%
HeLa12.5mMDPI_exo12h R707 13039931 11351734 87,05% 5.990.615 52,77%
HeLa12.5mMDPI_exo24h R704 10.070.228 7.198.662 71,48% 814.144 11,31% 1.658.879 1.145.588 1.100.338 1.062.448 23.236 255 12.661 150 1.588 3,30%
HeLa12.5mMDPI_exo24h R704 10912598 7659816 70,19% 844.735 11,03%
HeLa25mMDPI_exo2h R709 5.379.101 5.247.760 97,56% 4.282.122 81,60% 8.953.498 9.045.708 8.332.858 7.103.605 993.214 16.793 181.188 16.009 22.049 14,49%
HeLa25mMDPI_exo2h R709 5875549 5723068 97,40% 4.671.376 81,62%
HeLa25mMDPI_exo24h R717 5.102.976 4.714.432 92,39% 2.951.322 62,60% 6.158.342 5.777.797 5.468.182 4.994.332 354.226 4.906 94.987 7.082 12.649 8,43%
HeLa25mMDPI_exo24h R717 5565513 5121082 92,01% 3.207.020 62,62%

Preprocessing Mapping
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