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Supplementary Figure 1: Differential protein 
expression in plasma from patients with active 
SARS-CoV-2 infection. Unsupervised hierarchical 
clustering based of all 92 proteins in each of the 
named Olink panel showed a separation between 
patients with severe complications compared to 
mild cases and controls. The heatmap shows 
z-scores and clustering was done using correlation 
and average linkage. Principal component analysis 
(PCA) tested the separation of the severe cases 
based on the expression profiles of all proteins. 
The limma package was used to identify 
differentially expressed proteins (DEPs) from the 
single Olink panels defined as protein with more 
than 1.25-fold change with a p-value of <0.05 and 
FDR <0.1. Differential expression analysis 
addressed severity as the main effect and included 
obesity, age, sex, ethnicity, heart rate and SpO2 to 
correct for the interaction of these factors with 
disease severity. A summary of the number of 
DEPs for each panel is shown in Figure 1a.
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Supplementary Figure 2: Functional analysis of differentially expressed proteins in 
plasma of patients with active SARS-CoV-2 infection. (a-c) Heatmaps of the expression 
differentially expressed proteins (DEPs) in severe (S) and mild (M) cases and control (C) are 
shown to the side of enrichment trees of enriched KEGG pathways using DEP.92. Upregulated 
and downregulated proteins and pathways are shown in red and blue respectively. The p-value 
for enrichment is depicted by the size of the circles in the enrichment trees. (d) Venn diagrams 
summarizing the shared and unique upregulated (top) and downregulated (bottom) DEPs. The 
identities of the proteins in each Venn diagram are shown in Supplementary Data 3.
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Supplementary Figure 3: Functional networks of deregulated plasma proteins in severe versus mild COVID-19 disease. Differentially expressed proteins (DEPs) in patients with severe complications 
compared to mild-moderate disease were subjected to network analysis using the STRING database and annotation for their function as circulating proteins (Supplementary Data 3 and Supplementary 
Notes). Of the 375 DEPs (1.25-fold change in severe vs. mild cases), 288 (77%) DEPs could be allocated to 11 functional groups considering their potential function as circulating proteins; chemotaxis, 
coagulopathy/fibrinolysis, immune evasion, innate immunity, T- or NK-cell immunity, T-/Th-cells dysfunction, inflammation, neutrophils/neutrophil extracellular traps (NETosis), and organ damage (lung, 
cardiovascular or other and multiple organs). DEPs are classified as agonists (pos.) or antagonist (neg.) for the Th1/Th17 and Th2 immune responses. The color intensities (red: upregulated, blue: 
downregulated; legend) depict the log2 fold-change between severe and mild-moderate cases. Interactions between the 288 DEPs are shown only for those with STRING-db confidence score ≥ 0.7 are shown 
(587 high-confidence interactions). Inserted table in the Figure summarizes the number of interactions across the different STRING-db confidence scores (0.4 to 0.99). The heatmaps summarize the Pearson’s 
correlation coefficient (r) for significant correlations (p<0.05, two-tailed, GraphPad Prism) between each protein in the functional networks and the clinical blood biochemical markers and blood cell counts 
available in our cohort. Refer to Supplementary Data 3 for the correlation r values of all DEPs with the clinical markers. 
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Supplementary Figure 4: Protein-drug interaction network of 1.5- to 2-fold upregulated 
plasma proteins in severe COVID-19. Proteins with 1.5- to 2-fold upregulation in patients with 
severe complications versus mild-moderate disease were subjected to protein-drug interaction 
(PDI) using the Drug-Gene Interaction database (DGIdb, v4.2.0). Target proteins are colored 
red, and the intensity depicts the fold-change. Drugs which target single proteins are shown in 
grey boxes and blue font and those that target multiple proteins (on this Figure or in Figure 4) 
are depicted in black font in blue nodes. Protein-protein interactions are colored according to the 
STRING-db confidence scores; red: confidence score ≥ 0.7, blue: confidence score ≥ 0.5 and
 < 0.7. Drugs in red bold font are notable examples discussed in the main text.
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Supplementary Figure 5: The COVID-19 molecular severity score on day 0 in the 
SARS-CoV-2 positive and negative patients in Massachusetts General Hospital (MGH) 
cohort. The MGH cohort collected plasma samples on day 0 (within 24 hours of admission to 
the emergency department) from symptomatic patients, of whom 78 patients were found to be 
negative for SARS-CoV-2. The molecular severity score on day 0 was compared across the 
different severity levels (acuity max over 28-day period) and between SARS-CoV-2pos and 
SARS-CoV-2neg patients. Scatter plots show the calculated scores (mean ± SEM) and the 
number of patients in each group is stated under each plot. Only significant differences are 
depicted (two-way ANOVA with Tukey’s multiple testing correction, GraphPad Prism); 
**** p<0.0001, exact p-values are stated otherwise.

Al-Nesf, Abdesselem ... Al-Ejeh  Supplementary Figures   Page 6 of 7

0

50

100

150

200

M
ol

ec
ul

ar
 S

ev
er

ity
 S

co
re

78 928 1235 34133 1667 742

****

****

p = 0.003

p = 0.0004

****
****

Al
l

A5A5 A4A4 A3A3 A2A2 A1A1

SARS-CoV-2pos SARS-CoV-2neg

Acuity 5
Discharged

Acuity 4
Hospitalized no supp
O2 required

Acuity 2 
Intubated, ventilated,
survived 28 days

Acuity 1
Death

Acuity 3 
Hospitalized supp
O2 required



Supplementary Figure 6: Comparison of the COVID-19 molecular severity score across the groups within the clinical parameters included in the study cohort. 
(a) Boxplots (median as center line, box marks  25th and 75th percentiles, and whiskers define minimum and maximum) for the score from the 12-protein signature across 
the stated groups in each of the clinical annotations in infected patients (n = 100). One-way ANOVA with Dunnett’s multiple testing correction was used for clinical 
parameters with more than two groups, and unpaired two- tailed t-test was used for parameters with two groups. Significant differences are depicted as * p<0.05, ** p<0.01, 
*** p<0.001 and **** p<0.0001. Refer to Supplementary Data 6 for more details of the statistical comparisons and exact p-value. (b) ROC curve analysis of the 
parameters which showed significant association with the 12-protein molecular severity score. The DeLong et al. method was used for statistical analysis. (c) MUVR was 
used for variable selection using the same parameters in panel b. Seven parameters (markers) were selected by MUVR and the boxplot summarizes the median ranking 
(center line), 25th and 75th percentiles (box boundaries), and minimum and maximum (whiskers) from 500 independent MUVR runs. (d) The model of 7 markers from 
MUVR was further confirmed for performance using ROC curve analysis in comparison to models which included the remaining clinical markers. There was no additional 
benefit from addition diabetes, SpO2 and/or eosinophil counts as judged by pairwise comparisons (DeLong et al. method) against the model of the 7 markers alone. 
Abbreviations; Resp. Rate: Respiratory rate, WBC: white blood cells, CRP: C-reactive protein.
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Supplementary Note 1 

Functional annotation and literature for Figure 2 and Supplementary Data 3. The differentially 
expressed proteins in patients with severe COVID-19 versus patients with mild-moderate disease were 
subjected to functional annotation based on information from databases and literature and concerning 
their role in circulation and pathogenesis.  

Protein Annotation 

IL6 In addition to a strong pro-inflammatory role, IL-6 can modulate the Th1/Th2 balance towards 
Th2, and with TGFβ it promotes Th17 cells [1] 

IL6R sIL-6R renders cells lacking the IL-6R, but expressing gp130, responsive to IL-6 [1]; the trans-
signaling is highly inflammatory [2] and maintains local Th17 cells [3] 

EBI3/IL27 Both form the IL27 which potentiate the early phase of Th1 response and suppress Th2 and 
Th17 differentiation [4]. IL27 is a potent immunosuppressant and increased in sepsis [5] 

IL12A/IL12B Growth factor and enhance lytic activity of activated T- and NK-cells and stimulate the 
production of IFNG by resting PBMC. Expressed by activated macrophages. Th1 cells 
development [6]. Th2 cells inhibit antigen-dependent IL-12 secretion by DCs [7] 

TIMD4 Ligand for HAVCR1/TIM-1, expressed on APCs such as dendritic cells or macrophages. Also 
called TIM-4; Soluble form may be inhibitory of cellular function TIM-4 in Th2 development [8] 

HAVCR1 Also called TIM-1, receptor for TIMD4. May be a receptor for SARS-CoV-2 in lung and kidney 
[9]. Soluble form may be inhibitory of cellular function TIM-1 [8] including its role in regulating 
Th2 responses [10]. Plasma TIM-1/KIM-1 associates with stroke [11] and lower kidney 
function [12]. Also elevated in cardiovascular disease, worsened diastolic function [13] 

LIFR Soluble form (sLIFR) inhibits LIF function [14] and binds to OSM. sLIFR may inhibit LIF-
mediated promotion of Treg lineage and repressing Th17 lineage-specific genes [15] 

IL17RB Binds to IL17B and IL17E. Soluble form is a decoy receptor produced by Th2-skewed antigen-
presenting cells (APC2) [16] 

IL17RA Receptor for IL17A and IL17F. Receptor for SARS coronavirus-2/SARS-CoV-2 virus protein 
ORF8 [17] and sIL17RA [18] acts a decoy receptor [17] 

CCL20 Chemotaxis of DCs, effector/memory T-cells and B-cells, slightly, neutrophils, but not 
monocytes. Recruitment of proinflammatory IL17 producing Th17 and Treg cells to sites of 
inflammation [19] 

VSTM1 VSTM1-v2 (soluble isoform) behaves as a cytokine, promoting IL17A secretion by CD4+ T-
cells, and differentiation and activation of IL17 producing Th17 cells [20] 

IL1R1 Mechanism for neutralization of IL1B by secreted/soluble receptors [21], which interferes with 
the critical role of IL-1 in Th17 differentiation [22, 23] 

IL1R2 Secreted IL1R2 form is dominant mechanism for neutralization of IL1B by secreted/soluble 
receptors [21], as a decoy receptor it interferes with the critical role of IL-1 in Th17 
differentiation [22, 23], thus implicated in several pathologies including sepsis [24] 



Al-Nesf M. … Al-Ejeh, F. Supplementary Note 1 & Supplementary References 

Page 2 of 52 

IL1RL1 Receptor for IL33. Soluble form (sST2) inhibits IL33 binding and its cardioprotective effect 
[25] and is elevated in patients who do not survive from sepsis [26]. IL33 is an inducer of Th2 
cells [27] which is inhibited by sST2. 

IL1RL2 Receptor for IL36. IL36 signaling promotes Th1 polarization [28] but soluble receptor inhibits 
IL36 signaling [29] 

AREG Epithelial-derived AREG (Amphiregulin) can act to promote tissue repair and integrity. AREG 
is also secreted by innate lymphoid cells 2 (ILC2) and other innate immune cells and might 
be a critical component of type 2-mediated resistance and tolerance [30]. Pathogenic memory 
Th2 cells induce AREG via IL-33, which reprograms eosinophils that via Osteopontin/SPP1 
facilitate an inflammatory state and airway fibrosis [31] 

IL18BP Inhibitor of IL18-mediated early Th1 cytokine response, IFNG production, resulting in reduced 
T-helper type 1 immune responses [32] 

IL18R1 IL18 receptor involved in IL18-mediated IFNG synthesis from Th1 cells [33]. Soluble form 
inhibits IL18-mediated IFNG synthesis from Th1 cells [34, 35] 

SPP1 Upregulate INFG and IL12, essential in the pathway that leads to type I immunity and Th1-
cytokine functions [36]. Also involved in pathogenic memory Th2 cells induce AREG via IL-
33, which reprograms eosinophils that via Osteopontin/SPP1 facilitate an inflammatory state 
and airway fibrosis [31]. SSP1 is elevated in several cardiovascular pathologies [37] 

IL10 Dramatic early proinflammatory IL-10 elevation may play a pathological role in COVID-19 
severity proinflammation and T-cell exhaustion [38] 

PVR Also called CD155 expressed in peripheral tissue (e.g., endothelial, epithelial cells and APCs) 
and is the ligand for CD226 (DNAM-1) expressed on NK cells, and a subset of T-cells 
(stimulatory) and to TIGIT on NK-/T-cells (inhibitory) [39]. sCD155 inhibits NK-Cells CD226 
mediated cytokine production, including that of IL2, IL5, IL10, IL13, and IFNG cytotoxicity [40] 

ADGRG1 Receptor involved in cell adhesion and probably in cell-cell interactions. ADGRG1 (GPR56) 
inhibits NK-cell cytotoxicity and is cleaved/shed (sGPR56) upon activated [41] 

LGALS9 By interacting with TIM3, it inhibits Th 1 and Th17 cells, but not on Th2 cells, skewing to Th2 
imbalance and Tregs [42, 43]. Binding to CD40 inhibits the proliferation and survival of 
CD4loCD40+ effector T-cells [44] 

BST2 Tetherin is induced by INFa [45, 46] and restricts cell-free virions spread by blocking the 
release of envelop virus including SARS-CoV1. Plasma BST2 has been described in 
colorectal and breast cancers [47, 48]. SARS-CoV-2 Orf7a impedes Tetherin, and both are 
secreted in virus like particles as an evasion mechanism [49] 

SIGLEC10 Immunoregulatory role, inhibiting pathogen-related and damage-associated molecular 
patterns (DAMPs)-mediated inflammation [50]. Siglec-10 Sv2, a secreted form, is the most 
abundantly expressed transcript in PBMC and retains functionality [51]; thus, might be an 
evasion mechanism allowing viral spread and excessive inflammation 

STC1 Despite its anti-inflammatory role, it is a phagocytosis checkpoint driving immune evasion by 
binding to calreticulin; thus, abrogating membrane calreticulin-directed phagocytosis by APCs 
(macrophages and DCs) impairing APC capacity of antigen presentation and T cell activation 
[52] 

ST3GAL1 ST3Gal-1 in circulation is principally carried by platelets and released upon activation [53]. 
ST3GAL1-mediated O-linked sialylation of CD55 act as CD55-mediated immune evasion [54] 
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LILRB4 Binds to MHC I molecules on APCs and NK-/T-cells and inhibits immune and inflammatory 
responses to regulate autoimmunity [55]. Soluble form is produced by splice variant [56]. 
Soluble form (sLILRB4) suppresses T cell responses and elicits T-cell anergy or activation of 
Treg or T suppressor cells [56-58] 

NECTIN2 Also called PVRL2, expressed in peripheral tissue (e.g., endothelial, epithelial cells and 
APCs) and is the ligand for CD226 (DNAM-1) expressed on NK cells, and a subset of T-cells 
(stimulatory) and to PVRIG on NK-/T-cells (inhibitory) [39]. sNECTIN2 [59, 60]. Soluble form 
is inhibitory 

SIGLEC1 Macrophage-restricted expressed resident and inflammatory macrophage mediating cell 
interactions to granulocytes, monocytes, NK-cells, B-cells and CD8 T-cells [61]. Soluble form 
(sSIGLEC1) associates with the INF type-I transcriptional signature and a biomarker of renal 
disease in SLE [62]. The soluble form is encoded by a variant transcript and is functional [63] 
which can be suppressive of function: reduce numbers of infiltrating Th1 and Th17 cell, higher 
numbers of Treg cells [64] 

PODXL2 Cell surface transmembrane proteins ligand for vascular selectins mediates rapid rolling of 
leukocytes over vascular surfaces [65]. Cleaved [66, 67]; the soluble form is inhibitory [67] 
and would inhibit leukocytes recruitment site of injury during inflammation 

CD274 PD-L1 modulates the activation threshold of T-cells and limits T-cell effector response. sPDL1 
induced immune suppression and damage, and associates with COVID-19 pathogenesis and 
mortality [68] 

IFNL1 INF lambda 1 (type-III INF, also called IL29) involved in antiviral host defense, predominantly 
released by epithelial tissues, including lung. Ligand for IL10RB and IFNLR1 leading to 
expression of IFN-stimulated genes (ISG). Significantly up‐regulate IL6, IL8 and IL10 from 
monocytes [69] and inhibits Th2 polarization towards Th1 [70-72] 

IFNLR1 IFNLR1/IL10RB dimer is a receptor for type III INFs mediating their antiviral activity. 
Expressed on epithelial cells within the lung, intestine, and liver [70, 72]. Soluble variant of 
IFNLR1 (sIFNLR1/sIFN-λR1), inhibits antiviral and immune effect of type III INF signaling/ISG 
induction [73] 

PGLYRP1 Pattern recognition receptor in innate immunity, promotes the activation of 
monocytes/macrophages and enhances the inflammatory response [74]. Able to kill virus-
infected cells [75]. High in cardiovascular disease and heart failure [76, 77]. It also binds to 
TNFRSF1A/TNFR1 and inhibit of TNFα cytotoxic activity [78] 

CD38 Enzyme and moonlights as a receptor on immune cells (B-, T-, NK-Cells), upregulated by 
inflammatory mediators, and used as a cell activation marker [79]. Released to blood as a 
soluble form which inhibits binding to the membrane form, inhibiting adhesion to endothelial 
cells and immune cell chemotaxis [80] but retains its enzymatic function [81] 

IL2RA IL2 receptor regulates immune tolerance by controlling Tregs. Soluble form enhances the 
development of Th17 responses [82] and increased in association with cardiovascular events 
[83]. Soluble IL2RA (sCD25) is elevated in severe COVID-19 [84] 

LEPR Soluble LEPR inhibits Leptin's effects on enhancing the immune response via activating 
APCs, Th1/Th17 cells function and proliferation, and suppresses Th2 cytokine production [85, 
86] 
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CDCP1 Cell adhesion and cell matrix association; ligand for CD6. Shedding and a soluble isoform 
leads to sCDCP1, occurs during tissue injury [87, 88]. sCDCP1 can bind CD6 [89], reduces 
Th1 and/or Th17 immune responses or acts as T-cell chemoattractant [90]. High sCDCP1 
and sALCAM along with reduced sCD6 suggest reduced T-cell activation 

ALCAM Promotes T-cell activation and proliferation via interaction with CD6 but the soluble form 
(sALCAM) abolishes this function. High sCDCP1 and sALCAM along with reduced sCD6 
suggest reduced T-cell activation. Shed by platelets [91] 

CD6 Interaction with ALCAM/CD166 functions as costimulatory molecule; promotes T-cell 
activation and proliferation. Soluble CD6 (sCD6) - shedding - indicates activation of T-Cells 
but leads to inhibition of T-cells [92]. High sCDCP1 and sALCAM along with reduced sCD6 
suggest reduced T-cell activation 

PLXNB1 Plexin-Semaphorin. Expressed by activated T cells, immature bone marrow-derived DCs, and 
lung DCs [93] and platelets [94]. Plexin B1-B3 members have a convertase cleavage site 
[95]. sPLXNB1 (isoform or cleaved) may neutralize SEMA4D functions [96] which include T-
cell priming, B-cell survival and antibody production in response to T-dependent antigens, 
monocyte paralysis and the arrest of its spontaneous and chemokine-induced migration [97] 

PLXNB2 Plexin-Semaphorin. Expressed on macrophages, DCs and plasmacytoid DCs [95]. Receptor 
for SEMA4C. Negatively regulates macrophage migration. Optimal activation and 
differentiation of CD8+ T Cells [98]. Plexin B1-B3 members have a convertase cleavage site 
[95]. Cleavage releases sPLXNB2 [66] would interfere with CD8+ T-cell activation 

PLXNB3 Plexin-Semaphorin. Disruption of focal adhesions and cellular collapse as well as inhibition 
of cell migration and invasion. Plexin B1-B3 members have a convertase cleavage site [95]. 
Shed by platelets [91]; soluble form would block SEMA5A effect of increased T- and NK-cell 
proliferation and induced the secretion of proinflammatory Th1/Th17 cytokines [99] 

SEMA4C Plexin-Semaphorin. Ligand for PLXNB2, required for Tfh cells to migrate to the GC and a 
marker of memory B-cells and B-cells stimulated by Th2 cytokines [100, 101]. Both soluble 
PLXNB2 and SEMA4C marks the block of their function 

RNASE3 Released during degranulation/activated eosinophils [102, 103], and released in neutrophil 
NETs [104]. Cytotoxin activity [105] and may play a role in neutrophil transendothelial 
migration 

ULBP2 Ligand for the NKG2D killer activation receptor on NK-cells mediating cytotoxicity and release 
multiple cytokines/chemokines. Soluble/secreted ULBP2 inhibits NK-cells as a mechanism to 
evade immunosurveillance by NK cells [106, 107] 

IL4R IL4 response is involved in promoting Th2 differentiation but the soluble form can inhibit IL4-
mediated cell proliferation and IL5 upregulation by T-cells [108] 

IL7 Forms a heterodimer with HGF. Important for proliferation during certain stages of B-cell 
maturation, T and NK cell survival [109]. Induces Th1 and Th17-associated cytokine secretion 
[110]. Elevated serum IL7 levels associates with COVID-19 [111] 

BTN3A2 Plays a role in T-cell responses. Inhibits the release of IFNG from activated T-cells. sBTN3A 
may prevent T-cells from exerting their cytotoxic activity [112, 113] 

CXADR Role in tight junction integrity, transepithelial migration of leukocytes and neutrophils 
(interaction with JAML) [114, 115] and with JAML co-stimulation of epithelial γδ T cell 
activation [116]. Soluble form (sCAR) inhibits viral entry and inhibit other functions 
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SPON2 Innate immune response and a unique pattern-recognition molecule in the ECM [117] 

KLRD1 Inhibitory receptor on NK-cells and memory/effector CD8-positive T cells. sKLRD1 has been 
reported in HIV patients [118]. May be reversing NK-cell suppression 

AOC1 Digestive enzyme degrades compounds involved in allergic and immune responses, cell 
proliferation, tissue differentiation, tumor formation, and possibly apoptosis. Eosinophil and 
granulocytes increase diamine oxidase activity and release in acute inflammation [119-122] 

ST6GAL1 Attachment of sialic acids to glycoproteins as a posttranslational modification influences 
cellular responses. Produced by platelets [123] and other cells and known as an acute phase 
reactant where blood level is upregulated during systemic inflammation [124]. Prolongs the 
activity of TNF, NFκB and STAT3 promoting the inflammatory phenotype of monocytic cells 
[125]. Enhances B cell IgG production and increases blood IgG titers [126]. Th2 polarization 
and M2 macrophages [124] 

BAG6 BAG6 on exosomes a ligand of NK-cells receptor NCR3 and stimulates NK cells cytotoxicity 
but soluble ligand BAG6 suppressed NK-cells [127-129] 

LILRB1 Binds to MHC I molecules on APCs and NK-/T-cells and inhibits immune and inflammatory 
responses. Soluble form is produced by splice variant and reverses the inhibition of NK cell 
cytotoxicity [56] 

LILRB2 Binds to MHC I molecules on APCs and NK-/T-cells and inhibits immune and inflammatory 
responses. Soluble form is produced by a splice variant [56]. Soluble form (sLILRB2) blocks 
this immunosuppressive function and activates T-cells [130] 

MILR1 Inhibitory role in the degranulation of mast cells. Also expressed on DCs, macrophages and 
neutrophils [131] - myeloid immunity. Serum MILR1 level associates with increased mast cells 
in circulation [132], may reverse the inhibitory role of membrane MILR1 

SIGLEC9 Expressed on monocytes, neutrophils, B cells, NK cells, and minor subsets of T cells such as 
NK-cells as a vital inhibitory group. Engaging SIGLEC9 signaling suppresses neutrophil-
mediated immunity, including inhibiting NETosis [133]. sSIGLEC9 inhibits its suppressive 
effect on neutrophils [134]. Soluble Siglec9 (sSIGLEC9) in the plasma can induce oxidative 
stress, and its expression can be increased by TNF-α, IL-6, and IL-8 [135] 

LILRA5 Expressed on neutrophils, triggering innate immune responses, production of inflammatory 
signals such as IL6 and stimulate the early phases of immune responses [136, 137] 

GZMA T- and NK-cells specific serine protease for lysis of target cells. Reduced levels in COVID-19 
severe patients associate with impaired NK- and cytotoxic T cell functions [138, 139] 

CD1C Antigen-presenting protein on DCs [140] presents to T-cell receptors on NKT-cells [141]. 
Soluble form would inhibit CD1C role in promoting Th1/Th17 function [140] 

KITLG Also called SCF. KITLG/SCF binding can activate several signaling pathways. Soluble form 
[142] secreted by fibroblasts and endothelial cells attracting mast cells. 

FLT3LG Stimulates the proliferation and differentiation of various blood cell progenitors [143]. 
sFLT3LG expands immature B-cells, NK-cells and DCs 

SSC4D Regulation of both innate and adaptive immune responses. Scavenger receptor [144] 

IGLC2 Immunoglobulin Lambda Constant 2 (IGL@). Upregulated in plasma of critical (ICU) COVID-
19 patients vs severe/mild [145, 146] 
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CKAP4 Anchoring of the endoplasmic reticulum to microtubules. Neutrophil degranulation [147] 

GRN Regulator of lysosomal function and as a growth factor involved in inflammation. Neutrophils 
produce progranulin and elastase capable of cleaving progranulin into granulin peptides 
promoting inflammation. High in cardiovascular disease [76] 

CXCL5 Secreted by eosinophils and neutrophils [148] in response to inflammatory cytokines IL-1 or 
TNFα. Neutrophil activation [148, 149] 

IL15 Stimulates phagocytosis of neutrophils [150, 151] and promotes T-cell proliferation during 
inflammation [152] 

VCAM1 Expression by cytokine-activated endothelium. Neutrophil elastase and cathepsin G released 
by neutrophils cleaves VCAM1. Soluble VCAM1 (sVCAM1) is elevated in endothelial 
dysfunction and inflammation/fibrosis [153, 154]. Shed by platelets [91] 

CD63 Receptor for TIMP1, leukocytes adhesion onto endothelial cells and a known marker for 
exosomes. Neutrophils/platelets degranulation [155, 156] 

MMP9 Involved in local proteolysis of the ECM and in leukocyte migration. Roles in neutrophil-
derived vascular endothelial damage and wound healing [157]. Associates with 
cardiovascular and respiratory failure in COVID-19 [158] 

MSR1 Macrophage scavenger receptor glycoproteins (also called SR-A) implicated in the pathologic 
deposition of cholesterol in arterial walls during atherogenesis. Soluble form is high in arthritis 
inflammatory progression concomitant with increased Th17 response [159]. Neutrophil SRA 
expression is increased in sepsis and facilitates NETosis [160] 

TREM1 Receptor involved in amplifying inflammatory responses. Soluble TREM1 is elevated during 
infection and shown to be a marker of sepsis and mortality [161]. Neutrophil 
stimulation/degranulation releases soluble TREM1 which can inhibit TREM1 receptor–
mediated proinflammatory cytokine production [162] 

AZU1 Expressed in specialized lysosomes of the neutrophils. Mediating recruitment of monocytes 
in the second wave of inflammation. Released in neutrophil NETs [104] 

CEACAM8 Activated neutrophils, neutrophil degranulation. Released in neutrophil NETs [104], 
associates with acute-phase response, inflammation and immune response [163] 

MPO Major component of neutrophil azurophilic granules and mediates activation. Elevated in 
Severe COVID-19 [84]. Also cleaved from vascular endothelium by proteases [164] 

PRTN3 Serine protease degrades ECM. Released in neutrophil NETs [104] 

S100A12 Also called EN-RAGE and plays a prominent role in the regulation of inflammatory processes 
and immune response. Implicated in COVID-19 severity [165] 

SIRPA Released in neutrophil NETs [104]. SIRPα on macrophages interaction with CD47 on RBCs 
prevents phagocytosis [166]; soluble form might block the phagocytosis inhibition 

CTSC Cathepsin C. Activation of various pro-inflammatory serine proteases from neutrophils and 
mast cells [167]. Neutrophilic lung inflammation [168] 

CHI3L1 Th2 inflammatory response and IL13-induced inflammation, DCs accumulation and M2 
macrophage differentiation [169, 170]. Released by neutrophils [170-172] 
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CSF3 G-CSF induces granulocytes and neutrophils release [173] 

DEFA1 A definsin abundant in the granules of neutrophils and other cells [174]. Elevated in plasma 
during infection and inflammation [174, 175] 

LCN2 Innate immunity [176] and elevated in severe COVID-19 [177] 

NID1 Basement membrane glycoprotein, role in cell interactions with ECM. Promotes neutrophil 
adhesion and has a potent chemotactic activity for neutrophils [178]. Cleaved from vascular 
endothelium by proteases [164]. 

TIMP1 Metalloproteinase inhibitor. Growth factor/integrin signaling via CD63 and ITGB1. 
Neutrophilia via CD63 [179]. High in cardiovascular disease [180]. Cleaved from vascular 
endothelium by proteases [164] 

F3 Tissue factor (TF) function in blood (extrinsic) coagulation initiation forming a complex with 
circulating factor VII or VIIa. Blood TF contributes to thrombosis [181] and associates with 
sepsis [182] and acute myocardial infarction [183, 184] 

PROC Protein C regulates blood coagulation by inactivating factors Va and VIIIa and cellular anti-
inflammatory signaling (THBD/EPCR/PAR-1[cleaved by PROC instead of thrombin]) [185]. 
Circulating form is pro-enzyme/zymogen (not activated)  

NOS3 eNOS plays crucial roles in regulating vascular tone, leukocyte adhesion, platelet 
aggregation, and anti-inflammatory role. eNOS was reported in plasma and serum [186, 187]; 
endothelial cell death may release eNOS during sepsis and oxidative stress, suggesting 
eNOS uncoupling with proinflammatory and coagulopathy consequences [188, 189] 

PLAT tPA generates plasmin, involves in tissue remodeling and degradation. High serum levels in 
acute myocardial infarction [190, 191] 

TFPI Antithrombotic against factor x from the extrinsic coagulation pathway. Increased in critically 
ill COVID-19 patients [192] 

MCFD2 Plays a role in the secretion of coagulation factors (factors V and VIII) [193]. MCFD2 is 
secreted via a classical secretion pathway [194] 

MMP10 Thrombin induces endothelial MMP10 levels through a PAR1 (F2R)-dependent mechanism. 
MMP10 serum levels associate with inflammatory markers and arterial diseases [195-197] 

MMP3 Activated by plasmin and activates MMP7. MMP3 serum levels are associated with 
inflammatory markers and COVID-19 severity [198] 

FAM3C Promotes EMT, relevant to inflammation/fibrosis. Released by platelets [199] 

MMP7 Activated by plasmin. Serum level associate with lung fibrosis, COVID-19 severity, and other 
diseases [177, 200, 201] 

CR2 Also called CD21 is receptor for complement C3 and binds to CD19 on B-cells. Soluble CD21 
in the blood is mainly derived from follicular DCs [202] and it competes for C3 binding and 
inhibits CD21-CD19 B-cell activating function [203] 

F2R Also called PAR1, a receptor for activated thrombin expressed in platelets and endothelial 
cells mediating the interplay between coagulation and inflammation [204]. Shedding makes 
PAR1 unresponsive to thrombin [205] 
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PLAU Converts plasminogen to plasmin and leads to D-dimers [206], function as stimuli for 
inflammatory cell (neutrophils, monocytes, macrophages) production of cytokines. TNFα or 
IL-1 induce the expression of uPA from endothelial cells [207, 208] 

THBD Thrombomodulin is a cofactor in the thrombin-induced activation of protein C (PROC). 
Soluble thrombomodulin associates with mortality, hospital stay and ICU in COVID-19 
patients [209]. Cleaved to its soluble form by neutrophil elastase during acute and chronic 
inflammatory responses immunologic reactions and complement activation [210] 

C2 Part of the classical pathway of the complement 

CFHR5 The dimerized forms have avidity for tissue-bound complement fragments and efficiently 
compete with the physiological complement inhibitor CFH [211] 

F11 Blood (intrinsic) coagulation by activating factor IX 

MMP12 Degrades soluble and insoluble elastin. Role in countering neutrophil infiltration, clearing 
NETs, and dampening inflammatory pathways [212] 

PLAUR High level of suPAR associates with COVID-19 severity [213], suPAR levels are positively 
correlated with high-sensitivity C-reaction protein (hs-CRP), neutrophil/leukocyte ratio, and 
lymphocyte counts [214]. Cardiovascular disease [13] 

TIMP4 Protease inhibitor, inhibits platelet aggregation and recruitment [215] 

VWF Promotes adhesion of platelets to the sites of vascular injury [216] 

PTX3 Acute phase response protein, activates the classical pathway of complement activation and 
facilitates pathogen recognition by macrophages and DCs [217-220] 

VCAN Involved in inflammation-related interactions with leukocytes and chemokines to recruiting 
inflammatory cells, particularly in inflammatory lung conditions. Cleaved by MMPs and 
plasmin and presence in circulation promotes coagulation [221]. Cleaved from vascular 
endothelium by proteases [164] 

SMOC1 Promoting endothelial cell proliferation and angiogenesis [222] and coagulation [223] 

LTA Homotrimeric form binds to TNFRSF1A/TNFRSF1B/TNFRSF14. Heterotrimeric form with 
LTB binds to TNFRSF3/LTBR. Lymphotoxin is produced by lymphocytes as a cytotoxic. 
Increased in cardiovascular disease [180] 

LTBR TNFRSF3 is receptor for LTA/LTB and TNFS14/LIGHT, promotes apoptosis and role in 
lymphoid system. High levels of circulating LTβR associated with cardiovascular risk factors, 
multiple inflammatory markers, and markers of cardiac injury [224] 

TNFRSF1A Receptor for TNFSF2/TNFa and homotrimeric TNFSF1/LTA. Contributes to the induction of 
non-cytocidal TNF effects including anti-viral state. Shed off neutrophils and T-cells [225-227]. 
Soluble sTNFR1 associates with nephropathy, cardiovascular events, heart failure [228-230] 

TNFRSF1B Receptor for TNFSF2/TNFa and homotrimeric TNFSF1/LTA, mediates most of the metabolic 
effects of TNFa. It is shed of neutrophils and T-cells [225-227]. Soluble form (sTNFR2) 
associates with nephropathy, cardiovascular events, heart failure [228-230] 

TNFRSF14 Receptor for TNFSF14/LIGHT and homotrimeric LTA. Has different cis/trans signaling with 
activating/inhibitory effect on immunity. Soluble form (sHVEM), by cleavage, is increased 
during inflammation and inhibits LIGHT function. Increased in severe COVID-19 [231] 
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TNFSF11 RANKL binds to TNFRSF11B and TNFRSF11A. Augments the ability of dendritic cells to 
stimulate naive T-cell proliferation. sRANKL decreased in coronary artery disease [232, 233] 

TNFRSF11B OPG is a decoy receptor for TNFSF11/RANKL and thereby neutralizes its function [234]; it is 
upregulated in coronary heart disease [232] 

TNFRSF11A TNFRSF11A/RANK is a receptor for TNFSF11. Involved in the regulation of interactions 
between T-cells and dendritic cells [235] 

CD40 Receptor for TNFSF5/CD40LG. Mediates a broad variety of immune and inflammatory 
responses. Soluble CD40 has immunosuppressive effects, reduced T-Cells and INFγ 
secretion, and is elevated in atherosclerotic vascular disease [236] 

TNFSF10 TRAIL binds to TNFRSF10A/TRAIL-R1, TNFRSF11B/OPG and others. Binding to the decoy 
receptor OPG cannot induce apoptosis. sTRAIL correlates with inflammatory cytokines and 
CD68 expression and plaque cell apoptosis, plaque inflammatory activity, and with 
symptomatic carotid plaques [237] 

TNFRSF10A TRAIL-R1. Promotes the activation of NF-kappa-B. Essential for ER stress-induced 
apoptosis. Soluble TRAIL-R1 (sTRAIL-R1) has been reported in cancer [238, 239] and 
ankylosing spondylitis [240] 

TNFRSF10B TRAIL-R2 promotes the activation of NF-kappa-B. Essential for ER stress-induced apoptosis. 
Higher plasma levels of sTRAIL-R2 had a higher risk of future cardiovascular events [13]. 
sTRAIL-R2 correlates with inflammatory cytokines and CD68 expression and plaque cell 
apoptosis, plaque inflammatory activity, and with symptomatic carotid plaques [237] 

TNFSF12 TWEAK. Promotes angiogenesis and the proliferation of endothelial cells [241]. Induction of 
inflammatory cytokines [242]. Promotes IL8 secretion [243] 

TNFRSF12A Receptor for TNFSF12/TWEAK. Promotes angiogenesis and the proliferation of endothelial 
cells. Soluble form (sFn14) has been described acute and chronic kidney diseases [244] 

TNFRSF13B TACI is a receptor that stimulates B- and T-cell function and the regulation of humoral 
immunity T-independent humoral response [245, 246]. Soluble form acts as a decoy receptor 
inhibiting ligand-mediated B-cell survival/function and NFκB-activation [247] 

TNFRSF9 Soluble forms (sCD137) released by activated T cells [248] is antagonistic and reduces 
immune activity [249, 250]. High in cardiovascular disease [180, 251] 

EDA2R Mediates the activation of the NF-kappa-B and JNK pathways. Shed form reported [252] and 
protects from apoptosis. High in cardiovascular disease [180] 

FAS Receptor for TNFSF6/FASLG. The secreted isoforms 2 to 6 (sCD95) block apoptosis [253], 
elevated in liver disease [254], kidney injury [255], angina [256] 

CXCL16 Scavenger receptor on macrophages, which specifically binds to OxLDL (oxidized low-density 
lipoprotein). A secreted splice variant by DCs is a chemoattractant for CXCR6+ cells [257] 

SLITRK2 Released in neutrophil NETs [104]. Expressed predominantly in neural tissues and have 
neurite-modulating activity. Suppresses neurite outgrowth (Axonogenesis) and may be 
involved in leukocyte chemotaxis [258] 

CCL11 Promotes the accumulation of eosinophils, but not mononuclear cells or neutrophils, a 
prominent feature of allergic inflammatory reactions [259] 
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CCL15 Attracts T-cells and monocytes, but not neutrophils, eosinophils, or B-cells (UniProtKB) 

CCL23 Attracts monocytes, resting T-Cells, and neutrophils, not activated lymphocytes (UniProtKB) 

CCL3 Attracts inflammatory cells; macrophages, monocytes and neutrophils [260] 

CCL7 Attractant for monocytes and eosinophils, not neutrophils (UniProtKB) 

CX3CL1 Soluble form is chemotactic for T-cells and monocytes and not for neutrophils [261] 

CXCL11 Attractant for interleukin-activated T-cells but not unstimulated T-cells, neutrophils, or 
monocytes (UniProtKB) 

CXCL9 Attractant for activated T-cells (UniProtKB) 

CLEC5A Activation of CLEC5A on neutrophils and macrophages induce neutrophil extracellular trap 
(NET) formation and proinflammatory cytokine release [262, 263] 

CLEC4D Expressed in resting macrophages [262]. CLEC4D modulates T-cells toward effector T-helper 
1 and T-helper 17 cell subtypes [264] 

CLEC7A Expressed in DCs, neutrophils and other immune cells and engages signaling cascades that 
drive innate and adaptive immunity, inflammatory cytokine secretion and DC maturation to 
prime CTL CD8+ and Th1/Th17 cells [262] 

CLEC1A Expressed on APCs, myeloid cells, and ECs and reduces Th17 differentiation and increases 
Tregs [265-267]. Soluble form inhibited the HRG-induced neutrophil rounding, phagocytic 
activity, and prolongation of survival time [268] 

CLEC6A Expressed in macrophages, monocytes, neutrophils and several DC subtypes and activation 
leads to cytokines release and induce a mixed Th2/Th17 response [262] 

CLEC4A Expressed on monocytes, macrophages, granulocytes, B cells, and DCs cross-presentation 
to CD8+ T cells [262] 

CLEC10A Expressed in subsets of DCs and macrophages and is used as a marker of alternative 
macrophage activation and plays an anti-inflammatory role [262] 

CLEC4C Antigen capturing by DCs; its reduction is a marker of DCs maturation [262, 269] 

CD5 Regulation of T-cells and B-cells [270]. Soluble form of CD5 associate with autoimmune 
disease and inflammation/sepsis patients [271], sCD5 as decoy receptor for the treatment of 
inflammation/sepsis [270] 

CXCL10 CXCL10 is secreted by several cell types in response to IFN-γ. These cell types include 
monocytes, endothelial cells and fibroblasts [272] chemoattraction for monocytes, 
macrophages, T cells, NK cells, and DCs, promotes T cell adhesion to endothelial cells [273] 

RETN Adipokine associated in several pathologies including cardiovascular disease [274], and pro-
inflammatory effect [275] with levels are correlated with inflammatory and fibrinolytic markers 
such as CRP, TNF-α, and IL-6 [274] 

AGR2 Secreted in mucus including the lungs and modulates cell migration/adhesion, cell 
differentiation and cell growth. Pro-inflammatory [276] 

https://www.uniprot.org/uniprot/Q16663
https://www.uniprot.org/uniprot/P55773
https://www.uniprot.org/uniprot/P80098
https://www.uniprot.org/uniprot/O14625
https://www.uniprot.org/uniprot/Q07325
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IL5RA Subunit of the Interleukin-5 receptor. Soluble IL5RA (sIL-5Rα) is encoded [277] and increases 
with the eosinophil count [278], functional impairments in B cells and eosinophils [279] and 
would inhibit the protective effect of IL-5 during sepsis [280] 

DKK1 Antagonist of the Wnt/β-catenin signaling pathway. Increase in blood is associated with 
inflammation and infection [281] 

TDGF1 Also called Cripto-1, exists as cell-associated and secreted (shedding by TMEM8A) form 
signaling in cis and trans. Cripto-1 enhances macrophage phagocytic activity and upregulates 
the production of pro-inflammatory cytokines [282], also enhances pro-inflammatory TNFα 
from CD4+ T helper cells [283] 

SMPD1 Secreted form [284] is increased in response to stress and inflammatory mediators (IL1B and 
TNF) and viral infection [285] and coagulation during SARS-CoV-2 [286]. Converts 
sphingomyelin to ceramide which facilitates SARS-CoV-2 infection [287, 288] 

NUCB2 Release of tumor necrosis factor from vascular endothelial cells [289]; regulate inflammatory 
responses [290]. NUCB2/nesfatin-1 correlated positively with plasma levels of IL6, and TNFα, 
IL8 in chronic obstructive pulmonary disease [291] 

TCN2 Vitamin B12-binding and transport protein, high serum levels in inflammation/infection and 
liver disease, and characteristics of acute-phase reactant [292, 293] 

NPM1 Several cellular processes. NPM1 can be passively released by necrotic or damaged cells, 
or secreted by endothelial cells, monocytes, and macrophages under stress/infection. 
Released in neutrophil NETs [104]. Extracellular NPM1 acts as a potent inflammatory 
stimulator promoting cytokine production. NPM described as an alarmin [294] 

CSF1 M-CSF. Release of proinflammatory chemokines, role in innate immunity and inflammatory 
processes, influencing function of macrophages [295] 

CD163 Acute phase, inflammatory response. Released from M2 macrophages during chronic 
inflammation/sepsis related to TNFα and TACE/ADAM17 activity [296], and cardiovascular 
disease [76]. A valuable diagnostic parameter for monitoring macrophage activation in 
inflammatory conditions including COVID-19 [297] 

REG4 Involved in inflammatory and metaplastic responses of the gastrointestinal epithelium [298], 
polarization macrophages to M2 phenotype [299] 

ANPEP Also called CD13, expressed on small-intestinal and renal microvillar membrane. Soluble 
form (sCD13) is a pro-inflammatory mediator [300] and shown in severe COVID-19 [301] 

CRH Anti-inflammatory peptide released during stress and leads to cortisol production, an anti-
inflammatory hormone [302] 

STK4 Stress-activated, pro-apoptotic kinase. Serum STK4 levels are reduced with increased IL6 
and increased inflammation [303] 

LRP1 Intracellular signaling and endocytosis implicated in many biological processes. Shed by 
ADAM proteases. sLRP1 a biomarker of the level of atherosclerotic plaques and coronary 
artery events [304]. sLRP1 is generated in inflammation and may regulate inflammation by 
its effects on macrophage secretion of TNF-α, MCP-1/CCL2, and IL-10 [305] 

LGALS8 Sensor of membrane damage caused by infection and restricts the proliferation of infecting 
pathogens by targeting them for autophagy. Gal-8 plays a role in innate and adaptive 
immunity and inflammation [306], pro-inflammatory activities in the endothelium [306] 
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LGALS4 Sensor of membrane damage, pro-inflammation inducing CD4+ T cells to produce IL-6 [307] 

KLK10 Proteas. Represses proliferation. Inhibits endothelial Inflammation and atherosclerosis [308] 

ADM Blood pressure, hypotensive effect in blood vessels. Activates eNOS (NOS3) for NO 
production [309]. Strongly elevated in patients with sepsis, and in patients with hypertension 
and acute heart failure where high levels could reflect residual tissue congestion [310, 311]. 
Augments the release and production of TFPI [312] and predicts COVID-19 mortality [313] 

TNC Endothelial/inflammatory cardiomyopathy. Upregulated in blood of sepsis patients [314, 315]. 
Cleaved from vascular endothelium by proteases [164] 

SFRP1 sFRP1 is an antagonist of Wnt signaling and is elevated in cardiovascular disease [316, 317] 

CALCA Vasodilator with high serum level associating with CAD [318, 319] 

ACE2 Soluble form converts angiotensin I into the vasodilator angiotensin 1-7 [320] and associate 
with CVD development [321] and COVID-19 severity [322] 

IGFBP2 Inhibits IGF-mediated growth. High levels associate with severity of pulmonary arterial 
hypertension [323]. Predictor of mortality in chronic and acute heart failure patients [324] 

MME Mature neutrophils marker, soluble form (Neprilysin or CD10) predicts heart failure [325] 

NPPB Heart failure, relates to MME inhibitors [326, 327] 

FRZB Also called sFRP3 is an antagonist of Wnt signaling and may augmenting myocardial injury-
driven fibrosis [328], Cleaved from vascular endothelium by proteases [328] 

NT-proBNP Heart failure [326, 327] 

OSM Oncostatin M has a pro-inflammatory effect on cytokine production by endothelial cells, 
including IL-6, G-CSF and GM-CSF. Induces dedifferentiation of cardiomyocytes, promotes 
progression of heart failure [329] 

LDLR sLDLR reduces uptake of triglycerides and contributes to atherosclerosis [330] 

CDH2 Cell adhesion protein and the soluble form inhibits cell-cell adhesion, inhibits vascular smooth 
muscle cell (VSMC) and macrophage apoptosis which contributes to myocardial infarction 
[331-333]. Released in neutrophil NETs [104] 

PDGFRA Plays a role in platelet activation, secretion of agonists from platelet granules, and in thrombin-
induced platelet aggregation. Soluble form has been described [334] and might inhibit the 
function of membrane form leading to anti-proliferative effect on vascular endothelial cells 
  

REN Generates angiotensin I from angiotensinogen in the plasma, vasoconstriction, and increase 
in blood pressure [335] 

AGER Mediator of acute and chronic vascular inflammation. sAGER (sRAGE) is unclear for role in 
CVD [336] 

ACP5 Serum ACP5 (TRAP/TRAP5b) higher in coronary artery disease patients and loss of bone 
mineral density. High in cardiovascular disease [337] 

TNNI3 Cardiac Troponin I (cTnI) is exclusively expressed in adult cardiac muscle. High blood level 
is an indicator for myocardial ischemia and infarction [180, 338, 339] 
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IGFBP1 Promotes cell migration. High levels associate with cardiovascular disease [340-342] 

ANGPTL1 A key anti-angiogenic protein (it is also known as angioarrestin) by inhibiting the proliferation, 
migration, tube formation, and adhesion of endothelial cells [343] 

C1QTNF1 Serum levels are high in CAD and associate with CAD severity and TNFα and IL6 [344] 

DCN Ligand for multiple cell surface receptors mediates its role in tumor suppression, including a 
stimulatory effect on autophagy and inflammation and an inhibitory effect on angiogenesis. 
Cleaved from vascular endothelium by proteases [164] 

SORT1 A sorting receptor in the Golgi compartment and as a clearance receptor on the cell surface. 
Soluble sortilin in serum/plasma associate with atherosclerosis, coronary artery disease, and 
peripheral arterial disease [345-347] 

PCSK9 Pro-atherosclerotic effects leading to elevated levels of LDL, low HDL levels, obesity and 
overweight, diabetes, and coronary heart disease [348, 349] 

PGF Growth factor active in angiogenesis and endothelial cell growth. Found within human 
atherosclerotic lesions is associated with plaque inflammation [350] 

SPARCL1 Actively released from quiescent endothelial cells via the classical secretion pathway and 
inhibits angiogenesis, endothelial cell proliferation and migration but required for capillary 
morphogenesis and integrity [351, 352] 

ANGPT2 Antagonist for both ANGPT1 and TIE2, disrupts the vascular remodeling ability of ANGPT1 
and may induce endothelial cell apoptosis. High in cardiovascular disease [180, 337] 

COL4A1 Cleaved into arresten, comprising the C-terminal NC1 domain that inhibits endothelial cell 
proliferation, migration, and tube formation [353-355]. Cleaved from vascular endothelium by 
proteases [164] 

TGFBI Inhibit cell adhesion. Plasma TGFBI remains high in recovered COVID-19 patients [356]. 
Induced in various forms of heart disease affecting fibrosis and disease responsiveness [357] 
Cleaved from vascular endothelium by proteases [164] 

PRELP Present in connective tissue ECM. Elevated serum level in pulmonary hypertension [358] and 
elevated in cardiac ECM after myocardial ischemia/reperfusion injury [359]. Cleaved from 
vascular endothelium by proteases [164] 

SPON1 Cell adhesion. Serum/plasma SPON1 significantly higher in cardiovascular disease/heart 
failure [13, 76, 180, 337] 

IGFBP7 Binds to IGF with high affinity and stimulates cell adhesion. Roles in cardiac hypertrophy, 
fibrosis, cellular senescence, insulin resistance, endothelial dysfunction, and inflammation. 
Increase IGFBP7 reflects worsening diastolic function, adverse cardiac remodeling, metabolic 
derangement, and heart failure [360]. Cleaved from vascular endothelium by proteases [164] 

SOD2 Mitochondrial matrix protein that clears mitochondrial reactive oxygen species, protective 
against apoptosis. The concentrations of plasma SOD1 and SOD2 were higher in CAD than 
in healthy controls [361] 

NRP2 Involved in cardiovascular development, axon guidance, tumorigenesis, inflammation, and 
cardiovascular disease. Soluble form (sNPR2) [362] acts a decoy inhibiting function [363] 

BMP4 Regulates development including heart development and adipogenesis. Role in 
cardiomyocyte induction [364] 
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GDF2 GDF2 (BMP9) binds to ACVRL1 and is potent circulating inhibitor of angiogenesis inhibiting 
microvascular endothelial cell migration and growth [365] 

IGFBP3 Main IGF transport protein in the bloodstream. Serum levels significantly reduce during the 
catabolic flow phase of injury [366], acute myocardial infarction and coronary heart disease 
[367] 

COMP COMP is a marker of cartilage turnover, role in vascular wall remodeling [368, 369]. Cleaved 
from vascular endothelium by proteases [13] 

PON3 Associates with HDL and inhibit the oxidation of LDL to slow the initiation and progression of 
atherosclerosis [370] 

DKK4 Antagonist of the Wnt/β-catenin signaling pathway. Increase in blood is associated with 
cardiovascular disease [371] 

FKBP5 FKBP5–NFκB signaling mediates inflammation, potentially contributing to cardiovascular risk 
[372]. Plasma level is increased in stroke patients [373] 

PRSS2 Increased serum/urine levels in acute and chronic pancreatitis [374] 

FBP1 Metabolism, gluconeogenesis. High serum level in acute liver failure [375] 

FST Bioneutralization of members of the TGF-β superfamily, antagonist of activin (multifunctional 
protein including immune response and wound repair). High Follistatin (FST) associates with 
COVID-19 severity and mortality reflecting local (lung and endothelium) and system damage 
and inflammation [376]. High in cardiovascular disease [13] 

SFTPD Pulmonary surfactant-associated protein D involved in lung's defense against inhaled 
microorganisms, organic antigens and toxins [377]. Leakage from the lung into circulation is 
a promising biomarker for lung injury [377]. 

LRIG1 Interact with RTKs (the EGFR family, MET and RET) as a feedback negative regulator of 
signaling by RTKs with role in homeostasis. Soluble form (sLRIG1) retains this inhibitor 
function in a paracrine manner [378] 

GDF15 Inflammation, tissue hypoxia, acute injury and oxidative stress, and cardiovascular disease 
[13], induced in lung injury [379] 

LRPAP1 Chaperon for LRP1, leakage in circulation due to tissue damage [380]. RAP Inhibits ligand 
binding to LDLR. 

PTN Endothelial cell migration and neovasculogenic effects in damaged heart, cardiomyocyte 
programmed cell death in response to pro-apoptotic stress, which may be critical to 
myocardial injury repair [381-383] 

RSPO1 Ligand for LGR4-6 receptors activating canonical Wnt signaling by relieving the Dkk1 
inhibition imposed on the Wnt pathway. Excess levels are linked to liver fibrosis [384, 385] 

KRT19 KRT19 fragment (CYFRA21-1) relates to lung pathologies. Found high in 
severe/critical/deceased COVID-19 [386] 

MATN3 Cartilage specific, role in the formation of extracellular filamentous networks. Presence in 
circulation my reflect tissue damage [387]. 

MB Binds oxygen on a heme group. Released into the bloodstream after muscle injury [388], 
potential marker for heart attack [389] 
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HGF Growth factor for a broad spectrum of tissues and cell types and functions. Neutrophils 
activation [390], liver disease [391], hypertension [392], cardiovascular [393], advanced heart 
failure [394], viral load and lung injury, severity and mortality in COVID-19 patients [395, 396], 
and immune suppression, reduced antigen presentation [397] and other suppressive effect 
on cytotoxic cell killing [398] 

PROK1 Potently contracts gastrointestinal smooth muscle. Role in cardiovascular health and disease, 
marker for heart and kidney damage [399] 

REG1A Sepsis [400-402] 

TINAGL1 Kidney inflammation/damage and cardiovascular damage. Cleaved from vascular 
endothelium by proteases [164] 

GFRA1 Axon guidance/development. Co-receptor with RET for GDNF to mediate RET tyrosine 
kinase signaling. Released form described from neural cells and nerve injury which mediates 
trans signaling [403, 404] 

CPA1 Acute and chronic pancreatitis [405, 406] 

NEFL Presence in plasma reflects axonal/neuronal damage [407], and stroke [408, 409] 

PVALB Muscle relaxation. Serum parvalbumin during muscle injury [410] and neural damage [411] 

CPB1 Pancreatitis [412] 

CTSL Cathepsin. High serum level associates with COVID-19 severity, may play a role in SARS-
CoV-2 entry; contributes to fibrosis in COVID-19 [413]. Marker of cardiovascular event [414] 

CSTB Cathepsin. Released in neutrophil NETs [104]. Reversible inhibitor of cathepsins L, H and B. 
Blood CSTB (Cystatin B) is a marker of cardiovascular event [414, 415] 

CTSZ Cathepsin. Cathepsin. Might contribute to fibrosis in COVID-19 [413]. Cleaved from vascular 
endothelium by proteases [164] 

FCAR Several functions including cytokine, proinflammatory, production. Neutrophil activation and 
immunity [416]. CD89 (FCAR) serves as an innate receptor during the early phase of infection 
[417]. Soluble form (sCD89) a biomarker for IgA nephropathy [418] 

CTSD Cathepsin. Might contribute to fibrosis in the lung, spleen, thyroid, liver, and heart in COVID-
19 [413]. Cleaved from vascular endothelium by proteases [164]. Marker of cardiovascular 
event [414, 415] 

CTSO Cathepsin. Might contribute to fibrosis in COVID-19 [413] 

CTSH Cathepsin. Might contribute to fibrosis in COVID-19  [413] 

LYVE1 Binds to hyaluronic acid (HA), cell surface receptor on lymphatic endothelial cells. 
Macrophage-derived LYVE-1 is shed by metalloproteinases [419] which might induce arterial 
stiffness and collagen deposition [420]. Shedding inhibits LYVE-1-mediated lymphangiogenic 
responses [421] and may promote pathological lymphangiogenesis [422]. High serum LYVE-
1 during acute lower respiratory Infection and renal dysfunction [423] 

EPHB4 Role in heart morphogenesis, angiogenesis and blood vessel remodeling and permeability. 
sEphB4 blocks activation of EphB4 and EphrinB2; suppresses endothelial cell migration, 
adhesion, and tube formation [424] 
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ROBO2 SLIT2/ROBO2 guidance cue in cellular migration, including axonal navigation and 
angiogenesis. Reduced sROBO2 (shedding by ADAM10 at the ectodomain) suggests low 
activity of the SLIT2/ROBO2 signaling [425, 426] 

PLXDC1 Role in endothelial cell capillary morphogenesis [427]. Secreted form from transcript variants 
may act as decoy thus inhibiting capillary repair 

ASGR1 Mediates the endocytosis of plasma glycoproteins; soluble form (sASGR1) [428] is 
upregulated in liver fibrosis/cirrhosis [429] 

HSPB1 HSPB1 (HSP27) is released from platelets during activation/aggregation, and serum levels 
of HSP27 associate with inflammation and other tissue injuries [430, 431] 

IFI30 Expressed in antigen-presenting cells and induced by INFγ in other cell types. Important in 
MHC class II-restricted antigen processing and restricts viral entry including SARS-CoV [432]. 
Secreted IFI30 (GILT) may enhance hemolysin-mediated tissue damage [433] 

HMOX1 Heme catabolism. High serum/plasma levels in ARDS and interstitial lung disease [434] and 
acute kidney injury [435] 

HMOX2 Heme catabolism. High serum/plasma levels in ARDS, interstitial lung disease, peripheral 
artery disease, acute kidney injury [436] 

MERTK RTK which binds to several ligands including GAS6. sMERTK act as a competitive inhibitor 
of MerTK by acting as a decoy for its ligand GAS6 inhibiting the anti-inflammatory function of 
GAS9/TAM signaling in macrophages [437, 438]. sMERTK shed during inflammatory 
responses and inflammatory cardiovascular lesions [437, 438], and associates with kidney 
disease and sepsis [439, 440] 

CST3 Biomarker of kidney function [441, 442] and predicting new-onset or deteriorating 
cardiovascular disease [443]. sCST3 is a predictor of COVID-19 severity [444, 445] 

TYMP Role in maintaining the integrity of the blood vessels, promoting activity on endothelial cells, 
angiogenic activity. High serum level in sepsis [446], and associates with COVID-19 
associated thrombotic event, inflammation, and organ damage [447] 

SNCG γ-Synuclein is found primarily in the peripheral nervous system. Serum/urine presence 
detected in cancer & secreted by cancer cells [448]. May mark peripheral nerve damage [449] 

TFF2 Inhibits gastrointestinal motility and gastric acid secretion repair repairing the gastrointestinal 
tract [450]. Increased in serum with kidney disease [451] and declining lung function [452] 

CCDC80 Cell adhesion and matrix assembly. Blood levels are linked to glucose tolerance 
derangements and related to inflammation-associated chronic complications in diabetes 
[453], and metabolic and cardiovascular risk in patients with inflammatory bowel disease [454] 

CA3 Muscle specific CA released after muscle injury. Serum myoglobin/carbonic anhydrase III 
ratio as a marker of reperfusion after myocardial infarction [455] 

SPOCK1 Cell-cell and cell-matrix interactions. Soluble form (Testican-1) is upregulated in sepsis and 
associates with sepsis severity [456] 

TFF3 Protects the mucosa from insults, stabilizes the mucus layer and affect healing of the 
epithelium, repair of the intestinal mucosa and lung. Marker for lung inflammation/cancer and 
declining lung function [452, 457] 
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EZR Linker between plasma membrane and actin cytoskeleton. Ezrin in blood could mark tissue 
damage, particularly the lung [458] 

TACSTD2 Cell surface receptor that transduces calcium signals for self-renewal, proliferation, invasion, 
and survival; stem cell-like qualities. Cleaved to release the extracellular domain and the 
intracellular domain translocases to the nucleus; both fragments increase hyperplasia [459]. 
Relevant to bronchial cells/lung repair including proinflammatory secretion and hyperplasia 

TGFA Wound healing and tissue repair. TGFα has a broad mitogenic effect including epithelial 
development. Mediates injury-induced lung fibrosis [460] 

THBS2 Adhesive glycoprotein that mediates cell-to-cell and cell-to-matrix interactions, a ligand for 
CD36 mediating antiangiogenic properties [461]. High serum levels associate with fibrosis 
and cardiovascular diseases, heart failure and aortic aneurysm [462-467] 

IGSF3 In lungs, it increased cell adhesion and decreased cell migration thus may be involved lung 
tissue repair [468] 

AXL Several roles in host-virus interaction and immunity. sAXL is high in severe sepsis, sepsis, 
and infection [440, 469] 

GAS6 Ligand for AXL, secreted by endothelial cells and is important for the activation of endothelium 
during inflammation. High in severe sepsis, sepsis, and infection [469] 

ICAM2 Interacts with EZR. Mediates adhesive interactions important for antigen-specific immune 
response, NK-cell mediated clearance, lymphocyte recirculation. Soluble ICAM2 (sICAM2) is 
elevated in endothelial dysfunction and inflammation/fibrosis [470]. Shed by platelets [91] 

ICAM1 Plasma levels are predictive of COVID-19 mortality and organ failure [471]. Role in leukocyte 
trans-endothelial migration [472] 

SOST Negative regulator of bone growth that acts through inhibition of Wnt signaling and bone 
formation. Serum Sclerostin associated with ICU disease severity independent of the 
presence of sepsis and correlated with biomarkers reflecting renal, hepatic, and cardiac 
dysfunction, and biomarkers reflecting bone metabolism [473] 

ITGB6 Expressed on epithelial cells, including lung. Plays key role in TGF-beta-1 activation and 
inflammation and lung fibrosis [474] 

CDH1 Cell adhesion protein. Shedding of cleaved E-cadherin molecules during inflammatory 
response [475]. Blood soluble E-cadherin might reflect tissue injury in the events of 
inflammation [476]. Shed by platelets [91] 

CD59 Potent inhibitor of the complement membrane attack complex. Soluble form has greatly 
reduced ability to inhibit MAC assembly on cell membranes [477]. sCD59 biomarker for 
glucose handling and diabetes [478], associated with cellular damage after acute myocardial 
infarction [479], and lung dysfunction after lung transplant [480] 

MET Wound healing, organ regeneration and tissue remodeling. Soluble c-Met relates to liver 
injury [481], diabetic nephropathy [482] 

CD93 Cell-cell adhesion and host defense. Expressed on many cell types including platelets, 
neutrophils, monocytes, microglia, and endothelial cells. Soluble CD93 (sCD93) associates 
with CAD, acute myocardial infarction [483] inflammation [484] 

DLK1 Soluble form cleaved off by ADAM17 is active in inhibiting adipogenesis neuroendocrine 
differentiation, reduced level associate with myocardial fibrosis [485] 
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FGF19 Reduced blood level in certain metabolic disorders [486], non-alcoholic fatty liver disease 
[487] and insulin resistance [488]. FGF19 have anti-fibrotic properties in the lung [489] 

TSHB Indispensable for the control of thyroid structure and metabolism (UniProtKB) 

MSTN Negative regulator of skeletal muscle growth. Low serum level post-myocardial infarction 
associate with improved survival, possibly by limiting extent of fibrosis [490] 

ENPP7 Sphingomyelinase that hydrolyses sphingomyelin to ceramide in the intestinal tract. It has 
features to be secreted in bile and was detected in medium [491], released in intestinal lumen 
by bile salts and enzymes [491, 492] 

SULT2A1 Enzyme in maintaining steroid and lipid homeostasis. Serum level was shown to be a marker 
of liver injury mouse model [493] 

PTS Metabolism; involved in serotonin biosynthesis and NO synthase activity. Induced by IL1B 
and INFg in endothelial cells [494]. Possibly released due to apoptosis/cell death from tissue 
damage. 

HAO1 Oxidative stress. Located in the peroxisome and expressed in liver and pancreas [495]. 
Possibly released due to apoptosis/cell death from tissue damage. 

MAD1L1 Mitotic checkpoint, spindle-assembly checkpoint (UniProtKB). Possibly released due to 
apoptosis/cell death from tissue damage. 

NADK Redox. Located in Nucleoplasm, Vesicles (the Human Protein Atlas). Possibly released due 
to apoptosis/cell death from tissue damage. 

ANXA10 Undetermined function 

CA5A Ureagenesis and gluconeogenesis. Mitochondrial enzyme in the liver, kidney, and skeletal 
muscle (the Human Protein Atlas) 

HEXIM1 RNA polymerase II transcription inhibitor. Regulation of innate immune response (the Human 
Protein Atlas) 

ZBTB17 Transcription factor, prevents apoptosis in lymphoid precursors, allowing them to survive in 
response to IL7 and undergo proper lineage commitment (the Human Protein Atlas) 

LAMP3 Also called CD208 and DC-LAMP, and almost exclusively found in matureDCs with role in 
dendritic cell function and in adaptive immunity, DCs maturation (the Human Protein Atlas) 

CES1 Manage cellular cholesterol esterification levels and expressed in monocytes (called 
monocyte esterase). May be secreted in other species but no evidence in humans apart from 
liver cancer [496] 

PRSS8 Might be an alternative entry portal for SARS-CoV-2 and contribute to and/or worsen lung 
infection/pneumonia [497] 

NMNAT1 Nicotinamide-nucleotide adenylyltransferase (NMNAT), protective for injured axons (axon 
degeneration), but Inhibitory of axon regeneration (the Human Protein Atlas) 

AGRP Related to obesity [498] 

KYNU Metabolism. Biosynthesis of NAD cofactors from tryptophan through the kynurenine pathway 
(the Human Protein Atlas) 

CD300LF Inhibitory receptor for myeloid cells and mast cells (UniProtKB) 

https://www.uniprot.org/uniprot/P01222
https://www.uniprot.org/uniprot/Q9Y6D9
https://www.proteinatlas.org/ENSG00000008130-NADK
https://www.proteinatlas.org/ENSG00000174990-CA5A
https://www.proteinatlas.org/ENSG00000186834-HEXIM1
https://www.proteinatlas.org/ENSG00000186834-HEXIM1
https://www.proteinatlas.org/ENSG00000116809-ZBTB17
https://www.proteinatlas.org/ENSG00000078081-LAMP3
https://www.proteinatlas.org/ENSG00000173614-NMNAT1
https://www.proteinatlas.org/ENSG00000115919-KYNU
https://www.uniprot.org/uniprot/Q8TDQ1
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BLMH Cytoplasmic cysteine peptidase. Inactivated the drug Bleomycin (UniProtKB) 

ZBTB16 Transcriptional repressor and plays a role in myeloid maturation (UniProtKB) 

HS3ST3B1 O-sulfation of Heparan sulfate (UniProtKB) 

HS6ST1 O-sulfation of Heparan sulfate (UniProtKB) 

PAPPA Metalloproteinase which specifically cleaves IGFBP-4 and IGFBP-5, resulting in release of 
bound IGF. Involved in local proliferative processes such as wound healing [499] 

SCARB2 Expressed in brain, heart, liver, lung and kidney, and at intercalated discs [500] & Wikipedia. 
Highly expressed in plasmacytoid DCs and involved in type I IFN production [501] 

DFFA Inhibitor of the caspase-activated DNase (UniProtKB) 

DCBLD2 Also called ESDN, regulator of vascular remodeling and angiogenesis and inhibitor of insulin 
receptor signal transduction [502] 

THOP1 Metabolism of peptides under 20 aa residues long, also plays a role in MHC-I antigen 
presentation and is secreted [503] 

PILRB Expressed on the cell surface of neutrophils, monocytes, macrophages, NK-cells, subset of 
T-cells and DCs. Triggering PILRB increases levels of IL-1β, TNFa and IL6 in serum or 
bronchoalveolar lavage fluid [504]. PILRβ is primary isoform displayed by NK cells [505] 

LAYN Cell adhesion. Upregulated in CD8+ Cytotoxic T cells [506] 

DPP7 Expressed in quiescent lymphocytes (NCBI Gene) 

FKBP4 Role in immunoregulatory gene expression in B- and T-Cells via IRF-4 inhibition [507]. 
Secreted in response to dsDNA [508] 

GALNT2 Protein modification. Released by platelets [199] 

PHOSPHO1 Phosphatase that has a high activity toward phosphoethanolamine (PEA) and 
phosphocholine (PCho). Involved in the generation of inorganic phosphate for bone 
mineralization (the Human Protein Atlas) 

PPP3R1 Regulatory subunit of calcineurin, a calcium-dependent, calmodulin stimulated protein 
phosphatase (the Human Protein Atlas) 

CLSTN2 Cell adhesion, modulate calcium-mediated postsynaptic signals (the Human Protein Atlas) 

KLB Bile acid synthesis and involved in activation of FGF21 protein has a protective effect on heart 
muscle cells [509]. Soluble, circulating form of β-klotho has been described but unclear 
function [510] 

SLAMF8 A role in B-lineage commitment and/or modulation of signaling through the B-cell receptor 
(the Human Protein Atlas) 

VAMP5 Participate in trafficking events that are associated with myogenesis, such as myoblast fusion 
and/or GLUT4 trafficking (the Human Protein Atlas) 

ACVRL1 Receptor for BMP9/GDF2 and BMP10 and important regulator of normal blood vessel 
development (the Human Protein Atlas) 

PLIN1 Perilipin, associate with the surface of lipid droplets [511]. Controls adipocyte lipid metabolism 
and its expression is elevated in obesity [512] Wikipedia 

https://www.uniprot.org/uniprot/Q13867
https://www.uniprot.org/uniprot/Q05516
https://www.uniprot.org/uniprot/Q9Y662
https://www.uniprot.org/uniprot/Q9Y662
https://en.wikipedia.org/wiki/SCARB2
https://www.uniprot.org/uniprot/O00273
https://www.ncbi.nlm.nih.gov/gene/29952
https://www.proteinatlas.org/ENSG00000173868-PHOSPHO1
https://www.proteinatlas.org/ENSG00000221823-PPP3R1
https://www.proteinatlas.org/ENSG00000158258-CLSTN2
https://www.proteinatlas.org/ENSG00000158714-SLAMF8
https://www.proteinatlas.org/ENSG00000168899-VAMP5
https://www.proteinatlas.org/ENSG00000139567-ACVRL1
https://en.wikipedia.org/wiki/Perilipin-1
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CD300C Immunoregulatory. Inhibits T-cells [513] 

TRIM21 TRIM21 is an intracellular antibody effector in the intracellular antibody-mediated proteolysis 
pathway. Involved in the regulation of innate immunity and the inflammatory response in 
response to IFNG/IFN-gamma [514] Wikipedia 

IDUA Heparin catabolism (the Human Protein Atlas) 

AGR3 Regulation of ciliary beat frequency and mucociliary clearance in the airway, regulation of 
intracellular calcium in tracheal epithelial cells (UniProtKB) 

PON2 Inflammation. Prevents LDL lipid peroxidation, reverses the oxidation of mildly oxidized LDL 
(UniProtKB) 

ENAH Induces the formation of F-actin rich outgrowths in fibroblasts (the Human Protein Atlas) 

EFNA4 May play a role in the interaction between activated B-lymphocytes and dendritic cells  
(the Human Protein Atlas) 

DRAXIN Chemorepulsive axon guidance protein. Antagonist of Wnt signaling pathway [515] 

VSIG2 Unknown 

NOMO1 Part of a protein complex that participates in the Nodal signaling pathway in development 
(the Human Protein Atlas) 

CD302 Receptor involved in cell adhesion and migration, as well as endocytosis and phagocytosis 
(the Human Protein Atlas) 

PCDH17 Potential calcium-dependent cell-adhesion protein (UniProtKB) 

PREB A transcriptional regulator and is thought to be involved in some of the developmental 
abnormalities. Specifically activates the small GTPase SAR1B (UniProtKB and the Human 
Protein Atlas) 

AHCY Metabolism (UniProtKB) 

QDPR Enzyme for tetrahydrobiopterin biosynthesis (the Human Protein Atlas) 

HSD11B1 Reduces cortisone to the active hormone cortisol (UniProtKB) that activates glucocorticoid 
receptors [516] 

DDAH1 Regulation of nitric oxide generation, inhibit nitric oxide synthase activity (the Human Protein 
Atlas) 

GALNT10 Protein modification (the Human Protein Atlas) 

FOSB Interacts with Jun proteins enhancing their DNA binding activities (the Human Protein Atlas) 

PFDN2 A subunit of the Prefoldin complex, a chaperone complex in cytoplasm mainly involved in 
neurodegenerative diseases [517] 

ACP6 Metabolism (UniProtKB) 

CFC1 Development, vascular and heart. Maintenance of stem cells and stem cell renewal. Soluble 
form [518] inhibits the membrane-form function 

ALDH1A1 Enzyme mainly expressed in liver (the Human Protein Atlas). Serum levels detected in cancer 
(e.g. breast cancer [519]). Presence in blood may be indicator of liver damage 

https://en.wikipedia.org/wiki/TRIM21
https://www.proteinatlas.org/ENSG00000127415-IDUA
https://www.uniprot.org/uniprot/Q8TD06
https://www.uniprot.org/uniprot/Q15165
https://www.proteinatlas.org/ENSG00000154380-ENAH
https://www.proteinatlas.org/ENSG00000243364-EFNA4
https://www.proteinatlas.org/ENSG00000103512-NOMO1
https://www.proteinatlas.org/ENSG00000241399-CD302
https://www.uniprot.org/uniprot/O14917
https://www.uniprot.org/uniprot/Q9HCU5
https://www.proteinatlas.org/ENSG00000138073-PREB
https://www.proteinatlas.org/ENSG00000138073-PREB
https://www.uniprot.org/uniprot/P23526
https://www.proteinatlas.org/ENSG00000151552-QDPR
https://www.uniprot.org/uniprot/P28845
https://www.proteinatlas.org/ENSG00000153904-DDAH1
https://www.proteinatlas.org/ENSG00000153904-DDAH1
https://www.proteinatlas.org/ENSG00000164574-GALNT10
https://www.proteinatlas.org/ENSG00000125740-FOSB
https://www.uniprot.org/uniprot/Q9NPH0
https://www.proteinatlas.org/ENSG00000165092-ALDH1A1
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DDC Catalyzes the decarboxylation of L-3,4-dihydroxyphenylalanine (DOPA) to dopamine (the 
Human Protein Atlas) 

IGFBPL1 Axonal Guidance. Circulating protein but not characterized (the Human Protein Atlas) 

ADAM22 Regulation of cell adhesion and spreading and in inhibition of cell proliferation (the Human 
Protein Atlas) 

NTRK2 Cell differentiation (the Human Protein Atlas) 

DNER Activator of the NOTCH1 pathway. Soluble form associates with inflammation [520] 

GPC5 Binds growth factors and play a role in cell division and growth regulation, and cell migration 
(the Human Protein Atlas). Has secreted form but not functionally characterized 

PAG1 Negatively regulates T-cell antigen receptor (UniProtKB) 

PRSS27 Protease mainly expressed mainly in the pancreas (the Human Protein Atlas) 

BOC Cell-cell interactions between muscle precursor cells, Promotes differentiation of myogenic 
cells (the Human Protein Atlas). Elevated plasma BOC in heart failure but reduced with 
recovery [521] 

GFRA3 Axon guidance (UniProtKB) 

EGLN1 Primary regulator of HIF-1α steady state levels in the cell, involved in various hypoxia-
influenced processes such as angiogenesis in retinal and cardiac functionality (UniProtKB) 

SIGLEC6 Immunosuppressive function on CTLs by regulating the activity of mast cells [522] 

ANXA11 Midbody formation and completion of the terminal phase of cytokinesis (UniProtKB) 

DSG3 Cell-cell junctions between epithelial, myocardial, and certain other cell types (the Human 
Protein Atlas) 

USP8 Regulatory role at the level of protein turnover by preventing degradation particularly during 
cell cycle. Regulate T-cell anergy mediated by RNF128 (UniProtKB) 

RASSF2 Promote apoptosis and cell cycle arrest (UniProtKB) 

ITGA11 Integrin alpha-11/beta-1 is a receptor for collagen (UniProtKB) 

LRRN1 Inhibits the Fas/FasL pathway and suppresses the apoptosis [523] 

SULT1A1 Metabolism (UniProtKB) 

DSG4 Cell adhesion (the Human Protein Atlas) 

BID Pro-apoptotic Bcl member (UniProtKB) 

SIT1 Immunity. Negatively regulates TCR-mediated signaling in T-cells. Involved in positive 
selection of T-cells (the Human Protein Atlas) 

NCF2 Oxidase produces a burst of superoxide which is delivered to the lumen of the neutrophil 
phagosome (the Human Protein Atlas) 

SKAP1 Activation of T-cells, TCR signaling (UniProtKB) 

F11R Ligand for integrin ITGAL/ITGB2 to forms cell junctions and involved in the transendothelial 
migration of leukocytes and neutrophils [524] and platelet aggregation [525].  High level of 
circulating F11R in atherosclerosis [526] and hypertension [527] 

https://www.proteinatlas.org/ENSG00000132437-DDC
https://www.proteinatlas.org/ENSG00000132437-DDC
https://www.proteinatlas.org/ENSG00000137142-IGFBPL1
https://www.proteinatlas.org/ENSG00000008277-ADAM22
https://www.proteinatlas.org/ENSG00000008277-ADAM22
https://www.proteinatlas.org/ENSG00000148053-NTRK2
https://www.proteinatlas.org/ENSG00000179399-GPC5
https://www.uniprot.org/uniprot/Q9NWQ8
https://www.proteinatlas.org/ENSG00000172382-PRSS27
https://www.proteinatlas.org/ENSG00000144857-BOC
https://www.uniprot.org/uniprot/O60609
https://www.uniprot.org/uniprot/Q9GZT9
https://www.uniprot.org/uniprot/P50995
https://www.proteinatlas.org/ENSG00000134757-DSG3
https://www.proteinatlas.org/ENSG00000134757-DSG3
https://www.uniprot.org/uniprot/P40818
https://www.uniprot.org/uniprot/P50749
https://www.uniprot.org/uniprot/Q9UKX5
https://www.uniprot.org/uniprot/P50225
https://www.proteinatlas.org/ENSG00000175065-DSG4
https://www.uniprot.org/uniprot/P70444
https://www.proteinatlas.org/ENSG00000137078-SIT1
https://www.proteinatlas.org/ENSG00000116701-NCF2
https://www.uniprot.org/uniprot/Q86WV1
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SELE E-selectin mediates in the adhesion of blood neutrophils in cytokine-activated endothelium 
(UniProtKB). Serum levels associate with COVID-19 severity [528, 529]. sE-selectin 
associates with sepsis and coagulopathy [530, 531] 

SELP P-selectin is an integral membrane protein that mediates the adhesion of activated platelets 
and endothelial cells to neutrophils and monocytes and has been proposed as a drug target 
for COVID-19-related ARDS [532]. Serum levels are higher in COVID-19 patients supporting 
its role in coagulopathy [533]. sP-selectin associates with sepsis and coagulopathy [530] 

FCGR2A FcγRIIa is a low affinity receptor for the Fc region of immunoglobulins gamma. Binding to IgG 
initiates cellular responses against pathogens and soluble antigens (UniProtKB). Relevant to 
immunity in COVID-19 and other infections [534]. A soluble form has been described and 
may modulate the interaction between immune complexes and membrane-associated Fc 
gamma RII [535] and shown to inhibits rheumatoid factor binding to immune complexes [536] 

FCGR3B FcγRIIIb is a low affinity receptor for aggregated and monomeric IgG. Not capable to mediate 
antibody-dependent cytotoxicity and phagocytosis, thus serves as a trap for immune 
complexes in the peripheral circulation which does not activate neutrophils ((UniProtKB) 

SLAMF7 Self-receptor involved in immune modulation including NK cell-mediated cytotoxicity [537], 
regulation of lymphocyte adhesion [538], and in macrophage super-activation with broad 
implications in pathology of acute and chronic inflammation including severe COVID-19 [539]. 
Soluble form (sSLAMF7) has been described in multiple myeloma to activate surface 
SLAMF7 [540, 541] 

FETUB Protease inhibitor required for egg fertilization and other functions including systemic 
inflammation (the Human Protein Atlas). Reduced level of this type-3 cystatin has been 
reported in plasma of severe COVID-19 patients [542, 543]. Fetuin-B is a key partner in the 
recovery phase of an acute inflammatory response [544]  

FABP4 Lipid transport protein in adipocytes. Circulating FABP4 associates with poor outcomes in 
cardiovascular disease, stroke and chronic kidney disease [545-547] 

LTBP2 May play an integral structural role in elastic-fiber architectural organization and/or assembly 
[548]. LTBP2 is secreted from lung myofibroblasts in response to TGFβ1 and higher serum 
level in idiopathic pulmonary fibrosis patients versus healthy controls [549] 

LGALS3 Galectin-3 has several roles including in innate immune responses against pathogens such 
as infection which leads to its secretion to act as pattern recognition protein and recruiting 
neutrophils [550]. In addition to its role in viral infection [551], Galectin-3 has been proposed 
as a biomarker for COVID-19 for its role in fibrosis and inflammation [552] 

CDSN Important for the epidermal barrier integrity (UniProtKB). Found in corneodesmosomes, which 
localize to human epidermis and other cornified squamous epithelia and its loss leads to skin 
barrier defect [553]. No literature about its presence in circulation 

CNTN5 Contactins mediate cell surface interactions during nervous system development (UniProtKB) 

IL22RA1 IL22RA1 and IL10RB form the receptor for IL22 and one of the receptors for IL20 and IL24 to 
enable signaling via JAK/STAT pathways (UniProtKB). A soluble form has been detected 
plasma [554]. IL22RA2 is a related homologue which is a secreted (soluble) decoy receptor 
for IL22 inhibiting its function [555, 556] in wound healing and in protection against microbes 
in non-hematopoietic cells [557]. By similarity, sIL22RA1 may be a decoy receptor for IL22 

NGF Activates cellular signaling cascades to regulate neuronal proliferation, differentiation, and 
survival (UniProtKB) 

https://www.uniprot.org/uniprot/Q86WV1
https://www.uniprot.org/uniprot/Q86WV1
https://www.uniprot.org/uniprot/Q86WV1
https://www.proteinatlas.org/ENSG00000116701-NCF2
https://www.uniprot.org/uniprot/Q86WV1
https://www.uniprot.org/uniprot/Q86WV1
https://www.uniprot.org/uniprot/Q86WV1
https://www.uniprot.org/uniprot/Q86WV1
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