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This supplement provides a proof for the dynamic policy contribution (4) stated in the main body of the

paper.

The proposed contribution is adapted from the solution to the following problem: Consider the

infinite horizon version of problem (3), i.e. T =∞. A closed form solution exists under the following

idealized conditions:

A1 Funds can be withdrawn from the HSA for non-qualified expenses, penalty-free.

A2 There is a one-to-one correspondence between cost percentiles Xt and OOP expenses Vt.

A3 The distribution of household costs is stationary in time (no annual inflation).

Proposition 1. Suppose T =∞ and that A1-A3 hold. Then the solution to (3) is

Ct = vt− (1 +w)Wt−1,

where vt is the unique cost threshold satisfying

P(Vt ≤ vt|Xt−1) =Q=
h− 1

h− δ(1 +w)
.

To adapt the solution above to the more realistic setting where A1-A3 do not hold and T <∞,

we make the following changes to arrive at (4). First, because there is significant penalty for
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withdrawing funds from the HSA for non-qualified expenses, we prohibit Ct from becoming negative

by setting it to max{0, vt− (1 +w)Wt−1} in (4). Second, because the OOP expenses Vt is capped

by the OOP maximum Mt, the distribution of Vt may have an atomic mass at Mt that invalidates

A2. Hence if P(Vt <Mt|Xt−1)<Q, the modified threshold vt defined in (5) becomes Mt. Third, to

capture cost inflation, our cost evolution model explicitly accounts for it. Finally, the performance

of the policy is evaluated over a finite contribution period using a simulation.

Proof of Proposition 1. Consider a household in cost percentile Xt−1 in the previous year and with

HSA balance W . It transitions to cost percentile Xt in the following year and incurs V (Xt) in OOP

expenses. For notational brevity we use X,Z to denote Xt−1,Xt, and p(Z|X) is the probability of

transition from X to Z. Then Bellman’s optimality equation is

B(W,X) = δmin
c

{
c+

∫
V (Z)<(1+w)W+c

p(Z|X)B((1 +w)W + c−V (Z),Z)dZ

+

∫
V (Z)≥(1+w)W+c

p(Z|X)[B(0,Z) +h(V (Z)− (1 +w)W − c)]dZ
}

= −δ(1 +w)W + δmin
v

{
v+

∫ z(v)

0

p(Z|X)B(v−V (Z),Z)dZ

+

∫ 1

z(v)

p(Z|X)[B(0,Z) +h(V (Z)− v)]dZ

}
where v= (1+w)W + c, and z(v) is the percentile for the OOP expense v: V (z(v)) = v. This shows

that the solution is of the form B(W,X) = B̄(X)− δ(1 +w)W . Substituting back into the above

yields a Bellman equation for B̄(X):

B̄(X) = δmin
v

{
v+

∫ z(v)

0

p(Z|X)
(
B̄(Z)− δ(1 +w)(v−V (Z))

)
dZ +

∫ 1

z(v)

p(Z|X)[B̄(Z) +h(V (Z)− v)]dZ

}

= δE[B̄(Z)|X] + δmin
v

{
v− δ(1 +w)

∫ z(v)

0

p(Z|X)(v−V (Z))dZ +h

∫ 1

z(v)

p(Z|X)(V (Z)− v)dZ

}
.

Since E[B̄(Z)|X] is a constant, the optimal value for v satisfies the first order condition

p(V (Z)≤ v|X) = p(Z ≤ z(v)|X) =
h− 1

h− δ(1 +w)
,

and hence

c= v− (1 +w)W.

In addition, from the second order condition we obtain the necessary condition h> δ(1 +w). �


