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This supplement provides a proof for the dynamic policy contribution (4) stated in the main body of the

paper.

The proposed contribution is adapted from the solution to the following problem: Consider the
infinite horizon version of problem (3), i.e. T'= co. A closed form solution exists under the following
idealized conditions:

A1 Funds can be withdrawn from the HSA for non-qualified expenses, penalty-free.
A2 There is a one-to-one correspondence between cost percentiles X; and OOP expenses V.

A3 The distribution of household costs is stationary in time (no annual inflation).

PROPOSITION 1. Suppose T = oo and that A1-AS3 hold. Then the solution to (3) is
Ci=v, — (1 + w>Wt—17

where v; s the unique cost threshold satisfying

h—1
IP) < X _ = =V
VisulXis) = Q= 5w
To adapt the solution above to the more realistic setting where A1-A3 do not hold and T' < oo,

we make the following changes to arrive at (4). First, because there is significant penalty for
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withdrawing funds from the HSA for non-qualified expenses, we prohibit C; from becoming negative
by setting it to max{0,v; — (1 +w)W;_;} in (4). Second, because the OOP expenses V; is capped
by the OOP maximum M;, the distribution of V; may have an atomic mass at M; that invalidates
A2. Hence if P(V;, < M| X;_1) < @, the modified threshold v; defined in (5) becomes M;. Third, to
capture cost inflation, our cost evolution model explicitly accounts for it. Finally, the performance
of the policy is evaluated over a finite contribution period using a simulation.

Proof of Proposition 1. Consider a household in cost percentile X;_; in the previous year and with
HSA balance W. It transitions to cost percentile X, in the following year and incurs V(X;) in OOP
expenses. For notational brevity we use X, Z to denote X; 1, X;, and p(Z|X) is the probability of

transition from X to Z. Then Bellman’s optimality equation is

c

B(W,X) :5m?1n{c+/v(z) A )p(Z|X)B((1+w)W+c—V(Z),Z)dZ
+/ p(ZyX)[B(o,Z)+h(V(Z)—(1+w)W—c)]dZ}
V(2)>(1+w)Wte
= —6(1+w)W+(5mUin{v+/z<v)p(Z|X)B(v—V(Z),Z)dZ

+ / p(Z|X)[B(0,Z)+h(V(Z)— v)]dZ}
2(v)

where v = (14+w)W +¢, and z(v) is the percentile for the OOP expense v: V(z(v)) =wv. This shows
that the solution is of the form B(W, X) = B(X) — §(1 +w)W. Substituting back into the above

yields a Bellman equation for B(X):

1

2(v)
B(X) = 5mvin{v+/0 p(Z|X) (B(Z)—6(1+w)(v—V(Z)))dZ+/ p(Z\X)[B(Z)Jrh(V(Z)—v)]dZ}

(v)

2(v) 1
= 5E[B(Z)X]+5mvin{v—6(1+w)/o p(Z]X)(v—V(Z))dZ—i—h/( )p(Z]X)(V(Z)—v)dZ}.

Since E[B(Z)|X] is a constant, the optimal value for v satisfies the first order condition

PV(2) <0lX) =p(Z < 20)1X) = s

and hence

c=v—(1+w)W.

In addition, from the second order condition we obtain the necessary condition h >d(1+w). O



