Supplementary Information

Probing Side-chain Dynamics in Proteins by NMR Relaxation of Isolated ¹³C Magnetization Modes in ¹³CH₃ Methyl Groups

Vitali Tugarinov,* Alberto Ceccon and G. Marius Clore*

Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA

Relaxation rates of ¹³C magnetization modes in a ¹³CH₃ spin-system.

Below we provide differential equations that describe the $R_2(C_{\pm})$ and $R_1(C_z)$ relaxation decay processes due to intra-methyl spin interactions within a ¹³CH₃ spin-system, calculated using the basis set comprising all the magnetization modes in Eq. 1 of the main text.

 R_2 relaxation due to ¹³C-¹H dipolar interactions:

$$= \int_{-k_{CR}} \int_{T_{CR}^{00}} \left(0 \right)_{0}^{T_{CR}^{00}} \left(0 \right)_{0}^{T_{CR}^{00}} \left(0 \right)_{0}^{T_{CR}^{00}} \left(\frac{1}{2} - \frac{2}{2}, 0 - \frac{2}{2}, 0 - \frac{1}{2}, 0 - \frac{2}{2}, 0$$

 R_1 relaxation due to ¹³C-¹H dipolar interactions:

 R_1 and R_2 relaxation due to ¹H-¹H dipolar interactions:

$$= -k_{\rm int} \left\{ \begin{array}{c} L_{1} + L_{4} \\ J_{1} + L_{4} \\ L_{1} + L_{4} \\ L_{1} + L_{4} \\ L_{2} - L_{3} \\ L_{3} - L_{4} \\ L_{4} - L_{4} \\ L_{5} - L_{5} \\ L_{5} - L_{6} \\ \end{array} \right\}^{\rm mer}(0) \left[\begin{array}{c} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -\sqrt{2}/4 & 1/4 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1/2 & -\sqrt{2}/4 \\ 0 & 0 & 0 & 0 & 1/2 & -\sqrt{2}/4 \\ 0 & 0 & 0 & 0 & -\sqrt{2}/4 & 1/4 \\ \end{array} \right\}^{\rm mer}(0) \left[\begin{array}{c} 3/2 & -1/2 & -\sqrt{2}/4 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -\sqrt{2}/4 & 1/4 \\ 0 & 0 & 0 & 0 & -\sqrt{2}/4 & 1/4 \\ \end{array} \right]^{\rm mer}(0) \left[\begin{array}{c} 3/2 & -1/2 & -\sqrt{2}/2 & 0 & 0 & 0 \\ 0 & 0 & 0 & -\sqrt{2}/4 & 1/4 \\ -\frac{1}{2} & 1/2 & 0 & 0 & 0 & 0 \\ -\frac{1}{2} & 2/2 & 0 & 1/2 & 0 & 0 & 0 \\ 0 & 0 & 0 & -\sqrt{2}/2 & 0 & 1/2 & \sqrt{2}/2 \\ 0 & 0 & 0 & 0 & 3/2 & 1/2 & \sqrt{2}/2 \\ 0 & 0 & 0 & 0 & 3/2 & 1/2 & \sqrt{2}/2 \\ 0 & 0 & 0 & 0 & \sqrt{2}/2 & 0 & 1/2 \\ \end{array} \right]^{\rm mer}(0) \left[\begin{array}{c} 0 & 0 & 0 & 0 & 0 \\ 0 & -1/2 & \sqrt{2}/4 & 0 & 0 & 0 \\ 0 & -1/2 & \sqrt{2}/4 & 0 & 0 & 0 \\ -\sqrt{2}/2 & 0 & 1/2 & 1/2 & 0 \\ 0 & 0 & 0 & \sqrt{2}/2 & 0 & 1/2 \\ \end{array} \right]^{\rm mer}(0) \left[\begin{array}{c} 0 & 0 & 0 & 0 & 0 \\ 0 & -1/2 & \sqrt{2}/4 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \sqrt{2}/2 & 0 & 1/2 \\ 0 & 0 & 0 & \sqrt{2}/2 & 0 & 1/2 \\ \end{array} \right]^{\rm mer}(0) \left[\begin{array}{c} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1/2 & \sqrt{2}/4 & -1/4 & 0 & 0 & 0 \\ 0 & 0 & 0 & \sqrt{2}/2 & 0 & 1/2 \\ \end{array} \right]^{\rm mer}(0) \left[\begin{array}{c} 3/4 & -1 & \sqrt{2}/8 & 0 & 0 & 0 \\ 0 & -1/2 & \sqrt{2}/8 & 3\sqrt{2}/8 & -1/2 & 0 & 0 \\ \sqrt{2}/8 & 3\sqrt{2}/8 & -1/2 & 0 & 0 & 0 \\ 0 & 0 & 0 & \sqrt{2}/8 & -3\sqrt{2}/8 & -1/2 \\ \end{array} \right]^{\rm mer}(0) \left[\begin{array}{c} L_{1} + L_{1} \\ L_{1} + L_{2} \\ L_{2} + L_{3} \\ L_{2} + L_{3} \\ L_{3} + L_{6} \\ L_{2} + L_{3} \\ L_{2} + L_{3} \\ L_{3} + L_{6} \\ L_{1} - L_{1} \\ L_{2} - L_{6} \\ \end{array} \right]^{\rm mer}(0) \left[\begin{array}{c} 0 & -1 & \sqrt{2}/2 & 0 & 0 & 0 \\ 0 & 0 & 0 & \sqrt{2}/2 & -1/2 \\ 0 & 0 & 0 & \sqrt{2}/2 & 0 & -1/2 \\ \end{array} \right]^{\rm mer}(0) \left[\begin{array}{c} 3/4 & -1 & \sqrt{2}/8 & 0 & 0 & 0 \\ \sqrt{2}/2 & 8 & \sqrt{2}/8 & -3\sqrt{2}/8 & -1/2 \\ 0 & 0 & 0 & \sqrt{2}/8 & -3\sqrt{2}/8 & -1/2 \\ \end{array} \right]^{\rm mer}(0) \left[\begin{array}{c} L_{1} + L_{1} \\ L_{2} + L_{2} \\ L_{2} - L_{6} \\ \end{array} \right]^{\rm mer}(0) \left[\begin{array}{c} 0 & -1 & \sqrt{2}/2 & 0 & 0 \\ \sqrt{2}/2 & 0 & -1/2 & 0 & 0 \\ \sqrt{2}/2 & 0 & -1/2 & 0 & 0 \\ \end{array} \right]^{\rm mer}(0) \left[\begin{array}{c} 3/4 & -1 & \sqrt{2}/8 & \sqrt{2}/8 \\$$

where
$$k_{\rm CH} = \left(\frac{\mu_0}{4\pi}\right)^2 \frac{6\hbar^2 \gamma_{\rm H}^2 \gamma_{\rm C}^2 \tau_C}{r_{\rm CH}^6}$$
; $k_{\rm HH} = \left(\frac{\mu_0}{4\pi}\right)^2 \frac{6\hbar^2 \gamma_{\rm H}^4 \tau_C}{r_{\rm HH}^6}$; μ_0 is the vacuum permeability constant, $\gamma_{\rm H}$

and $\gamma_{\rm C}$, gyromagnetic ratios of proton and carbon spins, respectively; $r_{\rm HH}$ and $r_{\rm CH}$, ¹H-¹H and ¹³C-¹H internuclear distances in a methyl group, and τ_C the global molecular rotational correlation time (assumed isotropic). Auto- and cross-correlated relaxation spectral density functions $J(\omega)$ are labelled by the superscripts 'auto' and 'cross', respectively, while the subscripts denote the type of interaction ('HH' for ¹H-¹H interactions, and 'CH' for ¹³C-¹H interactions. The spectral density function used throughout this work has the following 'model-free'^{1,2} form,³

$$J_{\mu\nu}(\omega) = \frac{1}{5} \left\{ S_{axis}^2 S_{axis,\mu} S_{axis,\nu} \frac{\tau_C}{1 + (\omega \tau_C)^2} + \left[P_2 \left(\cos \theta_{\mu,\nu} \right) - S_{axis}^2 S_{axis,\mu} S_{axis,\nu} \right] \frac{\tau_e}{1 + (\omega \tau_e)^2} \right\}$$
(S1)

where $\tau_e^{-1} = \tau_C^{-1} + \tau_f^{-1}$; the indices ' μ ' and ' ν ' denote the type of interaction ($\mu = \nu$ and $\mu \neq \nu$ for 'auto'and 'cross'-correlated spectral density functions, respectively); $P_2(\cos(x)) = (1/2)[3\cos^2(x) - 1]$, $S_{axis,a} = P_2(\cos(\theta_{axis,a}))$, and $\theta_{axis,a}$ is the angle subtended by the methyl symmetry axis and vector *a* connecting a pair of spins. For example, for ¹³C-¹H interactions, $S_{axis,a} = P_2(\cos(\theta_{axis,CH})) = -1/3$, while for ¹H-¹H interactions, $S_{axis,a} = P_2(\cos(\theta_{axis,HH})) = -1/2$.

In addition, all the ¹³C magnetization modes relax due to methyl ¹³C chemical shift anisotropy (CSA), with the corresponding rates given by,

$$R_{2,csa} = k_{csa} \{ (2/3)J_{csa}(0) + (1/2)J_{csa}(\omega_{\rm C}) \}$$
(S2.1)

$$R_{1,csa} = k_{csa} J_{csa}(\omega_{\rm C}) \tag{S2.2}$$

where

$$k_{\rm csa} = \frac{1}{3} (\omega_C \Delta_C)^2$$
, Δ_C is methyl ¹³C CSA, and

$$J_{csa}(\omega) = \frac{2}{5} \left\{ S_{axis}^2 \frac{\tau_C}{1 + (\omega \tau_C)^2} + (1 - S_{axis}^2) \frac{\tau_e}{1 + (\omega \tau_e)^2} \right\},$$
(S2.3)

while no cross-relaxation between ¹³C magnetization modes occurs due to this mechanism.

Earlier, Kay and Bull⁴ derived relaxation matrices for transverse ¹³C relaxation in AX₃(¹³CH₃) spinsystems albeit using a slightly different basis set. No secular approximation has been used in the derivation of the relaxation matrices above (the modes can cross-relax even if they have different precession frequencies). Note that methyl-¹³C CSA/¹³C-¹H dipolar cross correlated relaxation is the only mechanism by which the in-phase modes can cross-relax with the anti-phase modes in the basis of Eq. 1 (main text). We did not include these cross-correlations in the calculations above as they are eliminated by application of ¹H 180° pulses during relaxation delays in the experiments described in this work (hence, the block-diagonal structure of the relaxation matrices above). As long as (1) one of the ¹³C magnetization modes is isolated before the relaxation period, and (2) not excessively long relaxation delays are used in relaxation measurements, the decay of each of ¹³C modes is single-exponential to a good approximation. Below we list the relaxation rates of the ¹³C magnetization modes that are used for derivation of methyl axis dynamics parameters in this work, in the 'single-exponential' limit (preserving only the diagonal elements of the relaxation matrices above).

$(L_5 + L_6)$ mode:

$$R_{2} = k_{CH} \{ (7/18) J_{CH}^{auto}(0) - (2/9) J_{CH}^{cross}(0) + (3/8) J_{CH}^{auto}(\omega_{C}) - (1/4) J_{CH}^{cross}(\omega_{C}) + (3/4) J_{CH}^{auto}(\omega_{C} + \omega_{H}) - (1/2) J_{CH}^{cross}(\omega_{C} + \omega_{H}) + (1/8) J_{CH}^{auto}(\omega_{H} - \omega_{C}) - (1/12) J_{CH}^{cross}(\omega_{H} - \omega_{C}) + (7/12) J_{CH}^{auto}(\omega_{H}) - (1/3) J_{CH}^{cross}(\omega_{H}) \} + k_{HH} \{ (1/4) J_{HH}^{auto}(0) - (1/4) J_{HH}^{cross}(0) + (1/2) J_{HH}^{auto}(\omega_{H}) - (1/2) J_{HH}^{cross}(\omega_{H}) + (1/2) J_{HH}^{auto}(2\omega_{H}) - (1/2) J_{HH}^{cross}(2\omega_{H}) \} + k_{csa} \{ (2/3) J_{csa}(0) + (1/2) J_{csa}(\omega_{C}) \};$$
(S3.1)

$$R_{1} = k_{CH} \{ (1/9) \ J_{CH}^{auto}(0) - (1/9) \ J_{CH}^{cross}(0) + (7/12) \ J_{CH}^{auto}(\omega_{C}) - (1/3) \ J_{CH}^{cross}(\omega_{C}) + (7/6) \ J_{CH}^{auto}(\omega_{C} + \omega_{H}) - (2/3) \ J_{CH}^{cross}(\omega_{C} + \omega_{H}) + (7/36) \ J_{CH}^{auto}(\omega_{H} - \omega_{C}) - (1/9) \ J_{CH}^{cross}(\omega_{H} - \omega_{C}) + (1/6) \ J_{CH}^{auto}(\omega_{H}) - (1/6) \ J_{CH}^{cross}(\omega_{H}) \} + k_{HH} \{ (1/4) \ J_{HH}^{auto}(0) - (1/4) \ J_{HH}^{cross}(0) + (1/2) \ J_{HH}^{auto}(\omega_{H}) - (1/2) \ J_{HH}^{cross}(\omega_{H}) + (1/2) \ J_{HH}^{auto}(2\omega_{H}) - (1/2) \ J_{HH}^{cross}(2\omega_{H}) \} + k_{csa} \ J_{csa}(\omega_{C});$$
(S3.2)

$(L_1 \pm L_4)$ modes:

$$R_{2} = k_{\rm CH} \{ (1/2) \ J_{\rm CH}^{auto}(0) + J_{\rm CH}^{cross}(0) + (3/8) \ J_{\rm CH}^{auto}(\omega_{C}) + (3/4) \ J_{\rm CH}^{cross}(\omega_{C}) + (3/4) \ J_{\rm CH}^{auto}(\omega_{C} + \omega_{H}) + (1/8) \ J_{\rm CH}^{auto}(\omega_{H} - \omega_{C}) + (3/8) \ J_{\rm CH}^{auto}(\omega_{H}) \} + k_{\rm HH} \{ (3/4) \ J_{\rm HH}^{auto}(\omega_{H}) + (3/4) \ J_{\rm HH}^{cross}(\omega_{H}) + (3/2) \ J_{\rm HH}^{auto}(2\omega_{H}) \} + k_{\rm csa} \{ (2/3) \ J_{\rm csa}(0) + (1/2) \ J_{\rm csa}(\omega_{C}) \} + k_{\rm HH}^{ext};$$
(S4.1)

$$R_{1} = k_{CH} \{ (3/4) \ J_{CH}^{auto}(\omega_{C}) + (3/2) \ J_{CH}^{cross}(\omega_{C}) + (3/4) \ J_{CH}^{auto}(\omega_{C} + \omega_{H}) + (1/8) \ J_{CH}^{auto}(\omega_{H} - \omega_{C}) + (3/8) \ J_{CH}^{auto}(\omega_{H}) \} + k_{HH} \{ (3/4) \ J_{HH}^{auto}(\omega_{H}) + (3/4) \ J_{HH}^{cross}(\omega_{H}) + (3/2) \ J_{HH}^{auto}(2\omega_{H}) \} + k_{csa} \ J_{csa}(\omega_{C}) + k_{HH}^{ext};$$
(S4.2)

where
$$k_{\rm HH}^{ext} = \left(\frac{3}{20}\right) \left(\frac{\mu_0}{4\pi}\right)^2 \sum_{ext} \frac{6\hbar^2 \gamma_{\rm H}^4 \tau_C}{r_{hhext}^6}$$
 (see main text).

The differences Δ between R_2/R_1 of the $(L_2 - L_3)$ and $(L_2 + L_3)$ modes (see also Eq. 2 of the main text) are described by,

$$\Delta R_2 = R_{2,(L2-L3)} - R_{2,(L2+L3)} = (8/3) k_{\rm HH}^{ext} - k_{\rm CH} \{ (1/3) J_{\rm CH}^{auto}(\omega_H) + (2/3) J_{\rm CH}^{cross}(\omega_H) \} \approx (8/3) k_{\rm HH}^{ext}$$
(S5.1)

and

$$\Delta R_{1} = R_{1,(L2-L3)} - R_{1,(L2+L3)} = (8/3) k_{\text{HH}}^{ext} + k_{\text{CH}} \{ (1/3) J_{\text{CH}}^{auto} (\omega_{H}) + (2/3) J_{\text{CH}}^{cross} (\omega_{H}) - (2/3) J_{\text{CH}}^{auto} (\omega_{C} + \omega_{H}) - (4/3) J_{\text{CH}}^{cross} (\omega_{C} + \omega_{H}) - (1/9) J_{\text{CH}}^{auto} (\omega_{H} - \omega_{C}) - (2/9) J_{\text{CH}}^{cross} (\omega_{H} - \omega_{C}) \} \approx (8/3) k_{\text{HH}}^{ext}$$
(S5.2)

Figure S1. Contour plots of R_2 (left column; s⁻¹) and R_1 (right column; s⁻¹) relaxation rates of ¹³C nuclei in ¹³CHD₂ methyl groups (upper row), the ($L_5 + L_6$) magnetization mode ($I = \frac{1}{2}$ manifold; middle row), and the ($L_1 + L_4$) magnetization mode (bottom row) calculated as a function of S^2_{axis} (*x*-axis) and τ_f (*y*-axis; ps) for the global correlation time $\tau_C = 5$ ns. Calculations were performed using the parameters of methyl geometry listed in 'Materials and Methods' section below. The rates of the ($L_1 + L_4$) mode were calculated assuming the distance to a single external proton spin, $r_{hhext} = 3.0$ Å.

Figure S2. Contour plots of R_2 (left column; s⁻¹) and R_1 (right column; s⁻¹) relaxation rates of ¹³C nuclei in ¹³CHD₂ methyl groups (upper row), and the ($L_5 + L_6$) magnetization mode (I = 1/2 manifold; bottom row), calculated as a function of S^2_{axis} (*x*-axis) and τ_f (*y*-axis; ps) for the global correlation time $\tau_C = 60$ ns. Calculations were performed using the parameters of methyl geometry listed in the 'Materials and Methods' section.

Figure S3. Plot showing the absolute magnitude of contributions of high frequency ($\omega > 0$) terms (in %; *y*-axis) to the differences Δ for R_2 (black curve, Eq. S5.1) and R_1 (red curve, Eq. S5.2) relaxation rates, plotted as a function of the distance to a single external ¹H spin (r_{hhext} , in Å; *y*-axis) for ubiquitin at 25 °C ($\tau_C = 5$ ns). Calculations were performed using a standard set of average methyl axis dynamics parameters: $S^2_{axis} = 0.6$, and $\tau_f = 40$ ps; the form of the spectral density function is given by Eq. S1; the parameters of methyl geometry are listed in the 'Materials and Methods' section of the SI; and the ¹H spectrometer frequency is 600 MHz. Approximate distances to the external ¹H spin corresponding to the average (2.1 s⁻¹) and minimal (0.9 s⁻¹) values of Δ measured for ubiquitin at 25 °C ($r_{hhext} = 2.8$ Å and 3.3 Å, respectively) are indicated by dashed vertical lines. Note that smaller contributions of high-frequency terms to Δ for R_2/R_1 rates are expected at lower temperatures (higher τ_C values).

Optimization of flip-angles in the pulse schemes of Figures 5 and 6.

The density matrix describing the state of the magnetization in a ¹³CH₃ spin-system can be represented as a tensor product, $C \otimes \rho$, where $C \in \{C_x, C_y, C_z, E\}$, C_l is a ¹³C spin operator, E is the 2x2 identity matrix, and ρ describes the state of ¹H magnetization. The latter is constructed from a basis set of 8 ¹H eigenstates $|n\rangle$ formed by linear combinations of $|i_jj_k\rangle (i_jj_k) \in \{\alpha,\beta\}$ (see Fig. 1; main text). Further, the density matrix ρ and ¹H RF pulse operators can be separated into two parts corresponding to the I = 3/2 ($\rho^{3/2}$) and I = 1/2 ($\rho^{1/2}$) manifolds, as they evolve independently of each other under the effect of RF field. Here, we concentrate on the transformations of the matrix $\rho^{3/2}$, as $\rho^{1/2}$ is 'taken out of the picture' by selection of the fast relaxing (outer) ¹H transitions at the start of the schemes in Figs. 5 and 6, keeping in mind that the state of the full (8x8) density matrix describing the magnetization of the I = 3/2 manifold, can be obtained by the tensor product above.

The scheme for isolation of the $(L_1 \pm L_4)$ magnetization mode in Fig. 5 (main text). Following isolation of the fast-relaxing (outer) ¹H transitions (prior to the ¹H_y pulse with flip-angle β shown in blue in Fig. 5), the density matrix is given by,

$$\rho_{\rm F}^{3/2} = \begin{bmatrix} 0 & \sqrt{3}/2 & 0 & 0 \\ \sqrt{3}/2 & 0 & 0 & 0 \\ 0 & 0 & \sqrt{3}/2 \\ 0 & 0 & \sqrt{3}/2 & 0 \end{bmatrix}$$
(S6)

Using the procedures of analytical matrix exponentiation described previously,⁵ we can express the density matrix after the ¹H_y pulse with flip-angle β and the subsequent pulsed field gradient (g'; Fig. 5) as,

$$\rho^{3/2}(\beta) = \frac{1}{4} \begin{bmatrix} -3\sin\beta(\cos^2\beta + 1) & 0 & 0 & 0\\ 0 & 3\sin\beta(3\cos^2\beta - 1) & 0 & 0\\ 0 & 0 & -3\sin\beta(3\cos^2\beta - 1) & 0\\ 0 & 0 & 0 & 3\sin\beta(\cos^2\beta + 1) \end{bmatrix}$$
(S7)

where only diagonal elements are retained after the pulsed field gradient. Clearly, when $\beta = \cos^{-1}(1/\sqrt{3}) = 54.7^{\circ}$ ('magic' angle), only the outer ¹H states (elements [1,1] and [4,4] of the matrix in Eq. S7) are polarized.

The scheme for isolation of the $(L_2 \pm L_3)$ magnetization mode in Fig. 6 (main text). Following the pulsed-field gradient g10 in the scheme of Fig. 6 (prior to the ¹H_y pulse with flip-angle γ shown in red), the signal can be described to within a multiplicative factor by a density matrix given by,

$$\rho_{\rm S}^{3/2} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
(S8)

After the application of the ${}^{1}\text{H}_{y}$ pulse with flip-angle γ and the cycling of its phase (ϕ 6) with concomitant inversion of the receiver phase, the density matrix takes the form,

$$\rho^{3/2}(\gamma) = \frac{1}{4} \begin{bmatrix} 0 & -\sqrt{3}\sin\gamma(3\cos^2\gamma - 1) & 0 & -\sin^3\gamma \\ -\sqrt{3}\sin\gamma(3\cos^2\gamma - 1) & 0 & \sin\gamma(8 - 9\sin^2\gamma) & 0 \\ 0 & \sin\gamma(8 - 9\sin^2\gamma) & 0 & -\sqrt{3}\sin\gamma(3\cos^2\gamma - 1) \\ -\sin^3\gamma & 0 & -\sqrt{3}\sin\gamma(3\cos^2\gamma - 1) & 0 \end{bmatrix}$$
(S9)

We seek to maximize the slow-relaxing part of the magnetization (elements [2,3] and [3,2] of the matrix in Eq. S9) in the rest of the experiment (t_1 and t_2 acquisition periods). Differentiating these elements with respect to γ , yields the optimal value, $\gamma_{opt} = \sin^{-1}(\sqrt{8/27}) = 32.98^{\circ}$. Note that the fast relaxing ¹H magnetization (elements [1,2], [2,1] and [3,4], [4,3] of the matrix in Eq. S9) has to be eliminated subsequently, as for $\gamma = \gamma_{opt}$, this magnetization would generate a signal of opposite sign (that would partially cancel the signal of interest).

Materials and Methods

NMR Samples. Two samples of ubiquitin were used in this work: 1) a $\{U-[^{15}N,^{2}H]$; $Ile\delta1-[^{13}CH_3]$; Leu, Val- $[^{13}CH_3, ^{12}CD_3]\}$ -labeled, and 2) a $\{U-[^{15}N,^{2}H]$; $Ile\delta1-[^{13}CHD_2]$; Leu, Val- $[^{13}CHD_2, ^{12}CD_3]\}$ -labeled one. The samples were expressed and purified as described previously⁶ using appropriate α -keto-acid precursors for generation of methyl isotopomers of $^{13}CH_3$ or $^{13}CHD_2$ variety.⁷ In both samples, the concentration of ubiquitin was 1.3 mM in a buffer comprising 99.9% D₂O, 20 mM sodium phosphate, pH 6.5 (uncorrected), and 50 mM NaCl. The samples of $\{U-[^{15}N,^{2}H]$; $Ile\delta1-[^{13}CH_3]\}$ -labeled and $\{U-[^{15}N,^{2}H]$; $Ile\delta1-[^{13}CHD_2]\}$ -labeled Malate Synthase G (MSG) were expressed and purified as described previously.^{8,9} Both MSG samples were dissolved in a buffer comprising 99.9% D₂O, 25 mM sodium phosphate (pH 7.0; uncorrected) and 5 mM MgCl₂.

The concentration of the {U-[¹⁵N,²H]; Ile δ 1-[¹³CHD₂]}-labeled MSG sample was 0.5 mM, while the {U-[¹⁵N,²H]; Ile δ 1-[¹³CH₃]}-labeled MSG was studied at two concentrations - 0.5 mM and 1.1 mM. Using a procedure described in detail previously,^{9,10} we established the values of global rotational correlation time τ_C (assumed isotropic in this study) of 46 ns and 64 ns for the 0.5 mM and 1.1 mM, samples, respectively, reflecting a notable viscosity (and hence τ_C) dependence of MSG samples on protein concentration.^{9,10} Practically identical correlations between the ¹³CH₃- and ¹³CHD₂-derived methyl axis dynamics parameters [S^2_{axis} ; τ_f] were obtained for the two sample concentrations. Figure 4 of the main text shows the correlations obtained for a 0.5 mM sample.

NMR Spectroscopy. All spectra were recorded on a 600 MHz, AVANCE HD Bruker spectrometer equipped with a triple-axis (x, y, z) gradient cryogenic probe and were processed and analyzed using the NMRPipe/NMRDraw suite of programs and associated software.¹¹ Each of the data sets acquired with the pulse-schemes in Figs. 2, 5 and 6 comprised [96, 512] complex points in [$^{13}C(t_1)$, $^{1}H(t_2)$] dimensions translating to acquisition times of [32 ms, 64 ms] and [64 ms, 64 ms] for ILV-{ $^{13}CH_3$ }-labeled ubiquitin (at both temperatures) and Ile δ 1-{ $^{13}CH_3$ }-labeled MSG, respectively. Typically, 16 and 32 scans per FID were used for ubiquitin and MSG samples, respectively, with inter-scan relaxation delay of 1.5 sec. leading to net acquisition times of ~1.4 and ~2.9 hr. per 2D spectrum for the two proteins, respectively (note that experiments in Figs. 5 and 6 were not acquired for MSG). In all experiments, 2D data sets were recorded as a function of a parametrically varied relaxation delay, *T*. The following sets of delays *T* used for relaxation measurements of ¹³C magnetization modes in ILV-{ $^{13}CH_3$ }-ubiquitin, ($L_5 + L_6$) $R_{1\rho}$: (0,2, 40, 80, 120, 160, 200) ms, and (0, 2, 25, 50, 75, 100, 120) ms at 25 and 5 °C, respectively; ($L_5 + L_6$) R_1 : (0, 60, 120, 180, 240, 300) ms, and (0, 50, 100, 150, 200, 250) ms at 25 and 5 °C, respectively; ($L_1 \pm L_4$)

 R_2 ('free-precession'): (0, 12, 24, 36, 48, 60) ms, and (0, 6, 12, 18, 24, 30) ms at 25 and 5 °C, respectively; ($L_1 + L_4$) R_1 : (0, 40, 80, 120, 160, 200) ms at both temperatures; ($L_2 + L_3$) $R_{1\rho}$: (0.1, 40, 80, 120, 160, 200) ms, and (0.1, 20, 40, 60, 80, 100) ms at 25 and 5 °C, respectively; ($L_2 + L_3$) R_1 : (0, 40, 80, 120, 160, 200) ms, and (0, 30, 60, 90, 120, 150) ms at 25 and 5 °C, respectively; ($L_2 - L_3$) $R_{1\rho}$: (0.1, 20, 40, 60, 80, 100) ms, and (0.1, 10, 20, 30, 40, 50) ms at 25 and 5 °C, respectively; and ($L_2 - L_3$) R_1 : (0, 30, 60, 90, 120, 150) ms, and (0, 15, 30, 45, 60, 75) ms at 25 and 5 °C, respectively. Delays *T* used in the measurements of ($L_5 + L_6$) $R_{1\rho}$ and R_1 in Ile δ 1-{¹³CH₃}-MSG (37 °C) were (0.2, 15, 30, 45, 60, 80) ms, and (0, 0.2, 0.4, 0.6, 0.8, 1.0) sec, respectively.

It is worth noting that experiments designed for relaxation measurements of the ¹³C magnetization modes belonging to the I = 3/2 manifold (Figs. 5 and 6) are very sensitive to imperfections of the ¹H 180° pulses applied during relaxation delays *T* in order to eliminate contributions of methyl-¹³C CSA/¹³C-¹H dipolar cross correlated relaxation to the measured rates. Even slight deviations of these pulses from ideality can inter-convert the ¹³C magnetization modes of the I = 3/2 manifold. Therefore, extreme care has to be exercised in optimization of these pulses and their phase-cycling as described in the captions to Figs. 5 and 6 of the main text. Simulations show that anti-phase ¹³C magnetization modes (such as, for example, $L_2 - L_3$) are by far more sensitive to these imperfections. In this regard, we note that relaxation decays obtained in the measurements of the ($L_2 - L_3$) and ($L_1 \pm L_4$) modes performed *without* application of ¹H 180° pulses during delays *T* altogether, can be fitted to a function *A*exp(-*RT*)cosh(ηT), where *R* is the corresponding relaxation rate and η , the cross-correlated relaxation rate, providing results very similar to those reported in the main text.

The measurements of 13 C R_2/R_1 relaxation rates in 13 CHD₂-methyl-labeled samples were performed as described previously⁹ (see Figure S1 in SI of ref. 9 for the pulse-scheme). Each of the data sets acquired on [13 CHD₂]-labeled samples comprised [96, 512] complex points in [13 C(t_1), 1 H(t_2)] dimensions translating to acquisition times of [32 ms, 64 ms] and [64 ms, 64 ms] for ILV-{ 13 CHD₂}-labeled ubiquitin (at both temperatures) and Ile δ 1-{ 13 CHD₂}-labeled MSG, respectively. Typically, 16 and 32 scans per FID were used for { 13 CHD₂}-labeled samples of ubiquitin and MSG, respectively, with inter-scan relaxation delay of 2.5 sec leading to net acquisition times of \sim 2.2 and \sim 4.5 hr. (for T = 0) for the two samples, respectively. 13 C $R_{1\rho}$ rates in 13 CHD₂ methyls of ubiquitin were measured using relaxation delays T of (4, 50, 100, 150, 200, 250, 300) ms and (4, 40, 80, 120, 160, 200, 240) ms at 25 and 5 °C, respectively, while the delays T of (0.04, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2) sec and (0.04, 0.15, 0.3, 0.45, 0.6, 0.8, 1.0) sec were used for R_1 measurements at 25 and 5 °C, respectively. 13 C $R_{1\rho}$ and R_1 rates in 13 CHD₂ groups of MSG were measured using relaxation delays T of (0.2, 10, 20, 30, 40, 50, 60) ms and (0.04, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0) sec, respectively.

All ¹³C $R_{1\rho}$ measurements (for methyl isotopomers of both types) employed 2.0-kHz spin-lock fields. Errors in relaxation rates were estimated on the basis of the noise floor of the data sets. Average ¹³C R_2 rates of 2.25 and 4.54 s⁻¹ were obtained for ILV-{¹³CHD₂}-labeled methyls of ubiquitin at 25 and 5 °C, respectively, while the corresponding average R_1 values of 0.75 and 0.96 s⁻¹ were obtained, respectively. Average ¹³C R_2 and R_1 rates of 14.3 and 0.29 s⁻¹, respectively, were obtained for Ile δ 1-{¹³CHD₂} methyls of MSG, practically identical to the rates reported earlier.⁹

Data Analysis. Relaxation rates were extracted from fits of peak intensities to a single-exponential decay function, $A\exp(-RT)$, where *R* is the corresponding relaxation rate. R_2 values were calculated from $R_{1\rho}$ rates using the relationship, $R_2 = (R_{1\rho} - R_1 \cos^2 \lambda)/\sin^2 \lambda$, where λ is the angle subtended by the direction of the effective spin-lock RF field with respect to the *z*-axis of the laboratory frame. In all calculations, $\theta_{axis,HH} = 90^\circ$, $\theta_{axis,CH} = 110.4^\circ$, and $r_{CH} = r_{CD} = 1.117$ Å were used for intra-methyl interactions, 12,13 , along with $r_{HH} = \sqrt{3}\sin(\theta_{axis,CH})r_{CH} = 1.813$ Å, as in the previous studies of methyl axis dynamics by ¹H relaxation.¹⁴ Methyl ¹³C CSA (Δ_C) values of 25 ppm and 18 ppm was used for Leu/Val and Ile methyls, respectively.¹⁵

Eqs. S3-S4 were used in all calculations of relaxation rates for extraction of methyl axis dynamics parameters in this work, while Eqs. S5 form the basis for corrections applied to R_2/R_1 relaxation rates of the $(L_1 \pm L_4)$ magnetization modes (see main text). Analysis of ¹³C R_2/R_1 relaxation in ¹³CHD₂ methyl isotopomers closely followed that described previously⁹ (see SI of ref. 9 for expressions describing R_2 and R_1 relaxation rates in ¹³CHD₂ methyls). Random errors in S^2_{axis} and τ_f values were estimated on the basis of 300 Monte-Carlo simulations,¹⁶ and were on average 1.1 and 1.7 % for ¹³CH₃-derived S^2_{axis} in ubiquitin at 25 and 5 °C, respectively, while the corresponding errors for ¹³CHD₂-derived S^2_{axis} were 0.5 and 0.8 %, respectively. Random errors for ¹³CH₃-derived and ¹³CHD₂-derived S^2_{axis} in MSG (37 °C) were on average 2.5 and 1.8 %, respectively.

Supplementary References

- 1. Lipari, G.; Szabo, A. Model-Free Approach to the Interpretation of Nuclear Magnetic Relaxation in Macromolecules: 1. Theory and Range of Validity. *J. Am. Chem. Soc.* **1982**, *104*, 4546-4559.
- Lipari, G.; Szabo, A. Model-Free Approach to the Interpretation of Nuclear Magnetic Relaxation in Macromolecules: 2. Analysis of Experimental Results. J. Am. Chem. Soc. 1982, 104, 4559-4570.
- Skrynnikov, N. R.; Millet, O.; Kay, L. E. Deuterium Spin Probes of Side-Chain Dynamics in Proteins. 2. Spectral Density Mapping and Identification of Nanosecond Time-Scale Side-Chain Motions. J. Am. Chem. Soc. 2002, 124, 6449-6460.
- 4. Kay, L. E.; Bull, T. E. Heteronuclear Transverse Relaxation in AMX, AX₂, and AX₃ Spin Systems. *J. Magn. Reson.* **1992**, *99*, 615-622.
- Tugarinov, V.; Karamanos, T. K.; Ceccon, A.; Clore, G. M. Optimized NMR Experiments for the Isolation of I=1/2 Manifold Transitions in Methyl Groups of Proteins. *Chemphyschem* 2020, *21*, 13-19.
- Ceccon, A.; Tugarinov, V.; Bax, A.; Clore, G. M. Global Dynamics and Exchange Kinetics of a Protein on the Surface of Nanoparticles Revealed by Relaxation-Based Solution NMR Spectroscopy. J. Am. Chem. Soc. 2016, 138, 5789-5792.
- 7. Tugarinov, V.; Kanelis, V.; Kay, L. E. Isotope Labeling Strategies for the Study of High-Molecular-Weight Proteins by Solution NMR Spectroscopy. *Nat. Protoc.* **2006**, *1*, 749-754.
- Tugarinov, V.; Muhandiram, R.; Ayed, A.; Kay, L. E. Four-Dimensional NMR Spectroscopy of a 723-Residue Protein: Chemical Shift Assignments and Secondary Structure of Malate Synthase G. J. Am. Chem. Soc. 2002, 124, 10025-10035.
- Tugarinov, V.; Kay, L. E. Quantitative 13C and 2H NMR Relaxation Studies of the 723-Residue Enzyme Malate Synthase G Reveal a Dynamic Binding Interface. *Biochemistry* 2005, 44, 15970-15977.
- Tugarinov, V.; Ollerenshaw, J. E.; Kay, L. E. Probing Side-Chain Dynamics in High Molecular Weight Proteins by Deuterium NMR Spin Relaxation: An Application to an 82-Kda Enzyme. *J. Am. Chem. Soc.* 2005, *127*, 8214-8225.
- Delaglio, F.; Grzesiek, S.; Vuister, G. W.; Zhu, G.; Pfeifer, J.; Bax, A. Nmrpipe: A Multidimensional Spectral Processing System Based on Unix Pipes. J. Biomol. NMR 1995, 6, 277-293.

- 12. Ishima, R.; Petkova, A. P.; Louis, J. M.; Torchia, D. A. Comparison of Methyl Rotation Axis Order Parameters Derived from Model-Free Analyses of 2H and 13C Longitudinal and Transverse Relaxation Rates Measured in the Same. *J. Am. Chem. Soc.* **2001**, *123*, 6164-6171.
- 13. Ottiger, M.; Bax, A. How Tetrahedral Are Methyl Groups in Proteins? A Liquid Crystal NMR Study. J. Am. Chem. Soc. 1999, 121, 4690-4695.
- Tugarinov, V.; Kay, L. E. Relaxation Rates of Degenerate 1H Transitions in Methyl Groups of Proteins as Reporters of Side-Chain Dynamics. J. Am. Chem. Soc. 2006, 128, 7299-7308.
- 15. Tugarinov, V.; Scheurer, C.; Brüschweiler, R.; Kay, L. E. Estimates of Methyl 13C and 1H CSA Values in Proteins from Cross-Correlated Spin Relaxation. *J. Biomol. NMR* **2004**, *30*, 397-406.
- Kamith, U.; Shriver, J. W. Characterization of the Thermotropic State Changes in Myosin Subfragment-1 and Heavy Meromyosin by UV Difference Spectroscopy. J. Biol. Chem. 1989, 264, 5586-5592.