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Basic DCM forces

In this section the force contributions acting on a cell within the deformable cell model
(DCM) are summarized.

Elastic forces cortex

The cell surface in the DCM is triangulated with visco-elastic elements along the edges
linking neighbouring nodes. The forces between the nodes mimic the cortical tensions.
The membrane envelope is assumed to not significantly contribute to these forces as the
presence of caveolae can significantly reduce its mechanical resistance [1]. We assume
that cell deformation dynamics can be reasonably approximated by Kelvin-Voigt
elements. The internal force Fint originating from a Kelvin-Voigt viscoelastic element
between node nodes i and j reads:

Fint,ij = Fe,ij − γvij
= −ks(lij − l0ij)eij − γvij ,

(1)

where γ denotes the friction coefficient, l0ij = ||r0ij || = ||r0j − r0i || and lij = ||rij || are
the initial (cell at rest) and actual lengths between the nodes, and vij = vj − vi is the
relative velocity of nodes i, j. The force balance equation with external forces Fext
demands that Fext + Fint = 0, hence:

Fext,ij − ks(lij − l0ij)eij − γvij = 0. (2)

The linear spring constant for a sixfold symmetric triangulated lattice can be related
approximately to the cortex Young modulus Ecor with thickness hcor by [2]

ks ≈
2√
3
Ecorhcor. (3)

Besides tension, the cortex resists to bending. The bending resistance in the cortex
is incorporated by the angular resistance of the hinges determined by two adjacent
triangles T1 = {ijk} and T2 = {ijl}. This can be accounted for by the bending moment
M :

M = kbsin(θ − θ0) (4)

where kb is the bending constant, and θ is is the angle between the normal vectors to
the triangles nα,nβ by their scalar product (nαnβ) = cos(θ). θ0 is the angle of
spontaneous curvature. A spontaneous curvature denotes the curvature for which the
bending energy is zero.

The moment M can be transformed to an equivalent force system Fm,z (z ∈ {ijl})
for the triangles T1 and T2 where here for T1 we can compute Fm,i = M/l1n1 using l1
as the distance between the hinge of the triangle pair and the point i, and similar
expression for Fm,l. The forces working on nodes j, k must at least fulfill
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Fm,i + Fm,j + Fm,k + Fm,l = 0 to conserve total momentum, see e.g. [3, 4]. The
bending stiffness of the cortex is approximated by

kb ≈
Ecorh

3
cor

12(1− ν2)
, (5)

where ν ≈ 0.5 is the Poisson’s ratio of the cortex. Note that the elastic modulus of the
cortex, Ecor enters both, the bending force and the tension force.

Volume forces

The volume change of the cell depends on the applied pressure and the cell bulk
modulus KV . The total compressibility of the cell depends on volume fraction of water
in the cytosol, the cytoskeleton (CSK) volume fraction and structure, and the
compressibility of the individual organelles. In addition, it may be influenced by the
permeability of the plasma membrane for water, the presence of caveolae, and active
responses inside and of the cell. We calculate the internal pressure in a cell by the
logarithmic strain for volume change:

p = −KV log(
V

V0
), (6)

whereby V is the actual volume and V0 is the reference volume i.e., the volume of the
cell not subject to compression forces. For small deviations of V from V0,
p ≈ KV (V − V0)/V0. Within our model the volume V of the cell is computed summing
up the volumes of the individual tetrahedra that build up the cell. The nodal force is
obtained by multiplying the pressure with the nodal Voronoi area Si (see [5]), i.e.
Fvol,i = pSiRi where the local curvature vector Ri is computed for that node using a
discrete Laplace-Beltrami operator [7].

Contact model and adhesive forces

Whereas in a CBM, cells interact through central forces described by (modified) Hertz
or JKR theory for adhesive spheres, in DCM the interaction forces need to be defined
for each node individually, thereby requiring a representation of local surface
heterogeneities. The approach followed in this work adopts a discretised
Maugis-Dugdale theory. The Maugis-Dugdale theory for adhering bodies is a
generalization of the JKR theory for spheres [6]. This theory captures the full range
between the Derjaguin-Muller-Toporov (DMT) zone of long reaching adhesive forces of
a hard homogeneous isotropic elastic sphere and small adhesive deformations in the
Johnson-Kendall-Roberts (JKR)-limit of a soft homogeneous isotropic elastic sphere of
short interaction ranges. Here, we associate to each triangle of the cell surface a
circumscribing sphere reflecting the local curvature. Two triangles belonging to different
cells can locally interact by collision of their associated spheres. To compute the
magnitude of these interactions with respect to the nodes of the triangles, we use the
general Maugis-Dugdale stress, which is integrated over the common contact area
between the triangles, resulting in the net forces on the nodes of the two interacting
triangles (see [3, 7] for more details). The adhesion force is fully determined by the
specific adhesion energy W and the typical effective adhesive range h0 that reflects the
attractive cutoff distance between the bodies. We set h0 = 2 · 10−8m in all the
simulations [8].

In our model, Maugis-Dugdale theory is applied to every set of triangles which
constitute the cell surface. A varying number of cadherin bonds is mimicked by varying
the adhesion energy along the cell surface triangles.
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Migration forces

In models in which cell movement and deformation is mimicked by force-balance
equations following Newton’s law of motion as this is the case for the DCM and CBM,
migration is usually modelled by an active migration force Fmig representing the
random micro-motility of a cell. For the sake of simplicity the cell shape, filopodia etc.
movements during migration are not detailed in the model but instead the different
mechanisms in cell migration is lumped into one net force which is uniformly distributed
to the nodes the cell if not mentioned otherwise. For specific applications, the forces
might be non-uniformly distributed. In absence of influences that impose a certain
direction or persistence, it is commonly assumed that the migration force is stochastic,
formally resulting in Fmig = Fran, with 〈Fran〉 = 0, and
〈Fran(t)⊗Fran(t′)〉 = Mδ(t− t′), where M is an amplitude 3× 3 matrix and relates to
the diffusion tensor D of the cell. As cell migration is active, depending on the local
matrix density and orientation of matrix fibers, the autocorrelation amplitude matrix
M cannot a priori be assumed to follow a fluctuation-dissipation (FD) theorem.
However, “measuring” the position of a cell in the simulations the position
autocorrelation function might be experimentally used to determine the diffusion tensor
using 〈((r(t+ τ)− r(t))⊗ (r(t+ τ)− r(t))〉 = 6Dτ , and M be calibrated such that the
numerical solution of the equation of motion for the cell position reproduces the
experimental result for the position-autocorrelation function. For example, in a
homogeneous environment M can be casted into a form formally equivalent to the
FD-theorem, leading to an kBT -equivalent for cellular systems, that is controlled by the
cell itself [9, 10].

Note, we assume here a momentum transfer to the ECM by applying the ECM
friction and active micro-motility term, but we do not model the ECM explicitly.

Cell cycle and cell division

During cytokinesis, the continuous shrinking of the contractile ring, together with the
separation of the mitotic spindle, gradually divides the mother cell into two daughter
cells. After mitosis the cell has split up in two adhering cells. Such a process of cell
division in 2D deformable cells has been previously described (e.g. [11]) but it can be
costly and tedious to perform in 3D.

As we are merely interested in long term effects (i.e. hundreds of cell divisions), and
as the cytokinesis is a short process compared to the duration of the entire cell cycle, we
avoid these particular tedious intermediate steps in our model, and directly create two
new adhering cells that are within the shape of the mother cells just before its division
using the basic algorithm established in ref. [12].

In our algorithm, the two created daughter cells are initially round and separated
from each other by the division plane. They grow artificially fast 1 until they reach the
boundary of the mother envelope. The division plane is removed from the system after
the daughter cells have found a mechanical equilibrium in this envelope. We have here
slightly extended our algorithm to mimic the very short rounding-up period just before
division (see Fig 2G in main text). This is achieved by setting the equilibrium edge
lengths (see below) of the triangulation temporarily to a smaller value. This can cause a
slight increased pressure in the cell during division.

In the simulations, cells grow by increasing their volume and surface and they can
divide when their actual volume reaches a target volume. This target volume is
predefined and is for a newborn cell by default set to twice the volume of that newborn
cell. The orientation of cell division can be chosen randomly (as would be the case for
non polarized hepatocytes) or with a preferred direction. The latter is the case when a

1We call this a ”sub-simulation” period, for which the time compared to the cell cycle is negligible.
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polarized cell divides. In this case the division direction is the polarization vector. As
observed experimentally, we also implement a temporary and short rounding up period
just before cells division. This has a consequence that the cell volume slightly drops and
hence the pressure inside the cell increases, causing a rounding of the surface. The
shortening of the vertex edges is chosen such that this pressure increase is not more than
100 to 200 Pa, achieved by modifying the lengths from l0 to 0.95 ∗ l0. The rounding up
period in our model does not take more than 5% of the total cell cycle time.

The cells in our system can either be proliferating or quiescent. Immediately after
cell division, all cells are assumed to proliferate. A change to quiescence is here assumed
to be induced by chemical signals of other cells. To ensure in the simulations that only
the fraction of the cells is growing conform with the experimental observations, an
algorithm is invoked that sweeps every time step over a certain cell type and ensures
that the prescribed fraction of proliferating cells is maintained. The picking of cells that
need to go to quiescence is done randomly. This algorithm was chosen as the mechanistic
control of how many cells divide was not subject of the present simulation study.

DCM extension: Polarity vector

A normalized polarity vector ~P (PCP) is assigned to each of the cells. This vector
defines for every cell two opposite conical polar regions (see Fig 2A in main text ). The
triangular regions on the cell surface that are marked as polar are defined by the scalar
product condition:

‖~P · ~Ni‖ < a, (7)

where Ni is a normalized vector with origin the center of mass of the cell, and
pointing to the middle of triangle i. The area of the polar region a can be chosen
according to 0 < a < 1. We chose in the simulations of this work a = 0.7. This
corresponds to a bi-conical area with angle α of approximately 60 degrees. The polar
regions (triangles) may have different physical properties than the rest of the cell
surface, such as a different specific adhesion energy. The PCP vector is assumed to be
perpendicular to the apico-basal vector, which is enforced in the model with every
timestep. (We note here that in our planar simulations neither the PCP or ABP have a
Z component.)

DCM extensions : apical vector, apical constriction and tight
junctions

Every cell also has an apical vector ~A (ABP), which defines the apical and basal side of
the cell. Similar to the polar regions, the apical and basal triangular regions on the cell
surface are defined by the conditions:

~A · ~Ni > b (apical region) (8)

and
~A · ~Ni < −b (basal region) (9)

Like for the polar vector, this corresponds to a conical area with angle β and the
scalar value of b ∈ [0, 1] determines the area of the regions, however the difference is
that the apical side of the cell may have different physical properties than the basal side.
In this work the cortical cytoskeleton on the apical side can contract, causing apical
constriction.

In the model, the apical vector is assumed every time step to point towards the
principal region where the cell surface has the most free area, in line with the
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assumption made that the apical side forms the cell’s interface with the lumen. Because
for every triangle of a cell the free area and contact area is known after applying the
contact model, the principal vector ~A can obtained by

~A =
∑
i

~Ni/‖
∑
i

~Ni‖. (10)

Here the summation only counts triangles that have a very small contact area with a
triangle from another cell. These conditions can for example be fulfilled when gaps
between cells are created due to osmotic effects (e.g. onset of a small cavity). ~A is
updated every timestep, except during cell division and a short relaxation phase right
after cell division.

Adherent cells can also develop tight junctions (TJ) between them. In the model, we
define for every cell that has an apical vector, a region with TJ triangles i that fulfill
the condition :

~A · ~Ni > c1 and ~A · ~Ni < c2 (11)

Here c1 and c2 are the limit values that define a conical ribbon along the cell where
TJ can be present (see Fig 2D in main text). The parameter values for c1 and c2 are
chosen such that the ribbon is about 1 or maximum at 2 triangles thick. As TJs denote
areas on the cell surface with a reinforced connection, a larger specific adhesion energy
is assigned to these areas than to the other surface areas. As such, when two triangles
of different cells with a TJ come into contact, the force necessary to separate them will
be much higher than for normal cell-cell contacts.

The apical constriction on the apical side is modeled as a shortening of the
equilibrium element lengths between connected nodes that are located within the apical
region (see below). This results in a movement of the two nodes towards each other.
The shortening operation is executed only once. After a certain relaxation time a new
force equilibrium is reached between the nodes. The modification of the equilibrium
element lengths of the nodal springs during apical constriction are computed assuming
two different zones:

l0 := l0 ∗ d2 for: ~A · ~Ni > c2 and ~A · ~Ni < c1, (12)

which is the zone of the tight junctions, and

l0 := l0 ∗ d1 for: ~A · ~Ni > c1. (13)

in the apical domain.
To simulate the presence of an apical circumferential ring, the strongest constriction

is applied in the zone of the TJ ribbon, whereas a lower constriction is applied in the
apical domain (0 < d2 < d1 < 1). We have adopted the values d2 = 0.5 and d1 = 0.7.
This warrants a strong contraction2. Moreover, the adhesive energy on the apical side is
assumed to be lower than elsewhere on the cell because generally one observes that
cadherin staining is less strong there (see Fig A1B).

DCM extensions : Osmotic effects and signalling

We assume that osmotic forces in the system result from differences of solutes e.g by
molecules such as salts that are released from the cell into the extracellular space.
These molecules further diffuse locally and cause a concentration gradient with more

2The volume forces then stretch the basal side to balance the contraction of the apical side. An
elongation of the lateral springs maybe envisaged to ensure that the cellular pressure maintains its
original value.
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Figure A1. Cartoon indicating the parameters needed to determine the apical
domain and apical circumferential ring.

distant locations. For example, if one cell starts to excrete ions, a salt concentration
gradient is generated attracting water molecules towards the cell potentially causing a
hydrostatic pressure increase strong enough to push away cells in the direct
neighborhood of the central cell. As a consequence an extracellular space can arise,
depending in shape and size on the dynamics and mechanics of the surrounding cells.
One way to simulate the diffusion process of salts and flow of water could be to solve a
system of partial differential equations (PDEs) for diffusive transport of salt and the
advection of water. As the surrounding cells reorganise during the lumen formation
process and hence the shape of the extracellular space changes, the boundary conditions
for the PDEs change constantly. The constant change requires high resolution meshing
and constant re-meshing of the complex cavity, which is numerically complicated and
computationally time consuming. To alleviate this, inspired by smoothed particle
hydrodynamics methods [13], we introduce the concept of “tracer particles (TP)”, which
are small ”inert” particles. They can diffuse freely inside the cell or in the extracellular
space without mutual interaction (see Fig 2F in main text). All the tracer particles (we
used about 500 in numbers per cell) are initially inside the cell and start diffusing from
there. The advantage of using particles to mimic the fluid is that their motion can be
simulated by a Newton’s equation of motion as for the cells, hence the coupling of fluid
movement and cell deformation is straightforward.

The force on each particle originates principally from Brownian motion as and its
magnitude is controlled by the TP diffusion coefficient. Additionally, a small force
component is exerted to them in the apical direction to facilitate their movement
towards the apical side which can be justified by directional vesicle transport towards
lumen in polarized cells [14].

To ensure that the TP can leave the cell only through a certain region, we define a
“transparent” region for each cell surface through which these particles can move into
the extracellular space. The transparent region is equal to the apical side of the cells. In
other parts of the cell, the particles cannot move across the cell surface. The particles
can thus locally cross the cell boundary when moving from inside to outside, but are
always repelled when trying to move back from the outside to the inside of the cell.
These particles do not represent individual ions but rather each population of ions
approximately obtained by integrating the spatial density of ions over local space
regions. Nevertheless, to ensure diffusion constant is similar to that of the ions, the
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particles are assigned with the diffusion coefficient of the ion species.
In the extracellular space a tracer particles marks a triangle if it is in close proximity

of that triangle representing a free cell surface piece, not in full contact with another
cell. As there are many TP present, all free surface areas of a cell will progressively
become marked. To simulate the resulting hydrostatic pressure on that cell, each
marked triangle receives an external force ~Fosm = PAi~ni, where P is the assumed
hydrostatic pressure that corresponds to the osmotic pressure generated by the
difference in ion concentration (assumed constant here), and Ai is the surface of the
marked triangle with local normal ~ni. Triangles belonging to two different cells that are
in contact with each other have a negligible probability to be marked as the particles
cannot access the space between them.

CBM forces

The CBM does not resolve cell shape explicitly. Forces are in the CBM are assumed to
be exerted on the center of mass of the cell.

Adhesive and repulsive forces

In the CBM, cells are approximated by homogeneous, isotropic, elastic and adhesive
spheres which split into two adherent cells during mitosis. Under conditions met in this
work [16,17], the total cell to cell interaction force can be approximated by the JKR
force. The interaction force is computed by

Fcc, ij =
4Ê

3R̂
[a(δij)]

3 −
√

8πσÊ [a(δij)]
3
. (14)

The contact radius a in Eq. 14 if a function of the overlap δij = ||~rj − ~ri|| −Ri −Rj
between the cell, allows to compute the cell-cell contact area, and can be obtained from:

δij =
a2

R̂
−
√

2πσ

Ê
a. (15)

In the latter equations, Ê and R̂ are defined as

Ê =

(
1− ν2i
Ei

+
1− ν2j
Ej

)−1
and R̂ =

(
1

Ri
+

1

Rj

)−1
,

with Ei and Ej being the cell Young’s moduli, νi and νj the Poisson numbers and Ri
and Rj the radii of the cells i and j, respectively.

To enforce consistency with the by construction more accurate DCM that explicitly
accounts for multi-body interactions, the Young modulus for every cell Ei in the JKR
model was replaced by an ”apparent” Young’s modulus Ẽi that increases as function of
the local cell density [12]:

Ẽi = Ei + a0d̃i + a1d̃
2
i + a3d̃

3
i + a4d̃

4
i

Here, d̃i =< 1− ||~rj − ~ri||/(Rref,i +Rref,j) > is the dimensionless average cell-cell
distance. The parameters ai can be determined in a calibration experiment, where one
compresses a spheroid and measures the force between the cells [1, 12].

Because the CBM and the DCM are used in hybrid mode, they can make contact
with each other. Using the Maugis-Dugdale formulation this can be solved in a natural
way. The contact between a CBM and a triangle of the DCM is resolved using the
triangle-triangle contact formulation for two DCMs, yet one of the triangles
circumscribing sphere is here replaced by the sphere of the CBM cell itself. When the
contact force is calculated, it is for the CBM directly passed to its center of mass.
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CBM: Migration forces

The same principles for modeling the migration force in the DCM are applied to the
CBM, whereby the migration force in the CBM is directly applied to the cell center.

CBM: Cell division

As in the DCM, if the cell passed a critical volume Vcrit = 2V0,i, the cell undergoes
mitosis and two new cells with volume V0,i/2 are created. A simplified version of the
division algorithm consists of placing directly two smaller daughter cells in the space
originally filled by the mother cell at the end of the interphase [15,16]. When the two
daughter cells are created, their reorganize in space driven by their cell-cell interaction
force as well as the interaction forces of the two daughter cells with their other
surrounding cells until mechanical equilibrium is reached. If the space filled by the
mother cell is small, which is often the case for cells in the interior of a cell population,
the local interaction forces occurring after replacing the mother cell by two spherical
daughters, can adopt large (un-physiological) values leading to unrealistic large cell
displacements. This can be circumvented by truncating the contact force to a maximal
value, or temporarily reducing the contact stiffness between the daughter cells during
division.

Cell-to-cell signalling

In our model, we assume that Notch-jagged signaling between cholangiocytes and
hepatocytes is governed by several of conditions. First, we assume that their common
contact area must be sufficiently high. Thus, a minimal number of triangles (or surface
area) of both cells must be in mutual contact: AT > Amin , where AT is the total
contact area between two cells, and the parameter Amin is set arbitrarily to 20% of the
cell surface. We found that this parameter does not influence the results significantly
provided that Amin is larger than zero. However, this condition alone is not enough for
a hepatocyte to transform into a cholangiocytes, as then any hepatocyte in the tissue
adjacent to a cholangiocytes would be able to transform at some point, causing a
homogeneous spread of cholangiocytes, which is not observed experimentally. Hence,
the second condition for the transformation is that the hepatocyte must delimit an
existing (possibly small) lumen. Third, we also need to introduce a transition contact
time Tsig which specifies the minimum time the signalling needs in order for a
hepatocyte to change to a cholangiocyte. A value Tsig = 0 would mean here that the
transformation is immediate, which is not observed as some hepatocytes may express
weak SOX9+ signals but have a much larger size than a mature cholangiocyte. The
signaling time is likely limited by the cell cycle time. When a hepatocyte gets the signal
to transform, we assume that it will be fully differentiated upon the next cell division.
We set here Tsig = 2h as default value.

Initialization of model and boundary conditions of bile-duct
system

The cells are initially positioned side by side on concentric circles with curvature
determined by the radius of the portal vein. The most inner layer represents the portal
vein endothelial for which we assume the positions are fixed during the simulations. The
second layer are the mesenchyme, followed by the hepatoblasts, partially represented by
the DCM and the outer layers fully represented by the CBM.

A background pressure Pb of the CBM hepatoblasts needs to be exerted at the outer
border of the segment as a result of radial tissue growth and resistance from nearby
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cells. This is achieved in the model by exerting an inward body force to the outermost
border cells such that the inner hepatoblasts represented by the DCM have an average
internal pressure of Pb. For the DCM, the pressure is calculated by Eq.6. For the CBM
the pressure pi on a cell i is derived from the virial stress and given by:

pi =
1

3
tr(σi) , with σi =

1

Vi

∑
j

(
~Fij ⊗ ~rij

)
(16)

being the stress tensor quantifying the stresses cell i experiences subject to contact
forces ~Fij with other cells j [9]. Here, ~rij is the vector pointing from the center of cell i
to the cell j with ||~rij || = dij/2 and Vi is the sampling volume which can be taken as
the cell volume.

To ensure the cells remain in a planar configuration, we apply a small penalty force
on the center-of-mass of all the cells each time the center of mass moves away from the
XY plane. A simulation then starts in which only the cells positions are updated and a
mechanical equilibrium is reached. This configuration is then used for all further
simulations.

Calculation of the bile duct lumen area

We obtain the lumen area by considering the triangles of the cells that are marked by
tracer particles. The procedure to compute the lumen volume is conceptually similar to
how the volume of a cell is computed given its triangulated structure (see ref. [12]).
First, the geometric center of all these triangles is computed, resulting in a vector
pointing to the geometric center of the bile duct. From this point, we compute the
signed volume of each tetrahedron with as base a marked triangle and as top the
geometric center. The sign here is determined by the normal vector of the triangle. This
is done for all marked triangles, and subsequently these volumes are then summed up.
This gives a reasonable estimation of the volume confined by the marked cells.

Computational scheme executed during simulation

The simulations have been performed in TiSim, a computational platform for tissue
simulations based on agent-based models. This software will be released in the near
future.

In every timestep, the new positions of the nodes of the DCM and the centers of the
CBM are sought, given the forces that act on them. To compute these forces, one must
execute a contact detection algorithm over the arrays of interacting objects to know
which objects (triangles, spheres) can interact. This is a computationally expensive task
which requires an effective method. We have here used a bounding box algorithm
associated which each triangle and sphere. To compute the cell positions, the system of
equations (1) and (2) in the main text are solved simultaneously. This is a linear system
which can be solved efficiently by a conjugate gradient (CG) method. As the CG
iterations are taking a large part of the computational time, especially as the system
becomes larger, we have parallelized some loops in the CG algorithm using OpenMP.
The optimal number of threads is here typically 2 to 3. After the velocities are
calculated, we use an Euler scheme to obtain the positions. We have used in all
simulations a stable timestep of 1s. The full bile duct system of cells after 24h of
simulation time contains about 20000 nodes from the DCM, 500 nodes from the CBM,
and 7500 tracer particles. The time so solve this system takes about 48h on a modern
machine (Intel(R) Xeon(R) Gold 6136).

Based on the cell positions and forces, actions are undertaken in the algorithm. In
Fig A2 , a model flow chart is given with the principal algorithms that are executed
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every timestep. The algorithms that are cell -type dependent, are colored according to
the cell type.

Figure A2. Computational scheme executed during simulation.
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