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Supplementary Information 1: Overview of microbial storage compounds 

1 Triacylglycerides 
Triacylglycerides (TAG) are ubiquitous across eukaryotes and bacteria. Genomic analysis has not found TAG 
biosynthetic ability in archaea [1], corroborating the absence of observed TAG accumulation [2]. Microbial TAG 
has received particular research interest due to potential industrial applications, especially for biofuel 
production [3]. Many bacteria and fungi can amass TAG stores accounting for substantial proportions of their 
total biomass, sometimes exceeding 60% of cell dry weight (CDW) [3, 4]. TAG in soil has attracted attention due 
to the value of the constituent fatty acids as taxonomic and trophic markers (neutral lipid fatty acids – NLFA [5]), 
but their storage role has been largely overlooked in soil ecosystems.  

1.1 Chemistry 
TAGs consist of three fatty acids linked, through ester bonds, to a common glycerol molecule. While the 
triacylglyceride construct is shared by all producing organisms (including mammalian fat), the chain length, 
branching, and saturation of the constituent fatty acids varies, hence their value as biomarkers [5]. 
Triacylglycerides are hydrophobic lipids with highly reduced carbon. As a result they represent osmotically 
neutral storage with very high energy density [6]. 

1.2 Biosynthesis and degradation 
Biosynthesis of triacylgylcerides begins by linking two fatty acids (in the form of fatty acyl-CoA) to a glycerol 
backbone to form a diacylglyceride, by pathways shared with phospholipid biosynthesis [7]. The key enzyme for 
TAG synthesis is the acyl-coenzyme A:diacylglycerol acyltransferase that catalyses the transfer of a third fatty 
acid moiety to the remaining hydroxyl group on the glycerol backbone [8]. In prokaryotes this function is fulfilled 
by a distinct and promiscuous wax ester synthase/acyl-CoA:DAG acyltransferase enzyme that can accept either 
diacylglycerol to produce TAG or fatty alcohol to yield wax esters [7, 9]. De novo synthesis of the fatty acid is not 
a prerequisite: incorporation of exogenous or recycled fatty acids into triacylglycerides, with or without 
modification, has been demonstrated [3, 7]. 

Triacylglycerides are degraded by lipases to release the fatty acids by hydrolysis. The fatty acids are then 
catabolized to acetyl-CoA via the beta-oxidation pathway with concomitant generation of reducing equivalents 
(NADH, FADH2), which in aerobic organisms can drive ATP synthesis by oxidative phosphorylation. TAGs 
therefore have the potential disadvantage that they can only yield energy under aerobic conditions [6]. The 
majority of characterized microbial lipases to date are from Bacillus spp., but lipases from many other bacteria 
have been purified including Burkholderia, Acinetobacter, and Enterococcus [10]. 

2 Polyhydroxyalkanoates 
Polyhydroxyalkanoates (PHA) are a family of bacterial and archaeal storage lipids that have been intensively 
researched as biodegradable, renewable alternatives to petrochemical plastic [11], and for their importance in 
wastewater treatment processes [12]. PHA storage is not known among eukaryotes [13]. Intracellular storage of 
PHA occurs in observable lipid inclusion bodies which can constitute large proportions of biomass, even 
exceeding 80% of CDW under optimized conditions [11, 14]. 

2.1 Chemistry 
PHAs are straight-chain polyesters, often consisting mainly or exclusively of 3-hydroxybutyrate monomers. 
However, diverse copolymers are known with different carbon chains or hydroxyl group positions in the 



monomer, for example 3-hydroxyvalerate, 4-hydroxybutyrate and 3-hydroxydecanoate [11]. Typically, the 
polyester chain will comprise hundreds to thousands of monomeric units [15]. Ester bonds are apolar and so, 
though less reduced than triacylglycerides, PHAs are nevertheless highly hydrophobic [16].  

2.2 Biosynthesis and degradation 
De novo synthesis of polyhydroxybutyrate begins with the condensation of two acetyl-CoA molecules to form 
acetoacetyl-CoA, which is then reduced by acetoacetyl-CoA reductase to yield 3-hydroxybutyryl-CoA for 
polymerization. However, biosynthesis of different hydroxyacyl-CoA monomers can proceed by various anabolic 
or catabolic pathways [17], including via metabolic links with fatty acid pathways [18]. In the final step of PHA 
biosynthesis, PHA synthase accepts a hydroxyacyl-CoA precursor and uses this to form a new ester bond, 
extending the polymer chain from the hydroxyl end. 

PHA is degraded through hydrolysis by PHA depolymerase, to release soluble hydroxyacid monomers. In 
addition to intracellular catabolism by PHA producers, many bacteria that do not themselves accumulate PHA 
nevertheless secrete extracellular PHA depolymerases to scavenge from necromass in their vicinity [19]. 

3 Glycogen 
Glycogen storage occurs in animals, fungi and bacteria [20]. Genomic analysis indicates that the biosynthetic 
pathways are also present in archaea [1]. Glycogen storage does not occur in plants, although starch is very 
similar in structure. Inclusions in bacteria and fungi are frequently observed microscopically, while chemical 
analyses have reported accumulations of up to 9% of CDW [21]. 

3.1 Chemistry 
Glycogen is a polymer of α1→4 linked glucose, with α1→6 branches, reaching total molecular masses of 107–108 
Da [20]. As a polysaccharide, it is hydrophilic and relatively highly oxidized, implying lower energy density than 
the more reduced lipids just described. The high degree of polymerization enables storage of glucose without 
greatly increasing osmotic pressure [20, 22]. 

3.2 Biosynthesis and degradation 
Glycogen is synthesized from ADP-glucose (in bacteria) or UDP-glucose (in eukaryotes) by glycogen synthase, 
which catalyzes the formation of a new α1→4 bond on the non-reducing end of an existing chain [23, 24]. 
Branching enzyme subsequently relocates the tail of the growing 1→4 chain to the C6 position of an internal 
glucose residue, forming a new α1→6 branch-point. Glycogen is catabolized by the combined action of 
debranching enzyme and glycogen phosphorylases, to release glucose-1-phosphate [23, 25]. 

4 Trehalose 
Trehalose biosynthesis is widespread, occurring in bacteria, archaea, fungi, plants and invertebrates. Storage of 
C and energy was originally believed to be its principle purpose, but numerous other roles have since been 
ascribed to the compound, most importantly in osmotic regulation and protection against other stresses. Unlike 
other storage compounds discussed here, there are relatively few reports of trehalose accumulation to large 
proportions of biomass, possibly due to the high osmotic pressures that would be generated. However, 
Saccharomyces cerevisiae has been reported to accumulate up to 16% of CDW as trehalose under some 
conditions [26]. 

4.1 Chemistry 
Trehalose is a soluble, non-reducing sugar consisting of two glucose molecules linked through an α,α-1,1-
glycosidic bond [27]. It is hydrophilic, has low molecular mass (342 Da) and is osmotically active. 

4.2 Biosynthesis and degradation 
The major pathway for trehalose synthesis converts UDP-glucose and glucose-6-phosphate to trehalose-6-
phosphate and UDP, catalysed by trehalose-6-phosphate synthase [27, 28]. This is subsequently 



dephosphorylated to trehalose by trehalose-6-phosphate phosphatase. Alternative biosynthetic pathways have 
also been described that convert other glucose polymers, such as maltose or glycogen, to trehalose [28]. In 
total, five different enzymatic pathways for trehalose synthesis have been described and have been recently 
reviewed [29]. Trehalose catabolism proceeds by hydrolysis to release the constituent glucose molecules, 
catalyzed by trehalases [27].   

5 Wax esters 
Wax esters are lipids present as intracellular inclusion bodies in various prokaryotes [7]. They are also 
widespread among eukaryotes, for example in the hydrophobic cuticles on external plant surfaces [30], but 
eukaryotic storage functions are uncommon [31–33]. 

5.1 Chemistry 
A wax ester is the condensation product of a fatty acid and a fatty alcohol, each typically 16 or 18 carbon atoms 
in length but, as for TAGs, with considerable variation in length, saturation and structure of the carbon chain. 
They share with TAGs the properties of high energy density, hydrophobicity and osmotic neutrality [7]. 

5.2 Biosynthesis and degradation 
Wax ester synthesis by bacteria is catalysed by wax ester synthase/acyl-CoA:DAG acyltransferase, the enzyme 
also responsible for the final step of bacterial TAG synthesis [34]. In this case a new ester bond is formed from a 
fatty acyl-CoA and a fatty alcohol, the latter derived from the two-step reduction of another fatty acyl-CoA [7].  

Like TAGs, the highly reduced carbon of wax esters can only yield energy through aerobic catabolism. Broad 
specificity cutinases hydrolyse a variety of wax esters including cutin, which is a major component of plant leaf 
cuticles. Cutinases have been primarily characterized in plant pathogenic fungi due to their role in pathogenicity 
[35], but they are also found in some bacteria [36].  

6 Polyphosphate 
Polyphosphate is ubiquitous in all branches of life. It is a truly ancient biomolecule, possibly pre-dating life itself, 
and plays multiple physiological roles [37, 38]. These include phosphorus and energy storage, but also cellular 
pH buffering, heavy metal chelation, and involvement in cellular regulation, amongst others [37]. Kornberg et al. 
argue, however, that the rapid turnover of ATP in Escherichia coli implies that even large polyphosphate stores 
could not support the cellular energy budget for substantial periods of time, and they therefore question its 
significance for energy storage [39]. Its role in phosphorus storage is more clear-cut [37]. 

6.1 Chemistry 
Polyphosphate is a polymer of inorganic phosphate, consisting of chains of tens to hundreds of phosphate 
monomers linked by phosphoanhydride bonds, the same phosphate-phosphate binding chemistry as the cellular 
energy carrier ATP [38]. Hydrolysis of these ‘high-energy’ bonds involves a similar free energy change to ATP 
hydrolysis, and the polymer can act as a direct ATP substitute in some biochemical reactions or be used for ATP 
synthesis [37]. When aggregated into storage structures with multivalent cations such as calcium, it has little 
effect on cellular osmotic pressure [37–39]. 

6.2 Biosynthesis and degradation 
The primary enzymes involved in the  biosynthesis of polyphosphates in bacteria are polyphosphate kinases, 
PPK1 and PPK2. PPK1 reversibly and selectively transfers the gamma-phosphate from ATP to polyphosphate 
[40], whereas PPK2 can act on either ATP or GTP [41]. In lower eukaryotes including amoebae, the biosynthetic 
genes were postulated to have been acquired via horizontal gene transfer from prokaryotes [42]. Enzymes 
responsible for the synthesis of inorganic polyphosphate have not yet been characterized in higher eukaryotes 
such as mammals [42].  



PPK2 is also capable of hydrolysing polyphosphate to convert GDP into GTP [41]. PPK2 is thus bifunctional and 
involved in both biosynthesis and degradation. Other enzymes involved in polyphosphate hydrolysis include 
endo- and exopolyphosphatases. As their names suggest, the endopolyphosphatases cleave internal 
phosphoanhydride bonds whereas exopolyphosphatases work backwards from the terminal phosphate residue 
[43, 44]. In addition to releasing stored phosphorus and energy, these degradative enzymes are also postulated 
to regulate levels of polyphosphates in the cytosol since high levels of cytosolic polyphosphate are toxic, at least 
in yeast [45]. For more detailed coverage of polyphosphate biochemistry, we refer readers to comprehensive 
reviews [37, 38].  

7 Cyanophycin 
Cyanophycin, sometimes termed CGP (cyanophycin granule peptide), is a nitrogen storage polypeptide with a 
C:N ratio of 1.7. It occurs in most cyanobacteria and some heterotrophic bacteria [46, 47]. Cyanobacteria are 
known to accumulate cyanophycin up to 18% of CDM [47], while over 40% of CDM has been reported for 
Acinetobacter calcoaceticus [48]. Genomic analysis suggests a potentially much wider distribution among 
bacteria, but not in archaea or eukaryotes [46]. 

7.1 Chemistry 
Cyanophycin consists of L-arginyl-poly(L-aspartate), i.e., a polypeptide backbone of aspartic acid, with additional 
amide bonding through the side-chains to the α-amino group of arginine. The polymer reaches molecular 
masses of 25-100 kDa [49]. Arginine is present on virtually all aspartate side-chains, so that the molar ratio of 
the amino acid residues is approximately one [50]. 

7.2 Biosynthesis and degradation 
Biosynthesis from arginine and aspartate is catalysed by cyanophycin synthetase, without the involvement of 
mRNA templates or ribosomes [50]. Degradation proceeds by hydrolysis from the C-terminus, catalysed  by 
cyanophycinase, which releases aspartate-arginine dimers for subsequent degradation [46].  
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Supplementary Information 2A: Figure 1 with genera 

 

Figure 1 in the text was generated from a comprehensive literature survey of taxa shown to 
accumulate storage compounds. We identified taxa with evidence for storage compound 
accumulation at the genus level as follows: (i) storage traits have been phenotypically demonstrated 
for at least one member of the genus as either (a) the build-up of at least 5% of cell dry weight as a 
known storage compound, or (b) build-up of storage compounds to a sufficient degree for 
observation by light microscopy; and (ii) the genus has at least one member that occurs in soil. 
Literature describing storage traits was assembled by searching Web of Science using combinations 
of keywords “polyhydroxybutyr*”; “polyhydroxyalkano*”; “triacylglyceride”; “glycogen”; 
“polyphosphate”; “trehalose”; “cyanophycin”; “wax ester”; “PHA”; “PHB”; “NLFA”; “microb*”; 
“bact*”; “fung*”; “stor*”; “accumul*”; “reserve”, supplemented by literature citing or cited by 
relevant studies from this search. These studies were surveyed to obtain a shortlist of 89 bacterial 
and 40 fungal genera that fulfilled criterion (i), based on 126 peer-reviewed journal articles. For each 
of these genera, a second Web of Science search was then performed using the genus and “soil” to 
find evidence for its occurrence in soil. References are provided in Supplementary 2B. 

 

To visualize the identified genera in the context of the overall microbial tree of life, we included a 
selection of representative bacterial and fungal taxa established in phylogenetic studies by Choi et 
al. [1] and Jun et al. [2]. A cladogram constructed using the NCBI taxonomy database [3] was used to 
display the relative relationships of the identified genera alongside the storage compounds known to 
be associated with each taxon at the genus level (Figure S2.1). A total of 488 representative bacterial 
and fungal genera corresponding to 26 phyla are shown, with 106 genera (10 phyla) that satisfy both 
criteria (i) and (ii). 
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Figure S2.1 

(zoom in to view genus names) 
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Supplementary Information 2B: Sources for Figure 1 
Table S2.1: Literature sources for Figure 1 - Fungi 

Genus Storage Soil occurrence 
Agaricus  [1] [2] 
Alternaria [3] [4] 
Aspergillus [5] [6] 
Candida [7] [8] 
Chaetomium [9] [10] 
Colletotrichum [3] [11] 
Cryptococcus [9] [12] 
Cunninghamella [13, 14] [15] 
Entomophthora [16] [17] 
Epicoccum [9] [18] 
Gigaspora [19] [20] 
Hebeloma [21] [21] 
Humicola [9] [22] 
Lactarius [23] [23] 
Lipomyces [24] [25] 
Mortierella [14] [26] 
Mucor [27] [28] 
Neurospora [29] [30] 
Penicillium [31] [32] 
Pisolithus [33] [34] 
Pythium [16] [35] 
Rhodosporidium [36] [37] 
Rhodotorula [9] [38] 
Saccharomyces [39, 40] [41] 
Thamnidium [9] [42] 
Trichosporon [9] [43] 
Yarrowia [44] [45] 

 

Table S2.2: Literature sources for Figure 1 - Bacteria 

Genus Storage Soil occurrence 
Achromobacter [46] [47] 

Acinetobacter [48–52] [53] 
Aeromonas [54] [55] 
Alcaligenes [56] [57] 
Alcanivorax [58] [59, 60] 
Anabaena [61, 62] [63] 
Aneurinibacillus [64] [65] 
Aphanocapsa [66] [63] 
Arthrobacter [9, 67–69] [70] 
Arthrospira [71, 72] [63] 
Aulosira  [73] [74] 
Azohydromonas [75] [76] 
Azospirillum [77] [78] 
Azotobacter [79] [80] 



Bacillus [81, 82] [82] 
Bifidobacterium [83] [84] 
Burkholderia [85] [86] 
Calothrix [62] [87] 
Caulobacter [88] [89] 
Chelatococcus [90] [91] 
Chlorogloea [62] [92] 
Clostridium [93] [94] 
Collimonas [68] [95] 
Corynebacterium [96, 97] [98] 
Cupriavidus [99] [82, 100] 
Cyanothece [101] [102] 
Dietzia [103] [104] 
Ensifer [68] [68] 
Erythrobacter [105] [106] 
Fischerella [62] [107] 
Gordonia [103, 108] [109] 
Halomonas [110, 111] [112] 
Hydrogenophaga [113] [114] 
Janthinobacterium [115] [68] 
Jeongeupia  [116] [116] 
Lactobacillus [117] [118] 
Lyngbya [62] [119] 
Mastigocladopsis [62] [120] 
Methylacidiphilum [121] [122] 
Methylobacterium [123] [123] 
Methylocystis [124] [125] 
Methylosinus [124] [126] 
Microbacterium [68] [68] 
Microcoleus [127, 128] [63, 129, 130] 
Microlunatus [131] [132] 
Mycobacterium [133, 134] [135] 
Myxococcus [136] [137] 
Myxosarcina [62] [119] 
Nocardia [48, 103, 138] [139] 
Nostoc [61, 140] [63] 
Oscillatoria [62] [63] 
Paenarthrobacter [68] [68] 
Paraburkholderia [141] [142] 
Paracoccus [143] [143] 
Phormidium [62, 128] [144] 
Plectonema [62] [119] 
Prevotella [145] [146] 
Pseudomonas [48, 147] [57] 
Rahnella [68] [148] 
Ralstonia [149] [150] 
Rhizobium [151] [152] 
Rhodobacter [153] [154] 
Rhodococcus [103, 155–157] [82] 
Rhodopseudomonas [158] [154] 



Rhodospirillum [159] [160] 
Rhodovulum [161] [162] 
Ruegeria [163] [164] 
Salinivibrio [165] [166] 
Scytonema [62] [167] 
Sinorhizobium [151] [168] 
Sphingobacterium [169] [47] 

Spirulina [170, 171] [63] 
Stenotrophomonas [46] [46] 
Stigonema [62] [172] 
Streptomyces [173] [174] 
Symploca [62] [167] 
Synechococcus [175, 176] [177] 
Synechocystis [178–180] [181] 
Yangia [182] [182] 
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Supplementary Information 3: Model description 

1. Theory 
A conceptual model of soil C and N compartments and flows was constructed to assess the effects of 
internal microbial storage on the short-term dynamics of microbial biomass and substrates. The model is 
based on Schimel and Weintraub [1], with the addition of a C storage compartment. To illustrate the 
role of storage in microbial dynamics, we focused on short-term responses to a pulse addition of labile 
organic matter, neglecting extracellular enzyme synthesis and depolymerization of native soil organic 
matter. The model includes a bio-available substrate compartment (containing C and N) and a microbial 
biomass compartment encompassing both ‘active’ biomass (C and N) and storage compounds (C only). A 
model schematic is shown in Figure 2 in the main text and symbols are defined in Table S3.1. 

1.1. Mass balance equations 
Denoting the substrate compartment with the subscript S, active biomass with B, and storage with ST, 
the mass balance equations for C and N in these compartments can be written as: 

ௗ஼ೄ

ௗ௧
= 𝑇 ቀ1 +

஼ೄ೅

஼ಳ
ቁ − 𝑈ௌ, (1) 

ௗேೄ

ௗ௧
=

்

(஼:ே)ಳ
−

௎ೄ

(஼:ே)ೄ
, (2) 

ௗ஼ಳ

ௗ௧
= 𝑈ௌ − 𝑆 + 𝑈ௌ் − 𝑅ீ − 𝑅ை − 𝑅ௌ் − 𝑇, (3) 

ௗேಳ

ௗ௧
=

௎ೄ

(஼:ே)ೄ
−

்

(஼:ே)ಳ
− 𝑀௡௘௧, (4) 

ௗ஼ೄ೅

ௗ௧
= 𝑆 − 𝑈ௌ் −

஼ೄ೅

஼ಳ
𝑇, (5) 

where T is the rate of microbial turnover (recycled as substrate); US and UST are the rates of substrate 
uptake and storage remobilization, respectively; S is the rate of synthesis of storage compounds; RG, RO, 
and RST are the respiration rates associated with growth, overflow, and storage remobilization, 

respectively; Mnet is the net N mineralization rate. In Eq. (1), the term 1 +
஼ೄ೅

஼ಳ
 accounts for the fact that 

storage compounds are recycled at the same rate as microbial turnover. 

Inorganic N sources are not modelled explicitly, but a maximum net N immobilization rate (IN) is 
imposed to account for limited availability of inorganic N. This maximum rate is attained when the N 
demand for growth is high and the organic substrate is N-poor. The C and N flow rates in the mass 
balance equations (1)-(5) are described in Section S1.2, and their stoichiometric relations in Section S1.3. 
Specific choices for the definitions of the storage synthesis and remobilization rates are presented in 
Section 1.4.  
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Table S3.1: List of symbols and their units (see also Figure S3.1 and main text Figure 2). 

Symbol Definition Units 

State variables 

CB Microbial biomass C (Eq. (3)) mg C g soil-1 
CS Substrate C (Eq. (1)) mg C g soil-1 
CST Storage C (Eq. (5)) mg C g soil-1 
(𝐶: 𝑁)ௌ  Substrate C:N ratio (both CS and NS are state variables) mg C mg N-1 
NB Microbial biomass N (Eq. (4)) mg N g soil-1 
NS Substrate N (Eq. (2)) mg N g soil-1 

C and N flow rates (calculated as a function of the state variables) 

Mnet Net N mineralization rate (Eq. (6)) mg N g soil-1 day-1 
R Total microbial respiration rate mg C g soil-1 day-1 
RG Respiration rate for growth on substrate C mg C g soil-1 day-1 
RST Respiration rate for growth on storage C mg C g soil-1 day-1 
RO Rate of overflow respiration (Eq. (8)) mg C g soil-1 day-1 
S Rate of C storage synthesis  mg C g soil-1 day-1 
T Microbial turnover rate mg C g soil-1 day-1 
US Substrate C uptake rate mg C g soil-1 day-1 
UST Storage C remobilization rate mg C g soil-1 day-1 

Model parameters (time invariant) 

(𝐶: 𝑁)஻  C:N ratio of active (non-storage) microbial biomass mg C mg N-1 
e C-use efficiency of the active biomass - 
IN Maximum rate of inorganic N immobilization mg N g soil-1 day-1 
kS Substrate C uptake rate constant day-1 
kST Storage C remobilization rate constant day-1 
m Microbial turnover rate constant day-1 
𝜎  Fraction of growth allocated to reserve storage - 

 

1.2. Definition of C and N flow rates 
For illustration, we consider the simple case of a single substrate addition at the beginning of the 
simulations. An initial concentration of substrate is defined, and its change through time is followed as it 
is consumed by the microbes in the absence of additional inputs. Assuming that the added substrate is 
immediately available and does not require enzymatic breakdown, it is reasonable to assume that 
microbial uptake follows first-order kinetics 𝑈ௌ = 𝑘ௌ𝐶ௌ, with a relatively high value of the kinetic 
constant kS. Using nonlinear kinetics involving microbial biomass or an explicit enzyme compartment 
would not change the results of these short-term simulations, which are dominated by the initial 
substrate availability. Similarly, first-order kinetics are also assumed for the mortality rates (i.e., 
microbial turnover is assumed to be independent of microbial nutritional status). The rates of growth 
respiration associated with C from the substrate (CS) and storage (CST) are modelled as a fraction 1-e of 
the respective rates of uptake and use, where e is the C-use efficiency [2–4]. Of the total C uptake rate 
US, only the fraction remaining available for growth after C allocation to storage incurs growth 
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respiration costs; i.e., 𝑅ீ = (1 − 𝑒)(𝑈ௌ − 𝑆). Maintenance respiration is neglected as it is expected to 
be small compared to growth respiration under conditions of substrate-induced growth. 

Organic N uptake and microbial N turnover rates are calculated as C flow rates divided by the C:N ratios 
of the donor compartments. The remaining C and N flow rates (RO and Mnet) are defined to fulfil specific 
stoichiometric constraints, as explained in the following section. 

1.3. Stoichiometric constraints 
We impose the constraint that the active microbial biomass is homeostatic; i.e., its C:N ratio is constant 
through time, or 𝑑𝐶஻ 𝑑𝑡⁄ = (𝐶: 𝑁)஻ 𝑑𝑁஻ 𝑑𝑡⁄ . Note that most models assume that the total microbial 
biomass C:N ratio is fixed [3], while here we allow for storage C to fluctuate while keeping only the 
active biomass C:N fixed. This constraint is imposed in two ways depending on whether microbes are C 
limited or N limited (Figure S3.1). C limitation occurs as long as the microbial N requirements are met by 
organic or inorganic N—in that case, overflow respiration is zero [1]. In contrast, N limitation occurs 
when N immobilization is limited by available inorganic N; i.e., N immobilization rate equals a maximum 
value of IN and RO removes the extra C that cannot be converted into biomass. While RO is interpreted as 
a respiration term, it could also be regarded as an overflow excretion process that leads to accumulation 
of extracellular C that is not readily utilized. For the purpose of the present numerical experiments, we 
consider this extracellular C as ‘lost’, but for long-term simulations it could become a precursor of 
stabilized soil organic C. 

Under C limitation (when RO=0), the constraint of homeostatic microbial biomass leads to the definition 
of the net N mineralization rate, 

𝑀௡௘௧ =
௎ೄ

(஼:ே)ೄ
−

௎ೄିௌା௎ೄ೅ିோಸିோೄ೅

(஼:ே)ಳ
=

௎ೄ

(஼:ே)ೄ
− 𝑒

௎ೄା௎ೄ೅ିௌ

(஼:ே)ಳ
. (6) 

This equation essentially expresses N mineralization as the difference between supply rate of organic N 
(i.e., 𝑈𝑆 (𝐶: 𝑁)𝑆⁄ ) and demand by microbes, calculated as the growth rate under C-limited conditions 
divided by the microbial C:N ratio (i.e., 𝑒(𝑈𝑆 + 𝑈𝑆𝑇 − 𝑆) (𝐶: 𝑁)𝐵⁄ ). When the N demand is higher than 
the supply, net N immobilization ensues. Without storage (UST=0, S=0), Eq. (6) simplifies to  

𝑀௡௘௧ =
௎ೄ

(஼:ே)ೄ
−

௘௎ೄ

(஼:ே)ಳ
, (7) 

which coincides with the common definition of net N mineralization [3, 5, 6].  

Under N limitation, the microbial N demand reaches the maximum rate of inorganic N supply, so that 
Mnet=-IN. This limits the capacity to grow at a fixed C:N, and requires disposing of extra C from the 
substrate via overflow respiration [1]. Imposing again the constraint of fixed C:N, but now setting Mnet=-
IN, the rate of overflow respiration is found as, 

𝑅ை = 𝑈ௌ − 𝑆 + 𝑈ௌ் − 𝑅ீ − 𝑅ௌ் − (𝐶: 𝑁)஻ ቂ
௎ೄ

(஼:ே)ೄ
+ 𝐼ேቃ = 𝑒(𝑈ௌ + 𝑈ௌ் − 𝑆) −

(𝐶: 𝑁)஻ ቂ
௎ೄ

(஼:ே)ೄ
+ 𝐼ேቃ. 

(8) 

Again, without storage dynamics, a previously derived, simpler expression for RO is recovered [1, 3],   
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𝑅ை = 𝑒𝑈ௌ − (𝐶: 𝑁)஻ ቂ
௎ೄ

(஼:ே)ೄ
+ 𝐼ேቃ. (9) 

Together, Eq. (6) and (8) ensure that the active biomass maintains its C:N ratio at a fixed value, while C 
accumulates and is depleted in the storage compartment. This means that the overall C:N of total 
biomass (active microbial biomass plus storage) does vary through time. Equations (6) and (8) are 
general and hold for any choice of storage synthesis and remobilization kinetics. In Section 1.4, different 
alternative storage strategies are presented, which result in specific expressions for the rates of net N 
mineralization and overflow respiration.  

1.4. Dynamics of microbial internal storage 
Two modes of internal storage synthesis and remobilization are considered, in addition to a baseline 
scenario in which storage is not used (Figure S3.1): i) reserve storage, in which storage synthesis equals a 
fixed fraction of substrate uptake, and storage remobilization depends only on the amount of C in 
storage, and ii) surplus accumulation, in which storage synthesis increases when microbes are N-limited 
and storage remobilization is activated when they are C-limited.  

1.4.1. Reserve storage 
This storage mode has been implemented in models of waste water treatment systems. The rate of 
storage synthesis is modelled as a fraction 𝜎 of the substrate C uptake rate, 𝑆 = 𝜎𝑈ௌ  [2, 4]. The rate of 
storage remobilization is assumed to follow first-order kinetics 𝑈ௌ் = 𝑘ௌ்𝐶ௌ், thus neglecting the 
inhibition effect that high substrate concentration might have on storage remobilization [2, 4]—a 
reasonable assumption in soils where substrate concentrations are typically low. With this storage 
mode, allocation to storage is independent of N availability, so that under N-limitation, C overflow 
becomes necessary to maintain a stable active biomass C:N ratio. 

1.4.2. Surplus accumulation 
In this storage mode, C storage can be increased under N limitation and decreased under C limitation to 
compensate stoichiometric imbalances (Figure S3.1). For simplicity, we assume that under N limitation, 
all excess C is converted to storage and that no storage is used for growth. In contrast, under C 
limitation, all C required to convert excess N into biomass is drawn from the storage compartment, 
whereas no C is allocated to new storage. This storage mode represents an idealized case, as microbes 
likely cannot attain such a degree of complete flexibility in C storage synthesis and remobilization. 
However, it serves as a counterpoint to the reserve storage mode, where storage dynamics are 
independent of N availability. 

Following these assumptions, the rate of storage synthesis S=0 under C limited conditions, whereas S is 
defined to maintain fixed active biomass C:N ratio without C overflow under N limited conditions (i.e., 
RO=0 in Eq. (8)), 

𝑆 = − ቂ
ଵ

௘

(஼:ே)ಳ

(஼:ே)ೄ
− 1ቃ 𝑈ௌ −

(஼:ே)ಳ

௘
𝐼ே. (10) 

Note that the storage remobilization rate UST (and associated respiration RST) does not appear in Eq. (10) 
because we assume that under N limitation, storage C is not used for growth—it would cause a further 
increase in N demand at a time when N is already scarce. 
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In contrast, under C limited conditions, the rate of storage C remobilization UST is defined to maintain a 
fixed microbial C:N ratio without N losses (i.e., Mnet=0 in Eq. (6)), 

𝑈ௌ் = ቂ
ଵ

௘

(஼:ே)ಳ

(஼:ே)ೄ
− 1ቃ 𝑈ௌ. (11) 

Note that the storage synthesis rate S does not appear in Eq. (11) because we assume that under C 
limitation, storage C is not synthesized—it would cause a further increase in C demand at a time when C 
is already limited. Moreover, the rate of storage C remobilization is capped by a maximum rate defined 
as in the reserve storage mode (i.e., 𝑈ௌ் = 𝑘ௌ்𝐶ௌ்), to avoid remobilization of more C than is actually 
contained in the storage compartment. Mathematically, this constraint is defined by imposing that UST is 
the minimum between the value calculated from Eq. (11) and 𝑘ௌ்𝐶ௌ். 



6 
 

 

Figure S3.1: Schematic of the changes in C and N flows as the substrate C:N ratio is increased (left to 
right), for two different C storage synthesis and remobilization modes: i) reserve storage, in which 
storage synthesis is a fixed fraction of microbial growth, independent of N limitation (which results in C 
overflow under N limitation; bottom row) or ii) surplus accumulation, in which storage synthesis is 
regulated to compensate stoichiometric imbalances (which results in no C overflow; top row). Color-
coded arrows represent C and N flows; rectangles represent substrate and microbial compartments. 
Note that with the surplus accumulation mode, C storage is only remobilized when N is in excess (i.e., C 
is limiting) and only synthesized when C is in excess (N is limiting). 
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2. Model parameterization 
The goal of the analyses presented here is to explore the effect of contrasting storage modes on 
substrate use and microbial growth. As such, we do not perform a formal model calibration, but 
estimate parameter values and initial conditions based on available literature data. The model has only 
eight microbial parameters, in addition to substrate input rate and C:N ratio, which are varied to 
simulate different experimental conditions (Table S3.1). To define a set of reasonable microbial 
parameter values, we consider the dynamics of microbial biomass in the experiment by Chen et al. [7], 
where microbial biomass increased from approximately 1 to 2 mg C g soil-1 in a few days after addition 
of an amount of labile C double the value of microbial C (in the soil labelled there as ‘P-rich’). The 
microbial turnover rate (=m) was ≈0.04 day-1 and (𝐶: 𝑁)஻=8.9 before the amendment. Since we 
consider additions of labile substrates, we can assume a relatively high C-use efficiency e=0.5. Based on 
previous model results [4], it is reasonable to assume that growth on substrate and storage C occurs 
with equal efficiency and, for the reserve storage mode, with an equal rate constant (i.e., kS=kST). Due to 
the speed of microbial uptake of labile substrates (time scales of hours), kS was set equal to 1 day-1. The 
fraction of substrate C allocated to storage in the reserve storage mode is arbitrarily set to 0.2—
somewhat lower than values previously reported [8], but likely more representative of soil conditions. 
The last parameter to be estimated is IN, which represents the availability of inorganic N in the soil. We 
chose a value IN=0.01 mg N g soil-1 day-1, which corresponds to a sufficient inorganic N supply to convert 
approximately 1 mg C g soil-1 of substrate into biomass in 5 days.  

We performed two types of numerical experiments: i) simulation of microbial and storage C 
concentrations and element flows through time following an initial addition of a fixed amount of 
substrate with (𝐶: 𝑁)ூ=50 (Figure S3.2 and main text Figure 3A); ii) simulations covering a gradient of 
initial substrate C:N, for a fixed amount of added substrate C, with microbial biomass and cumulative 
net N mineralization rates evaluated at the end of each simulation (10 days after substrate addition) to 
summarize the effect of the three storage modes on microbial C-use efficiency and inorganic N 
availability (main text Figure 3B and C). 
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Figure S3.2: Temporal dynamics of C and N concentrations and flow rates after substrate addition for 
two storage modes (compared to a baseline case of no storage use): A) microbial biomass C (CB): B) 
internal storage C (S); C) fraction of total respiration due to overflow (RO/R); D) rate of storage synthesis, 
S, normalized by the rate of substrate uptake, US; E) rate of storage remobilization, UST, normalized by 
US; F) net N mineralization rate, Mnet, normalized by the maximum rate of N immobilization, IN. Initial 
conditions: CB(t=0)=1 mg C g soil-1, S(t=0)=0 mg C g soil-1, CS(t=0)=2 mg C g soil-1; NS(t=0)=0.04 mg N g soil-

1 (i.e., (𝐶: 𝑁)ூ=50).  
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