### **Supplementary Materials**

### Placental mammals acquired functional sequences in NRK for regulating the CK2-PTEN-AKT pathway and placental cell proliferation

Beni Lestari<sup>1\*</sup>, Satomi Naito<sup>1\*</sup>, Akinori Endo<sup>2</sup>, Hidenori Nishihara<sup>1</sup>, Akira Kato<sup>1</sup>, Erika Watanabe<sup>1</sup>, Kimitoshi Denda<sup>1</sup>, Masayuki Komada<sup>1,2#</sup>, Toshiaki Fukushima<sup>1,2#</sup>

<sup>1</sup>School of Life Science and Technology, Tokyo Institute of Technology, Japan <sup>2</sup>Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Japan

### <sup>#</sup>Corresponding authors:

Toshiaki Fukushima, tofu@bio.titech.ac.jp Masayuki Komada, makomada@bio.titech.ac.jp

These Supplementary Materials contain the following

- Supplementary Materials and Methods
- Supplementary Table S1 and S2
- Supplementary Figures S1 through S6

### **Supplementary Materials and Methods**

#### Antibodies and reagents

The following primary antibodies were used in this study: anti-FLAG M2 antibody (clone M2, Sigma-Aldrich, St Louis, MO, USA), anti-myc antibody (clone 9E10, Santa Cruz Biotechnology, Dallas, TX, USA), HRP-conjugated anti-GST antibody (#RPN1236, Cytiva, Marlborough, MA, USA), anti-NRK rabbit serum (Denda et al. 2011), anti-PARP antibody (clone C-2-10, Calbiochem, San Diego, CA, USA), anti-AKT antibody (clone C67E7, Cell Signalling Technology (CST), Danvers, MA, USA), anti-phospho AKT (T308) antibody (clone D25E6, CST), anti-phospho AKT(S473) antibody (clone D9E, CST), anti-p42/44 MAPK antibody (#9102, CST), anti-phospho p42/44 MAPK (T202/T204) antibody (clone E10, CST), anti-CK2a antibody (clone 1AD9, Santa Cruz Biotechnology), anti-CK2a' antibody (A300-199A, Bethyl Laboratories, Montgomery, TX, USA), anti-CK2<sup>β</sup> antibody (A301-984A, Bethyl Laboratories), anti-phospho CK2 substrate antibody (#8738, CST), anti-PTEN antibody (clone 138G6, CST), anti-phospho PTEN (S380) antibody (clone H-3, Santa Cruz Biotechnology), anti- $\alpha$ -Tubulin antibody (#013-25033, Wako Pure Chemical, Osaka, Japan), anti-phosphatidylinositol 4,5bisphosphate (PIP<sub>2</sub>) antibody (clone 2C11, Santa Cruz Biotechnology), and antiphosphatidylinositol 3,4,5-triphosphate PIP<sub>3</sub> (#Z-P345, Echelon Biosciences, Salt Lake City, UT, USA). For immunoprecipitation, anti-FLAG M2 affinity gel (Sigma-Aldrich) was used. Peroxidase-labelled anti-mouse IgG antibody and anti-rabbit IgG antibody (GE Healthcare, Chicago, IL, USA) were used as secondary antibodies for immunoblotting. Alexa Fluor 488- or 594-conjugated anti-mouse IgG antibody, anti-mouse IgM antibody, and anti-rabbit IgG antibody (Thermo Fisher Scientific, Waltham, MA, USA) were used as secondary antibodies for immunostaining. Cells were treated with the following reagents: doxycycline (dox; Sigma-Aldrich), epidermal growth factor (EGF; PeproTech, Rocky Hill, NJ, USA), cycloheximide (Nacalai Tesque, Kyoto, Japan), tumour necrosis factor-α (TNFα; Suntory, Tokyo, Japan), and a PTEN inhibitor VO-OHpic (BioVision, Milpitas, CA, USA).

### Plasmids

Mouse *Nrk* cDNA was pre-prepared by our group (Nakano et al. 2000). Chicken *Nrk* cDNA (NM\_001031126.2) was amplified using polymerase chain reaction (PCR) from the chicken embryo cDNA library kindly donated by Dr. Mikiko Tanaka (Tokyo Institute of Technology, Yokohama, Japan). Mouse *Nik* (XM\_006496042.3), *Tnik* (NM\_026910.1), *Mink1* (NM\_016713.2), *CK2a'* (see below), *CK2β* (NM\_001303445.1), and *PTEN* (NM\_008960.2) cDNAs were amplified by using PCR from mouse embryo and brain cDNA libraries. The mouse *CK2a'* cDNA sequence is identical to NM\_009974.3, except for the 84 bp deletion in the predicted coding region, which is thought to be an isoform because other rodent *CK2a'* cDNA sequences also lack this 84 bp sequence. The following vectors were used in this study:

mammalian expression vectors, pFLAG-CMV2 (Sigma-Aldrich) and pCMV5 (kindly donated by Dr. Jun Nakae, Keio University, Tokyo, Japan); dox-induced mammalian expression vector, pcDNA5/FRT/TO (Invitrogen, Carlsbad, CA, USA); bacterial expression vectors, pGEX-4T1 and pGEX-6P2 (GE Healthcare). N-terminal FLAG-tagged mouse NRK (mNRK), mNRK CNH (aa 1133-1455), mNRK  $\Delta$ CNH (aa 1-1137), mNRK  $\Delta$ CNH-CaaX (mNRK aa 1-1137 fused with HRAS CaaX motif (GCMSCKCVLS) at the C-terminus), other mNRK truncated mutants, mouse NIK (mNIK), mNIK CNH (aa 1011-1330), mouse TNIK (mTNIK), mTNIK CNH (1042-1361), mouse MINK1 (mMINK1), mMINK1 CNH (982-1301), chicken NRK (cNRK), and cNRK CNH (aa 918-1237) were expressed using pFLAG-CMV2 or pcDNA5/FRT/TO. N-terminal myc-tagged mouse CK2 $\alpha$ ' and N-terminal myc-tagged mouse CK2 $\beta$  were expressed using pCMV5. GST-tagged mNRK (aa 565-868) was expressed using pGEX-6P2 (Cytiva). GSTtagged NRK (aa 565-831), GST-tagged PTEN (aa 190-403), GST-tagged mNRK CNH (aa 1133-1455), and GST-tagged cNRK CNH (aa 918-1237) were expressed using pGEX-4T1 (Cytiva).

#### Supplementary Table 1. List of accession numbers of Nrk orthologs of selected species used in evolutionary analysis

| Species (binomial name)   | Species (common name) | NCBI Accession Number | UCSC Genome Data         | Ensembl ID                    |
|---------------------------|-----------------------|-----------------------|--------------------------|-------------------------------|
| Homo sapiens              | Human                 | NM_198465.4           |                          |                               |
| Pongo abelii              | Orangutan             | NM_198465             |                          |                               |
| Carlito syrichta          | Tarsier               |                       | KE939067V1:141656-280484 |                               |
| Mus musculus              | Mouse                 | NM_013724.2           |                          |                               |
| Canis lupus familiaris    | Dog                   |                       | chrX:79336562-79493046   |                               |
| Equus caballus            | Horse                 |                       | chrX:87765874-87891413   |                               |
| Bos taurus                | Cow                   |                       | chrX:32465316-32599498   |                               |
| Sorex araneus             | Shrew                 |                       | JH798166:7825193-7975312 |                               |
| Dasypus novemcinctus      | Armadillo             | NW_004462463.1        |                          |                               |
| Loxodonta africana        | Elephant              |                       |                          | scaffold_32:25936048-26099519 |
| Notamacropus eugenii      | Wallaby               |                       | GL154379:1-69272         |                               |
| Phascolarctos cinereus    | Koala                 |                       | MSTS01000267.1           |                               |
| Sarcophilus harrisii      | Tasmanian devil       |                       | chrX:990069-1335659      |                               |
| Monodelphis domestica     | Opossum               |                       | chrX:21189130-21556422   |                               |
| Ornithorhynchus anatinus  | Platypus              | XM_029067556.1        |                          |                               |
| Gallus gallus             | Chicken               | NC_006091.5           |                          |                               |
| Chrysemys picta           | Painted turtle        |                       |                          | ENSCPBT0000034663.1           |
| Xenopus tropicalis        | Xenopus               | XM_031891524.1        |                          |                               |
| Latimeria chalumnae       | Coelacanth            |                       |                          | ENSLACT00000019211.1          |
| Oryzias latipes           | Medaka                |                       |                          | ENSORLT00000044323.1          |
| Salmo salar               | Salmon                | NW_012336144.1        |                          |                               |
| Danio rerio               | Zebrafish             |                       |                          | ENSDARG0000098680             |
| Lepisosteus oculatus      | Spotted gar           | XM_006632839.2        |                          |                               |
| Erpetoichthys calabaricus | Reedfish              | XM_028815688.1        |                          |                               |

| <b>Supplementary Table 2</b> | . List of accession r | numbers of Nik, T | nik, Mink1 | of selected | species used in | synteny | / analysis |
|------------------------------|-----------------------|-------------------|------------|-------------|-----------------|---------|------------|
|------------------------------|-----------------------|-------------------|------------|-------------|-----------------|---------|------------|

| Species (binomial name) | Species (common name) | Accession Number     |                    |                    |  |
|-------------------------|-----------------------|----------------------|--------------------|--------------------|--|
|                         |                       | Nik                  | Tnik               | Mink1              |  |
| Homo sapiens            | Human                 | ENST00000302217.9    | NM_015028.4        | NC_000017.11       |  |
| Mus musculus            | Mouse                 | ENSMUST00000163854.8 | NM_026910.1        | ENSMUSG0000020827  |  |
| Gallus gallus           | Chicken               | ENSGALG00000016781   | NC_052540.1        | n.d.               |  |
| Chrysemys picta         | Painted turtle        | NW_024885785.1       | ENSCPBG0000015935  | n.d.               |  |
| Xenopus tropicalis      | Xenopus               | NC_030678.2          | ENSXETG0000001826  | ENSXETG0000001083  |  |
| Danio rerio             | Zebrafish             | ENSDARG00000098670   | ENSDARG00000056218 | ENSDARG00000035360 |  |

## Supplementary Figure S1 (related to Figure 1)



**Supplementary Figure S1. Synteny analysis of the** *Nik, Tnik, and Mink1* genes (Related to Fig. 1). Synsteny conservation of the region surrounding the *Nik, Tnik, and Mink1* genes. Gray boxes indicate non-conserved genes.

# Supplementary Figure S2 (related to Figure 2)

Α



В



## Supplementary Figure S2 (continued, related to Figure 2)



### Supplementary Figure S2. Exon structures of the Nrk gene and neighbour-joining tree for the amino acid sequences of the NRK domains (Related to Fig. 2)

- A) Exon structures of vertebrate *Nrk*. Green boxes correspond to the coding exons, while grey boxes indicate undetermined exons. All boxes are arranged left for each exon. The numbers above represent exon numbers in eutherians.
- B) Substitution rates in the ancestral lineages of the five taxonomic groups compared between NRK and the control (831 amino acid sequences). The ages of the ancestral lineages are based on TimeTree. Subst./Kaa/My; the number of substitutions per 1,000 amino acid residues per million years.
- C) Neighbour-joining (NJ) tree of the kinase domain corresponding to exons 1–11 of *Nrk*, excluding the eutherian-specific exon 4. Numbers on branches are node support based on 1,000 bootstrap replicates.
- D) NJ tree of the CNH domain corresponding to exons 21–29 of Nrk, excluding the eutherian-specific exon 25.

# Supplementary Figure S3



#### Supplementary Figure S3. Tissue expression patterns of vertebrate Nrk

- A) Heatmap of Nrk gene expression in different mouse tissues in comparison to the expression patterns of the other GCK IV family members (Nik, Tnik, Mink1). The colour intensity reflects the mRNA expression levels from the lowest (black) to the highest (white).
- B) Heatmap of *Nrk* gene expression in human, sheep, chicken, and *Xenopus* tissues. The deep purple panels represent the missing data.

## Supplementary Figure S4 (related to Figure 3)



Supplementary Figure S4. Effects of mNRK on AKT signalling and cell apoptosis (Related to Fig. 3)

- A) Effects of mNRK on AKT signalling. Different field images in the experiment contributing to Fig. 3C are shown.
- B) HEK293T cells were transfected with plasmid encoding FLAG-mNRK. As a positive control, HeLa cells were stimulated with TNF (10 ng/mL for 0.5 or 4 h) and CHX (10 μg/mL for 4 h). The lysates were subjected to immunoblotting using an anti-PARP1 antibody.

## Supplementary Figure S5 (related to Figure 5)



Supplementary Figure S5. Binding of mNRK truncated mutant to CK2 and its effects on AKT signalling (Related to Fig. 5)
A) Regions in mNRK responsible for binding to CK2β. HEK293T cells expressing indicated proteins were subjected to immunoprecipitation and immunoblotting.

B) Regions in mNRK responsible for the suppression of AKT phosphorylation. HEK293 cells expressing indicated proteins were subjected to immunoblotting, followed by densitometric analyses. The graph shows the mean ± standard deviation (SD) of three independent experiments. \*, p ≤ 0.05; \*\*, p ≤ 0.01 (one-way analysis of variance [ANOVA], followed by Dunnett's multiple comparisons test).

# Supplementary Figure S6 (related to Figure 7)



**Supplementary Figure S6. Effects of mNRK on PTEN localisation and the levels of PIP<sub>2</sub> and PIP<sub>3</sub> (Related to Fig. 7) Different field images in the experiment contributing to Fig. 7B are shown.**