iScience, Volume 25

Supplemental information

Immune translational control by CPEB4

regulates intestinal inflammation resolution

and colorectal cancer development

Annarita Sibilio, Clara Suñer, Marcos Fernández-Alfara, Judit Martín, Antonio Berenguer, Alexandre Calon, Veronica Chanes, Alba Millanes-Romero, Gonzalo Fernández-Miranda, Eduard Batlle, Mercedes Fernández, and Raúl Méndez

Figure S2. Characterization of CPEB4-depleted mice during DSS-colitis resolution, related to Figure 2

Figure S5. CPEB4 accumulates in the immune cell population of AOM/DSS tumors, related to Figure 6

SUPPLEMENTAL INFORMATION

SUPPLEMENTAL FIGURE LEGENDS

Figure S1. Characterization of gut and systemic CPEB4 depletion, related to Figure 1.

(A) Intestinal permeability in WT (n=10) and CPEB4KO (n=11) mice was measured by determining the concentration of FITC-dextran in blood serum. Mean \pm SEM, P=0,0986. (B) Representative stainings and relative quantification of Ki67 and IHC from WT and CPEB4KO untreated colons. (C) WT and CPEB4KO lamina propria (LP) myeloid cells (CD11b⁺) were analysed from CD45⁺ cells by flow cytometry analysis. (D) Thymus weight of WT (n=12) and CPEB4KO (n=10) mice. Mean ± SEM. ***P=0.0002. (E) Representative plots of thymus populations analysis by FACS. (F,G) Number of double positive (DP) (F) and double negative (DN) (G) populations of WT (n=9) and CPEB4KO (n=7) thymus. Mean \pm SEM. (F) *P=0.0115 (Mann-Whitney); (G)***P<0.0001, *P=0.0111. (H) Blood immune phenotyping of WT and CPEB4KO mice (n=10/genotype) by FACS analysis. The data are shown as FC to WT of cells/ml. CD3, *P=0.0116; (unpaired *t*-test). (I) Spleen samples from unchallenged WT (n=13) and CPEB4KO (n=11) mice were analyzed by FACS for CD3+. Data are shown as percentages from live cells (mean \pm SEM). *P=0.0267. (J) Representative plots of blood analysis by FACS. (K) CD4+ and CD8+ cells/ml and representative plots of cytometry analysis of WT and CPEB4KO blood samples. The stainings are indicated. CD4, *P=0.0151; CD8, *P=0.0166 (Unpaired *t*-test). (*L*), Percentage of CD4+ and CD8+ from spleen of WT and CPEB4KO mice. ***P=0.0007 (Unpaired *t*-test). Data are pooled of two (A) and three (C,D,F,G,H,I,K,L) biologically independent experiments.

Figure S2: Characterization of CPEB4-depleted mice during DSS-colitis resolution, related to Figure 2.

(A) Representative stainings of F480 and CD3 IHC from WT and CPEB4KO DSS-treated colons at day 10. Scale bars, 1 mm; larger magnification 100μ m. (B) Relative mRNA expression levels of *Il-6, Ccl2, Il-1a* and *Il-1b* in colon of DSS-treated WT and CPEB4KO mice at day 10 were determined by qPCR. Expression levels were measured as fold change (FC) of treated WT mice for each gene. Data are mean \pm SEM; **P=0.0041 (two-way ANOVA test, multiple comparisons). (C) CPEB4 protein expression in colon and small intestine lysates after 5 days of tamoxifen treatment in WT and CPEB4 intestine-specific KO mice. Vinculin was used as loading control. * Shows specific bands. (D) Representative H&E-stained colon sections from DSS-treated WT and CPEB4 TKO mice, analyzed at day 11. The regenerating region is highlighted with a red line. Scale bars, 2.5 mm. Larger magnification 100µm.

Figure S3: Characterization of IL-22 signaling in WT and CPEB4KO mice, related to Figure 4.

(A) Il-22 mRNA expression in colon extracts of epithelial specific WT and CPEB4KO mice (n=4/genotype). Data are normalized by *Gapdh*. (B) *Cpeb4* mRNA expression in LTi and NCR+ (ILC3) and CD4+ T cells from lamina propria of WT mice. (C) Il-23r mRNA expression in CD4 T cells (n=3) and (D) Lti and NCR⁺ ILC3 cells (n=3) from lamina propria (means \pm SEM). (E) Il-23 mRNA expression in colon extracts of WT (n=7) and CPEB4KO (n=5) mice. (F) Representative CPEB4 western blot of RNA immunoprecipitation experiment in Th17 differentiated CD4 cells. (G,H) Rorc mRNA and RORyt protein expression in WT and CPEB4KO CD4 T cells stimulated or not to induce Th17 differentiation. *P=0,0159 (Mann-Whitney test between WT and WT Th17).

Figure S4: Characterization of WT and CPEB4KO AOM/DSS tumors, related to Figure 5.

(*A*,*B*) CPEB4 protein and mRNA expression in AOM/DSS colon tumors from WT and CPEB4KO mice. * Shows specific bands; ****P*=0.0002 (Mann-Whitney test). (*C*) Percentage

of body weight loss after AOM/DSS treatment in WT (n=14) and CPEB4KO (n=18) mice. *P=0.0136, ****P<0.0001, *P=0.0182, ***P=0.0002 (two-way ANOVA test, multiple comparisons). (D) Percentage of tumor types, polypoid and flat adenomas (AD) and adenocarcinomas (ADC). The presence of one type of tumor was set as 100%. (E,F) Representative images and related quantifications of colon tumors immunostained for Ki67 (WT, n=8; CPEB4KO, n=8) and Caspase 3 (WT, n=6; CPEB4KO, n=6) at end point. Scale bars, 100 µm. (G) Epcam⁺ and CD45⁺ populations of colon tumors from WT and CPEB4KO mice were gated from lived cells. (H) Ifn γ mRNA levels, relative to Gapdh, in total colon tumor extracts from WT and CPEB4KO mice (n=14/genotype). *P=0.0163 (Mann-Whitney test). (I) ELISA of il-17a in adjacent mucosa and AOM-DSS tumors of WT (n=6) and CPEB4KO (n=6) mice. (J) Relative *il-17a* mRNA levels in WT (n=14) and CPEB4KO (n=14) tumors analysed by RT-qPCR. *P=0,5 (unpaired *t*-test).

Figure S5. CPEB4 accumulates in the immune cell population of AOM/DSS tumors, related to Figure 6. (*A*) Relative mRNA expression levels (fold change, FC) of *Cpeb4* in normal and tumoral mucosa of untreated and AOM/DSS-treated WT mice, respectively, were determined by RT-qPCR. Data are means \pm SD. ****P*=<0.005; *****P*<0.0001 (two-way ANOVA test, multiple comparisons). (*B*) Representative stainings of CPEB4 and CD45 in AOM/DSS-induced tumors from WT mice. Scale bars, 100 µm.

Table S1_Primers used for Real Time qPCR_related to STAR Methods					
Gene	Forward	Reverse			
mCpeb4	CCAGAATGGGGAGAGAGTGG	CGGAAACTAGCTGTGATCTCATCT			
mll-17a	GCTCCAGAAGGCCCTCAGA	CTTTCCCTCCGCATTGACA			
mll-17f	TCCCCTGGAGGATAACACTG	GGGGTCTCGAGTGATGTTGT			
mll-1a	GAGAGCCGGGTGACAGTATC	TGACAAACTTCTGCCTGACG			
mll-1b	GGGCCTCAAAGGAAAGAATC	TACCAGTTGGGGAACTCTGC			
mll-6	AGTTGCCTTCTTGGGACTGA	CAGAATTGCCATTGCACAAC			
mll-10	GGTTGCCAAGCCTTATCGGA	GAGAAATCGATGACAGCGCC			
mll-22	TCCGAGGAGTCAGTGCTAAA	AGAACGTCTTCCAGGGTGAA			
mTNFα	CTATGGCCCAGACCCTCACACTC	GCTGGCACCACTAGTTGGTTGTCTT			
mIFNγ	AACTGGCAAAAGGATGGTGAC	TTGCTGATGGCCTGATTGTC			
mCcl2	TTTTGTCACCAAGCTCAAGAGA	ATTAAGGCATCACAGTCCGAGT			
mll-23R	AGAGACACTGATTTGTGGGAAAG	GTTCCAGGTGCATGTCATGTT			
mSaa1/2	AGTGGCAAAGACCCCAATTA	GGCAGTCCAGGAGGTCTGTA			
mAngiogenin	TTGGCTTGGCATCATAGT	CCAGCTTTGGAATCACTG			
4					
mll-22ra2	TATTTTGCACTGGCAAGCAG	CCCATTGGCTCTGTCCATAC			
mGapdh	CTTCACCACCATGGAGGAGGC	GGCATGGACTGTGGTCATGAG			
mHPRT	TATGGCGACCCGCAGCCCT	CATCTCGAGCAAGACGTTCAG			
mTBP	AGAACAATCCAGACTAGCAGCA	GGGAACTTCACATCACAGCTC			

Table S2_ GEO Datasets used_related to STAR Methods						
Colorectal cancer datasets:						
GSE33113						
GSE14333						
GSE39582						
GSE38832						
GSE44076						
GSE39395						
GSE39396						
GSE35602						
Adult inflammatory bowel disease datasets:						
GSE13367						
GSE59071						
GSE9452						
GSE16879						
Pediatric inflammatory bowel disease dataset:						
GSE10616						