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SUPPLEMENTAL EXPERIMENTAL PROCEDURES 
 
CONTACT FOR REAGENT AND RESOURCE SHARING 

Further information and requests for resources and reagents should be directed to and will be fulfilled by 
the Lead Contact Houtan Noushmehr (hnoushm1@hfhs.org). 
 
EXPERIMENTAL MODEL AND SUBJECT DETAILS 

TCGA/GDC (https://portal.gdc.cancer.gov), Sturm et al. (2012), Turcan et al. (2012), Guintivano et al. 
(2013), Mur et al. (2013), Mazor et al. (2015), Bai et al. (2016), and Mazor et al. (2017). Molecular data from our 
own cohort collected from patients diagnosed with primary and recurrent gliomas undergoing surgical resection 
were snap frozen in liquid nitrogen and subjected to pathology quality control metrics, as previously described 
(Cancer Genome Atlas Research Network, 2008). Specimens were obtained from patients with appropriate consent. 
Sample IDs and tissue source sites from our entire longitudinal glioma cohort are listed in Table S1. 
 
METHOD DETAILS 
Molecular and clinical covariates 

Molecular data elements comprise IDH1 and 1p-19q status. All TCGA/GDC cases were manually followed 
up by the individual tissue source sites and represents a complete update of new cases as well as cases from the 
previous publications (Brennan et al., 2013); (Ceccarelli et al., 2016). Clinical covariates comprise grade, histology, 
gender, age at primary and recurrent tumor diagnoses, radiation therapy, chemotherapy based on Temozolomide 
(TMZ), overall survival, and survival since first recurrence. Survival since first recurrence was defined as follows: 
(patient overall survival) - (time elapsed between primary and first recurrent tumor surgeries) (Table S1). Clinical 
data were updated as of September 2015 by contacting the individual tissue source sites, in case of TCGA/GDC, and 
as of January 2016 and April 2016 by previously published reports in case of (Bai et al., 2016; Mazor et al., 2015, 
2017). Survival curves were estimated using the Kaplan-Meier method and Cox proportional hazards analysis. 
Illumina human methylation 450K array 

Primary and recurrent samples from CWRU_Patient01, CWRU_Patient02, and CWRU_Patient03 were 
obtained from Case Western Reserve University. Recurrent samples from previously deposited primary matched 
TCGA samples (i.e. TCGA-TQ-A7RR, TCGA-TQ-A7RW and TCGA-FG-6691) were also included in this study to 
expand the total number of available glioma primary and recurrent pairs. In the case of the TCGA GBM recurrent 
cohort (n=12), the initial primary DNA was profiled using the GoldenGate I and II platforms (~6,000 CpGs) 
(Noushmehr et al., 2010); (Brennan et al., 2013) while the matched recurrent DNA was profiled using the Infinium 
HumanMethylation450 bead arrays platform (also commonly referred to as 450K). In order to effectively analyze 
the epigenomics across all available glioma recurrent samples for this study, we generated 450K Illumina DNA 
methylation for these primary TCGA GBMs (n=12), approved by the TCGA director, Dr. Jean Zenklusen (Table 
S2). Genomic DNA from the gliomas (n=24 samples) was extracted and purified using AllPrep® DNA/RNA/miRNA 
Universal kit (QIAGEN), following the manufacturer's instructions. Only DNA samples with an absorbance 
A260/A280 nm ratio ≥1.8 were used for microarray hybridization. Sodium bisulfite conversion of the genomic DNA 
was done with EZ DNA methylation Kit (ZymoResearch, USA) following the manufacturer’s guidelines. Briefly, 
purified genomic DNA (1µg) was bisulfite converted and processed on Infinium HumanMethylation450 bead arrays 
(Illumina Inc.), as described previously (Ceccarelli et al., 2016). Raw 450K DNA methylation data (samples 
generated for the purpose of this study) is available through Mendeley Data (accession ID: 
https://data.mendeley.com/datasets/hx566mwxnm/). All other raw data are available through Genomics Data 
Commons (in the case of TCGA and the data is accessible via TCGAbiolinks (Colaprico et al., 2016) or described in 
previous studies (Mazor et al., 2015); (Bai et al., 2016; Mazor et al., 2017).  
Regulatory genomics interrogated by 450K 

The genomic location of 450K probes was divided into those within CpG islands (CGIs), in  shores, or in 
open seas (with and without overlapping gene bodies) using UCSC genome table browser (hg19) CGI genomic 
annotation. UCSC adopts the following criteria to define CGI: GC content of at least 50%, length greater than 200 
bp, and ratio of observed number of CG dinucleotides to the expected number of G and C in the DNA segment 
greater than 0.6 (genome.ucsc.edu). We annotated shores as genomic regions of 2,000 bp upstream and downstream 
flanking CGI boundaries, and open seas as genomic regions located neither in CGIs nor in shores. Accordingly, 31% 
of 450K probes are located within CGIs, 21% in shores, and 48% in open seas. 132,363 450K probes show 
overlapping with candidate enhancers that were previously described by (Yao et al., 2015). Briefly, these functional 
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genomic elements are distal 2,000 bp away from transcription start sites (TSSs), DNA hypomethylated in tumors 
when compared with normal controls, correlated to cancer-specific transcription factors, and overlap three enhancer 
databases: 1) REMC (Roadmap Epigenomics Mapping Consortium) plus 2) ENCODE (chromHMM for 98 tissues 
or cell lines), and 3) FANTOM5 (enhancers defined by eRNAs for 400 distinct cell types (Yao et al., 2015). An 
annotation of 450K bivalent chromatin domains in human embryonic stem cells was obtained from a published 
dataset. Accordingly, bivalent probes are mostly located in CGI-rich promoters and possess molecular features 
associated with depletion of retroelements (LINE, SINE, and LTR) in the genomic region directly bordering the 
TSSs, enrichment of H3K4me3 and H3K27me3 histone modifications (minimum overlapping size of 1 Kb), and 
occupancy by PRC2 and PolII complexes (Court and Arnaud, 2017). 
 
Computational methods 
Illumina 450K array preprocessing 

For level 1 TCGA/GDC “Illumina HumanMethylation450” data acquisition (version 12 for LGG and 
version 6 for GBM) we used the Bioconductor package TCGAbiolinks version 1.1.12 (Colaprico et al., 2016). A 
total of 59 matched primary and recurrent gliomas, including 35 LGG and 24 GBM samples were profiled through a 
450K array platform which interrogates DNA methylation levels of 485,577 human methylation sites. In addition to 
the TCGA data, we obtained a published dataset of 81 (Mazor et al., 2015, 2017) and a dataset of 48 (Bai et al., 
2016) longitudinally collected gliomas (complete list of samples and their respective IDs are available in Table S1). 
Probe-level signals for individual CpG sites (raw IDAT files) were subjected to background correction, global 
dye-bias normalization, calculation of DNA methylation level, and detection p-values (Triche et al., 2013) using the 
Bioconductor package methylumi version 2.16.0. The DNA methylation level for each locus is measured as a 
beta-value score (ϐ = (M/(M+U)) in which M and U represent the mean methylated and the mean unmethylated 
signal intensities for each locus, respectively. Beta-values score range from zero to one with scores of zero 
indicating complete unmethylated DNA and scores of one indicating complete methylated DNA. A p-value 
detection of each data point is used to compare the signal intensity difference between the analytical CpG sites and a 
set of negative control CpG sites represented in the array. A p-value of greater than 0.05 is not statistically 
significantly different from the background and is masked as “NA”. Probes that are designed for sequences with 
known germline polymorphisms (Illumina supplementary SNP list version 2, downloaded 12 December, 2016) and 
the X and Y chromosomes were filtered out before supervised analysis (466,835 probes remained following 
filtering). 
Classification of longitudinal gliomas 

Longitudinal glioma samples were classified as either IDH-wildtype (Classic-like, Mesenchymal-like, 
LGm6-GBM, and PA-like) or IDH-mutant (Codel, G-CIMP-high, and G-CIMP-low) DNA methylation subtypes 
using the CpG methylation signatures previously defined by our group (Ceccarelli et al., 2016) 
(tcga-data.nci.nih.gov/docs/publications/lgggbm_2016/PanGlioma_MethylationSignatures.xlsx). We evaluated the 
performance of the Random Forest (RF) machine learning prediction model by training on a random set of either 
80% of 430 IDH-wildtype samples or 80% of 448 IDH-mutant adult diffuse primary LGG-GBM TCGA samples 
(tcga-data.nci.nih.gov/docs/publications/lgggbm_2016/LGG.GBM.meth.txt), and then evaluated the performance on 
the remaining 20% of glioma samples. Given the high specificity and sensitivity of our model (accuracy > 95% on 
average), we tested the prediction model on the primary and recurrent gliomas (n=200 tumor fragments) to classify 
them according to the seven DNA methylation glioma subtypes using the RF approach and the R packages caret 
version 6.0-76 and randomForest version 4.6-12. RF probability indices are provided in Table S1.  
QUANTIFICATION AND STATISTICAL ANALYSIS 
Supervised analysis of DNA methylation 

We used the Wilcoxon rank-sum test followed by multiple testing using the Benjamini & Hochberg (BH) 
method for false discovery rate (FDR) estimation (Benjamini and Hochberg, 1995) to identify differentially 
methylated sites between two groups of study. The 84 CpG probes (Table S3) were defined by comparing a rare set 
of de novo (primary) G-CIMP-low tumors (n=12) and acquired (first recurrent) G-CIMP-low tumors (n=9), using 
the following criteria: FDR < 0.05 (adjusted p) and absolute difference in mean methylation beta-value > 0.2. The 
712 probes (Table S4) were defined by comparing a core set of 9 cases that underwent malignant transformation 
from G-CIMP-high at primary diagnosis to G-CIMP-low at first recurrence, using the following criteria: FDR < 0.05 
(adjusted p) and difference in mean methylation beta-value < -0.4 and > 0.5. The 7 probes that define prediction 
were uncovered by comparing a core set of 9 G-CIMP-high primary tumors progressing to the G-CIMP-low 
phenotype and 32 G-CIMP-high primary tumors that retained the G-CIMP-high epigenetic profiling through glioma 
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recurrence. We used the following criteria: p < 0.05 (unadjusted) and absolute difference in mean methylation beta 
value > 0.2.  
Motif discovery 

De novo and known motif discovery analyses were conducted using Hypergeometric Optimization of Motif 
EnRichment (HOMER) version 4.9 (Heinz et al., 2010). The perl script findMotifGenome.pl was used to search for 
conserved DNA binding sequences (8-20 bp motifs) associated with genomic differentially methylated regions 
(DMRs) (adjusted p < 0.05), using the following criteria: hg19 genome assembly, 200 bp upstream and downstream 
flanking each target CpG site, and expected genome-wide distribution of 450K probes as background. Raw outputs 
from HOMER can be found at Mendeley Data (accession ID: https://data.mendeley.com/datasets/hx566mwxnm/). 
Chromatin state (chromHMM) analysis 

ChromHMM data, which define 18 distinct chromatin states by combining 6 histone markers (i.e. 
H3K27ac, H3K4me1, H3K4me3, H3K36me3, H3K27me3, and H3K9me3) across 98 reference human epigenomes 
were downloaded from the NIH Roadmap Epigenomics Consortium (Roadmap Epigenomics Consortium et al., 
2015). Data shown in Figure S3 reflect the chromatin states in somatic cells and stem cells for the genomic regions 
that map to the 28 probes defined as differentially hypermethylated and 684 probes defined as differentially 
hypomethylated in G-CIMP-low recurrent cases in relation to their G-CIMP-high primary counterparts. 
Fusion transcript and DNA rearrangement analyses 

We investigated fusion transcript events and DNA rearrangements in a total of 30 matched primary and 
recurrent TCGA LGG samples derived from 13 patients with available RNA sequencing and whole-genome 
sequencing data for the primary tumor and at least one recurrent sample. RNA sequencing reads were analyzed 
using deFuse package version 0.6.0 (McPherson et al., 2011). Candidate fusions were filtered based on the following 
deFuse parameters: 

● Splitr_count ≥ 5 (5 or more split reads supporting the fusion) 
● Span_count ≥ 10 (10 or more spanning reads supporting the fusion) 
● Read_through ~ “N” (fusion is not a readthrough) 
● Adjacent ~ “N” (fusion does not involve adjacent genes) 
● Altsplice ~ “N” (fusion can not be explained by alternative splicing) 
● Min_map_count=1 (at least one spanning read supporting the fusion is uniquely mapped) 
● ORF ~ “Y” (fusion preserves the open reading frame) 

The deFuse fusion predictions were manually reviewed using blat analysis (Kent, 2002) of the breakpoint 
sequence in the UCSC Genome Browser (Kent et al., 2002). Whole-genome DNA rearrangements were identified 
using the BamBam tool (Sanborn et al., 2013), following the standard recommendation posted on the Five3 
Genomics website (dna.five3genomics.com). Briefly, variants with at least 6 reads with an average mapping quality 
> 30 were ranked as follows: +2 if read support > 15; +4 if split reads are found; +5 if ORF is preserved in a fusion 
gene; +4 if “Near fusion” (correct orientation but improper phase); +2 if deletion could cause a loss of any part of a 
gene; +1 if variant interrupts a gene. deFuse and BamBam predictions were combined to define the genomic events 
identified by both methods. Genomic rearrangements for each of the 13 patients with primary and recurrent tumor 
samples is plotted as circos plots (Figures S4A-S4D). A summary of manually curated DNA and RNA 
rearrangements for each patient is available at Mendeley data (https://data.mendeley.com/datasets/hx566mwxnm/). 
Statistics 

Data visualization and statistical analysis were performed using R software packages (www.r-project.org) 
and Bioconductor (Gentleman et al., 2004).  
 
DATA AND SOFTWARE AVAILABILITY 

The raw 450K DNA methylation data generated in this study have been deposited at Mendeley Data 
(accession ID: https://data.mendeley.com/datasets/hx566mwxnm/)  
 
Supplemental Files available at mendeley data: 

Rearrangements.xls - A summary of DNA and RNA rearrangements organized by TCGA/GDC patient. Related to 
Figures S4A-D. This data have been deposited at Mendeley Data (accession ID: 
https://data.mendeley.com/datasets/hx566mwxnm/). 

HOMER.zip - HOMER motif scans for the 84 and 712 differentially methylated CpG probes associated with 
malignant recurrence to G-CIMP-low. Related to Figures 3 and 4. This data have been deposited at Mendeley Data 
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(accession ID: https://data.mendeley.com/datasets/hx566mwxnm/). 

 
RESOURCE TABLE 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Software and Algorithms 

R 3.3.1  R Core Team, 2017 https://www.R-project.org 

ggplot2 (v2.2.1) Wickham, 2009 https://CRAN.R-project.org/packag
e=ggplot2 

TCGAbiolinks (v1.1.12) Colaprico et al., 2016 http://bioconductor.org/packages/T
CGAbiolinks/ 

Workflow to reproduce the 
stemness index 

Malta et al., 2018 https://bioinformaticsfmrp.github.i
o/PanCanStem_Web/ 

Methylumi (v2.16.0) Davis et al., 2015 http://bioconductor.org/packages/m
ethylumi/ 

deFuse McPherson et al., 2011 http://shahlab.ca/projects/defuse/ 

HOMER (v4.9) Heinz et al., 2010 http://homer.ucsd.edu/homer/ngs/p
eakMotifs.html 

Deposited Data 

Raw 450K DNA methylation data This paper https://data.mendeley.com/datasets/
hx566mwxnm/ 

Raw outputs from HOMER This paper https://data.mendeley.com/datasets/
hx566mwxnm/ 

DNA and RNA rearrangements This paper https://data.mendeley.com/datasets/
hx566mwxnm/ 

TCGA glioma cohort Ceccarelli et al., 2016 https://tcga-data.nci.nih.gov/docs/p
ublications/lgggbm_2016/ 

Longitudinal glioma cohort Mazor et al., 2015 EGAS00001001255 

Longitudinal glioma cohort Mazor et al., 2017 EGAS00001001854 

Longitudinal glioma cohort Bai et al., 2016 EGAS00001001588 

Glioma validation set Sturm et al., 2012 GEO: GSE36278 

Glioma validation set Turcan et al., 2012 GEO: GSE30339 

Glioma validation set Mur et al., 2013 GEO: GSE61160 

Normal  neuron and normal glial Guintivano et al., 2013 GEO: GSE41826 
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cells datasets  

Stemness indices Malta et al., 2018 https://gdc.cancer.gov/about-data/p
ublications/PanCanStemness-2018 

Chromatin State (ChromHMM) (Roadmap Epigenomics Consortium 
et al., 2015) 

http://www.roadmapepigenomics.o
rg 

FANTOM5 Yao et al., 2015 http://fantom.gsc.riken.jp/5/ 
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Figure S1. Temporal epigenomic phenotype of adult diffuse longitudinal gliomas harboring IDH-mutant 
codel and IDH-wildtype genotypes. Related to Figure 2. Schematic representation of matched primary and 
recurrent gliomas carrying (A) IDH-mutant 1p-19q co-deletion and (B) IDH-wildtype genotypes. Such glioma cases 
do not change dramatically in terms of their DNA methylation patterns from primary to recurrent diseases. Tumors 
are categorized according to their stem cell-like prevalence/degree of undifferentiation (stemness) by using the DNA 
methylation-based stemness index (mDNAsi) (a score value from 0 to 1) as a metric. Each box represents a patient 
tumor colored according to its mDNAsi at primary and recurrent stages of the disease. A symbol color, size, and 
shape within each box represents tumor grade, number of tumor fragments, and adjunct therapy (radiation and/or 
Temozolomide) received after surgery of primary and recurrent tumors. 
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Figure S2. Acquisition of an IDH-wildtype and stem cell-like GBM phenotype by G-CIMP-low at recurrence 
is independent of histopathological grade. Related to Figures 2 and 4. Heatmap of DNA methylation data. 
Columns represent grade IV IDH-mutant G-CIMP-high tumors at first recurrence (n=6, No change) and grade IV 
IDH-mutant G-CIMP-low tumors at first recurrence (n=9, Change) sorted by hierarchical clustering. For both 
groups (No change and Change), glioma counterparts at initial (primary) diagnosis are classified as LGG 
G-CIMP-high. Rows represent CpG probes, sorted by hierarchical clustering, identified as differentially methylated 
after supervised analysis (n=26 hypermethylated probes and n=324 hypomethylated probes in grade IV 
G-CIMP-low first recurrent tumors in relation to the grade IV G-CIMP-high first recurrent tumors; unadjusted p < 
0.01, difference in mean methylation beta-value < -0.4 and > 0.5). This suggests that G-CIMP malignant 
transformation and progression occurs independent of grade. 
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Figure S3. G-CIMP-low CpG signatures at first recurrence discriminate between differentiated adult tissue 
phenotypes and pluripotent stem cells. Related to Figures 3 and 4. Integrative analysis of 98 reference human 
epigenomes, profiled by the NIH Roadmap Epigenomics Consortium (Roadmap Epigenomics Consortium et al., 
2015), and genomic regions overlapping (A-C) hypermethylated probes (n=28) and (D-F) hypomethylated probes 
(n=684) that define the G-CIMP-low methylome at first recurrence. Heatmaps of chromatin states defined by 
dynamics of epigenomics marks not only discriminate between differentiated adult tissue phenotypes, including 
normal brain, and pluripotent stem cells, but also suggest a conserved mechanism between stem cell development 
and G-CIMP malignant transformation (epithelial to mesenchymal transition). 
  

http://f1000.com/work/citation?ids=48808&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=48808&pre=&suf=&sa=0




Figure S4. Biological relationship of genomic instability and the evolution of G-CIMP methylomes. Related to 
Figure 2. Whole-genome rearrangement analysis across (A) initially LGG IDH-mutant non-codel G-CIMP-high 
tumors and their matched recurrences that retain the precursor G-CIMP-high epimethylpattern (n=6 patients and 13 
tumors, No change); (B) IDH-mutant non-codel diffuse longitudinal gliomas belonging to the group that displays 
modest (intermediate) shift in the epigenome profiling trending towards G-CIMP-low phenotype (n=3 patients and 8 
tumors, Intermediate change); (C) IDH-mutant codel (n=3 patients and 6 tumors) and (D) IDH-wildtype (n=1 patient 
and 3 tumors). Chromosomal rearrangements increase significantly in G-CIMP-intermediate at recurrence, 
resembling the genomic instability found in the IDH-wildtype glioma case at recurrence. (E) Overall mutation rate 
(Johnson et al., 2014) increase significantly in the exome of G-CIMP-low tumors at first recurrence in relation to 
their G-CIMP-high precursor counterparts (n=4 patients and 8 tumors, Change) and in relation to G-CIMP-high 
tumors that relapse without disease progression (n=8 patients and 16 tumors, No change), suggesting that genomic 
instability accumulates alongside the evolution of G-CIMP methylomes. See ‘discussion’ section. 
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Figure S5. Mutational and copy-number variation (CNV) profiles of RB and AKT-mTOR pathways across a 
spectrum of TCGA adult diffuse primary gliomas. Related to Figures 2 and 5. G-CIMP-high and G-CIMP-low 
patients are stratified based on epigenomics shift profiles from primary to first recurrent diseases (when applicable) 
and risk to G-CIMP-low malignant transformation. Primary cases that relapse as G-CIMP-intermediate as well as 
primary cases classified as G-CIMP-low share genetic abnormalities (deletion) at the CDKN2A gene locus (67% 
[n=2 out of 3] in G-CIMP-intermediate and 36% [n=9 out of 25] in G-CIMP-low). Mutations and copy-number data 
were obtained from (Ceccarelli et al., 2016) and visualized using cBio portal (http://www.cbioportal.org/). See 
‘discussion’ section. 

http://f1000.com/work/citation?ids=1191392&pre=&suf=&sa=0
http://www.cbioportal.org/

