
Supplimentary Material: Controlled Molecule
Generation via Self-Attention based Translation

Bonggun Shin
Deargen Inc.

Seoul, South Korea
bonggun.shin@deargen.me

Sungsoo Park
Deargen Inc.

Seoul, South Korea
sspark@deargen.me

JinYeong Bak
SungKyunKwan University

Suwon, South Korea
jy.bak@skku.edu

Joyce C. Ho
Emory University

Atlanta, GA
joyce.c.ho@emory.edu

1 Background

To efficiently present the idea of the proposed model, we briefly overview Transformer [4], the basic
building block of the proposed model.

Input Embedding: For a given input sequence, X = {x1, x2, · · · , xi, · · · , xL}, xi ∈ RV , where
L is the length of the sequence and V is the number of vocabulary, we transform each token into a
continuous vector, which is the sum of a token embedding vector and the positional embedding vector.
These token embeddings are similar to word embeddings [2] except they are randomly initialized,
therefore, each token, xi is transformed into vi ∈ Rd, where d is the token embedding size. The
token embeddings themselves are not sufficient to represent a sequence with a self-attention network,
because a self-attention doesn’t consider the sequence order when calculating the attention, unlike
other attention mechanisms. Therefore, we add a fixed positional embedding, pi ∈ Rd, to vi that
makes the final input representation, ei = vi + pi, ei ∈ Rd.

Self-Attention Layer: These transformed vectors, ei, are the inputs of the encoder, consisting
of multiple stacks of a self-attention layer and a feed-forward network. Each self-attention layer
possesses three dense networks; a query network (fθQ , θQ ∈ Rd×h), key network (fθK , θK ∈ Rd×h),
and value network (fθV , θV ∈ Rd×h), where h is the hidden dimension. With these three networks,
each input vector, ei is projected into three utility vectors, a query vector (qi), key vector (ki), and
value vector (vi). Now, the output of a self-attention layer is computed as:

S = Attention(Q,K, V ) (1)

= softmax(
QKT

√
h

)V ∈ RL×h

This self-attention computation (Equation 1) can be repeated H number of times with the same input,
forming the multi-head attention.

Feed-Forward Layer: The outputs of this multi-head attention are concatenated and projected
using another dense network, called an intermediate dense layer, which parameter is represented as
θO ∈ RH·h×d. Then, it forms the final output of one encoder block, oi ∈ Rd.

Encoder: The Transformer encoder is multiple stacks of the two layers; the self-attention layer and
the feed-forward layer explained above. Note that the sequence length is preserved because the
self-attention is applied to its own sequence, which preserves the input-output length. Therefore, the

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



final output of the Transformer encoder is zi ∈ Rd, which is compatible to be an input to another
encoder.

Decoder: The Transformer decoder includes not only the same sub-layers as the Transformer encoder
but one additional layer, the cross attention layer. It is similar to the self-attention layer in that it’s
controlled by three vectors, (qi, ki, vi). The difference is that its attention weights are calculated
between the last unit’s output of the Transformer encoder and each unit of the decoder, while the
self-attention layer calculates its weights between the same layers.

Loss Function: The output of the last unit of the Transformer decoder is passed through the two dense
layers, one for producing logits for all tokens and another for producing vocabulary probabilities for
all tokens, Ŷ = {ŷ1, ŷ2, · · · , ŷj , · · · , ˆyM}, where M is the number of the output tokens. Given an
output sequence, Y = {y1, y2, · · · , yj , · · · , yN}, and the predictions, Ŷ , the loss function is a cross
entropy that can be formally defined as:

LT (θT ;X, pX , pY ) (2)

= − 1

N

1

M

∑
n∈N

∑
j∈M

∑
v∈V

yv,j,n · log(ŷv,j,n)

θT denotes all parameters of the Transformer and N represents the number of training samples.

2 Implementation Details

For the reproducibility, we provide the implementation details including model configuration and
hyper-parameters that we used.

2.1 Pre-Training of Constraint Networks

In this section, we describe the network configuration of the two constraint networks (PropNet and
SimNet), and details of the pretraining process of them.

PropNet: We use 64-dimensional hidden vectors in the biLSTM layer, and 100 dimensions in the
second last dense layer. We use Adam optimizer [1] with default parameters set by Tensorflow Keras1.
The batch size is 4,096 and the number of epochs is 1,000. The best model was selected by evaluating
20% of the data, the validation set of PropNet described above. As a result, we selected the model at
the 715th epoch, the mean square error (MSE) of the test set of which is 0.08554. Considering the
values of QED and DRD2 range from 0 to 1, and the values of penalized logp typically range from
-10 to 10, this MSE is small enough to be used as a property estimation.

SimNet: We use 64-dimensional hidden vectors in the biLSTM layer, and 100 dimensions in the
second last dense layer. We use the same optimizer as PropNet. The batch size is 4,096 and the
number of epochs is 1,000. The best model was selected by evaluating 20% of the data, test set set of
SimNet described above. As a result, we selected the model at the 755th epoch, which recorded the
prediction accuracy of the test set as 97.59%.

The weights of these two constraint networks are transferred to the corresponding part in the main
CMG model. These constraint networks in CMG are frozen when training CMG and predicting a
new molecule using it.

2.2 Single Objective Optimization(SOO)

We use 4 layers and 8 heads of self-attention and feed-forward layers for both the encoder and
the decoder. The hidden vector size is 128 and the dimension of the intermediate dense layer is
256. We set the maximum sequence length to be 150 because the max length used in the previous
self-attention based molecule representation model [3] was 100 and the default buffer size of a
typical Transformer model is 50% of its maximum sequence length. For the two constraint networks,
we use the same configuration as pre-training models of them so that they are compatible with
each other when transferring the weights. We use Adam optimizer [1] with the learning rate=2.0,

1https://www.tensorflow.org/api_docs/python/tf/keras

2

https://www.tensorflow.org/api_docs/python/tf/keras


β1 = 0.9 and β2 = 0.997. We train the proposed model (CMG) using 10M of the training set for
500 epochs with a batch size of 4,096. The dimension of the property vector is three, where the first
one is PlogP, the second one is QED, and the last one is DRD2 values. We use the desired property
vector of {XP logP , 0.0, 0.0} with the sampled offset parameters of α = {−1.0,−0.5, 0.0, 0.5, 1.0},
β = {0.1, 0.6} and γ = {0.52, 0.8}.

2.2.1 Training Details

We train one model and use it for SOO and MOO. For the ablation study, we additionally train three
other configurations and the following table shows their training times. Since SimNet processes two
sequences, the whole model with it takes longer for training compared to the whole model with only
PropNet. We train the proposed models using a single V-100 GPU.

Configurations Training Time
PNet SNet
� � 23 Hour
2� � 26 Hour
� 2� 29 Hour
2� 2� 32 Hour

Table 1: Training Time: PNet is PropNet and SNet is SimNet.

2.3 Multi-Objective Optimization (MOO)

We use the same configuration and the same training sets used in the previous task, SOO. We select
the best model based on the development set (985 samples). When predicting a new molecule,
we sample 60 molecules per input for a fair comparison to the baselines. In this task, we use the
desired property vector of {XP logP , 0.0, 0.0} and the sampled offset parameters, α = {1.0, 2.0, 3.0},
β = {0.91, 0.94, 0.97, 1.0}, and γ = {0.51, 0.6, 0.7, 0.8, 0.9}.

2.4 Case Study

: We use the same configuration and the same training sets used in the two previous tasks, SOO and
MOO. We select the best model based on the development set of DRD2 task provided by VJTNN. In
this task, we use the desired property vector of {XP logP , 0.0, 0.0} and the sampled offset parameters,
α = {0.0}, β = {−0.1,−0.05, 0.0, 0.05, 0.1}, and γ = {0.6, 0.7, 0.8, 0.9}. We allow 20 generated
samples for the proposed method and VJTNN, while we evaluate all states of MolDQN samples.

References
[1] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980, 2014.

[2] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed repre-
sentations of words and phrases and their compositionality. In Advances in neural information
processing systems, pages 3111–3119, 2013.

[3] Bonggun Shin, Sungsoo Park, Keunsoo Kang, and Joyce C. Ho. Self-attention based molecule
representation for predicting drug-target interaction. In Proceedings of the 4th Machine Learning
for Healthcare Conference, volume 106 of Proceedings of Machine Learning Research, pages
230–248. PMLR, 09–10 Aug 2019.

[4] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pages 5998–6008, 2017.

3


	Background
	Implementation Details
	Pre-Training of Constraint Networks
	Single Objective Optimization(SOO)
	Training Details

	Multi-Objective Optimization (MOO)
	Case Study


