Supplementary File

Figure S1. The expression of immune checkpoint genes correlate with age and gender: (A) CD274, (B) CTLA4, (C) HAVCR2, (D) LAG3, (E) TIGIT, (F) PDCD1, (G) PDCD1LG2, and (H) SIGLEC15.

CD274

CTLA4

HAVCR2

LAG3

Figure1 C

PDCD1

TIGIT

Figure1 D

PDCD1LG2

SIGLEC15

G

Figure S2. Kaplan-Meier overall survival curves of the immune checkpoint genes in glioma: (A) CD274, (B) CTLA4, (C) LAG3, (D) TIGIT, (E) PDCD1, (F) PDCD1LG2, and (G) SIGLEC15.

CD274

WHO Grade II Survival (Primary Glioma)

WHO Grade IV Survival (Primary Glioma)

WHO Grade III Survival (Primary Glioma)

WHO Grade II Survival (Primary Glioma)

WHO Grade IV Survival (Primary Glioma)

CTLA4

WHO Grade III Survival (Primary Glioma)

3000

P = 0.809

4000

5000

LAG3

WHO Grade IV Survival (Primary Glioma)

TIGIT

Figure2 E

WHO Grade III Survival (Primary Glioma)

PDCD1

WHO Grade II Survival (Primary Glioma)

WHO Grade IV Survival (Primary Glioma)

Figure2 F

PDCD1LG2

WHO Grade II Survival (Primary Glioma)

WHO Grade III Survival (Primary Glioma)

WHO Grade IV Survival (Primary Glioma)

SIGLEC15

Figure S3. Correlation between the eight immune checkpoint genes: (A-B) GBM, (C-D) LGG.

Figure3 A

GBM

Figure S4. Heatmaps showing the correlation between HAVCR2 gene expression and tumor-immune system interactions across all cancers in TCGA. Correlation between HAVCR2 gene expression and (A) tumor-infiltrating lymphocytes (TILs), (B) immune inhibitors, (C) immune stimulators, (D) MHC molecules, (E) chemokines, and (F) receptors.

Figure4

D

B2M HLA-A

HLA-B

HLA-C

HLA-DMA

HLA-DMB HLA-DOA

HLA-DOB

HLA-DPA1

HLA-DPB1

HLA-DQA1

HLA-DQA2

HLA-DQB1 HLA-DRA

HLA-DRB1

HLA-E

HLA-F

HLA-G

TAP1

TAP2 TAPBP

POLO

Ch & Ch Ch Cher

Chemokine

С

Immunostimulator

Receptor

Figure S5. Correlation of immune checkpoint gene expression with immune cell infiltration in GBM using TIMER: (A) CD274, (B) CTLA4, (C) HAVCR2, (D) LAG3, (E) TIGIT, (F) PDCD1, (G) PDCD1LG2, and (H) SIGLEC15. Figure5-1

GBM

GBM

Figure S6. Correlation of immune checkpoint gene expression with immune cell infiltration in LGG using TIMER: (A) CD274, (B) CTLA4, (C) HAVCR2, (D) LAG3, (E) TIGIT, (F) PDCD1, (G) PDCD1LG2, and (H) SIGLEC15.

Figure6-1

LGG

Figure6-2

LGG

