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1 Feature Map for Pairing Probability

For sequences of length L, We adapted this matrix representation W € Ri(X)L of
RNA secondary structure pairing from CDPfold [1]. The algorithm is illustrated
in figure S1.
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Figure S1: Algorithm for generating matrix representation of RNA secondary
structure pairing probability [1].

Where each entry of the matrix W;; represents probability of pairing at
that position. The matrix is first initialized as zeros. P(R;, R;) is determined
by the type of base-pairing (P(R;, R;) = 2 for A-U paring, 3 for G-C pairing
and = € (0,2) for G-U pairing). The effect of neighborhood base-pairings are
modeled as Gaussian functions with radius tracked by « and S.
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2 Model Implementation

Input of our model is generated by taking the outer product of all combinations
of four base channels of onehot encoding. This yields the first 16 channels as
shown in Figure la. After that, an additional channel representing the paring
probability (described in previous section) is then concatenated with the 16-
channel sequence representation and together server as the input of our model.

Our model (shown in Figure 1b) is a variant of U-Net[2], which takes the 17-
channel tensor as input and transform the data with consecutive convolution and
max pooling operations. Following each convolutional layer, we added a batch
normalization with running statistics turned off and a ReLU activation. There
are in total 4 downsampling operations with 2 by 2 max pooling in encoding
pathway, and 4 symmetric up convolution blocks each consists of an upsampling
with scale 2 and a 2d convolution in decoding pathway. Each up convolution
block is followed by a double convolution block same as encoding pathway. The
input of the double convolution block consists of the tensor from previous level of
decoding pathway as well as a copied tensor from encoding pathway at the same
level. Two tensors are concatenated and then feed into the double convolution
block. We use convolutional kernels with size 3, and number of channels for each
operation are denoted in Figure 1b.

The general U-net architecture is an encoder-decoder framework, which con-
sists of two main paths. The first path is the contraction path or so called encoder
path, which is designed for extracting high level features from the input data.
The encoder contains several layers of conventional convolutional and max pool-
ing layers, which result in gradually shrunken feature maps as it is shown in
Figure 1. The second path is the dedicated designed symmetric expanding path,
which is also known as decoder path, it utilized transposed convolution kernels
(i.e. up convolutional kernel) applied on the feature maps to enable precise lo-
calization. What is more, the feature maps of the same size with the decoder
output features also concatenate together as a residual connection to further re-
serve the original features, so as to alleviate the gradient vanishing when doing
back-propagation. This end-to-end fully convolutional network (FCN) naturally
owns an advantages of the ability to receiving input data of any size because
of the purely usage of convolutional layers instead of dense layer, which is suit-
able for the implementation of RNA secondary structure prediction because the
sequence length of different RNAs can be various.

At the final out put, we used a 1 by 1 convolution to take the 32-dimension
feature map to a 1-dimension score map. The map is multiplied with its transpose
to yield a symmetric contact score map and then subject to weighted binary cross
entropy loss with ground truth contact map for end to end training.
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3 Supplementary Tables

Table S1: Training and Testing dataset numbers used in the study. “Before” and
“After” denote the number of sequences before and after removing redundant
sequences

Dataset Training Testing
Before [After
RNAStralign 37149 30451 2826

Archivell / / 3966
bpRNA-1m 102318 10814 1305
mutate sequence 216040 2768 /
bpRNA-new / / 5401
PDB / 669 114

Table S2: pseudoknots, non-canonical sequence, and unstacking pairs occur-
rence percentage in different datasets.

Dataset Non-canonical Pseudoknot unstacking
RNAStralign 100% 45% 62.2%
Archivell 0% 26.2% 58.2%
TS0 0% 0% 54.6%
bpRNA-new" 0% 0% 36.4%
PDB 86.3% 55.6% 77.6%

* Dataset adapted from MXFold2 [3]
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Table S3: Number of parameters in different deep learning models.

Method Num of Parameters
UFold 8641377

MXfold2 47346

e2efold 718863
SPOT-RNA 7759445

Table S4: Benchmark results on the Archivell dataset.

Method Prec Rec F1

UFold 0.887 0.928 0.905
Contextfold 0.873 0.821 0.842
MXfold2 0.788 0.760 0.768
SPOT-RNA 0.743 0.726 0.711

E2Efold 0.734 0.660 0.686
LinearFold 0.724 0.605 0.647
MFold 0.668 0.590 0.621

Eternafold 0.667 0.622 0.636
RNAsoft 0.665 0.594 0.622
RNAstructure 0.664 0.606 0.628
RNAfold 0.663 0.613 0.631
CONTRAfold 0.695 0.651 0.665

Table S5: Benchmark results on the T'SO dataset.

Method Prec Rec F1

UFold 0.607 0.741 0.654
SPOT-RNA 0.594 0.693 0.619
MXfold2 0.519 0.646 0.558
E2Efold 0.140 0.129 0.130
Mfold 0.501 0.627 0.538

Linearfold 0.561 0.581 0.550
Contrafold 0.528 0.655 0.567
Eternafold 0.516 0.666 0.563
ContextFold 0.529 0.607 0.546
RNAfold 0.494 0.631 0.536
RNAsoft 0.497 0.626 0.535
RNAStructure 0.494 0.622 0.533
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Table S6: Benchmark results on the TS0 dataset of long range pairing.

Method Prec Rec F1

UFold 0.687 0.808 0.675
Contrafold 0.306 0.439 0.349
MXfold2 0.318 0.450 0.360
SPOT-RNA 0.361 0.492 0.403
RN Asoft 0.310 0.448 0.353
Mfold 0.315 0.450 0.356

Eternafold 0.308 0.458 0.355
Linearfold 0.281 0.355 0.305
ContextFold 0.332 0.432 0.363
RNAfold 0.304 0.448 0.350
RNAStructure 0.299 0.428 0.339

Table S7: Number of pseudoknot pairs in RNAStralign dataset.

Type Number
H_type 203
Kissing_hairpin 1069
Three knots 0
peusdoknot pairs 19277

Table S8: Benchmark results on the bpRNA-new dataset.

Method Prec Rec F1

UFold 0.570 0.742 0.636
UFold(w/o data augmentation) 0.500 0.736 0.583
Contrafold 0.620 0.736 0.661
MXfold2 0.599 0.715 0.641
Eternafold 0.598 0.732 0.647
SPOT-RNA 0.635 0.641 0.620
E2Efold 0.047 0.031 0.036
RNAsoft 0.580 0.692 0.620
Mfold 0.584 0.692 0.623
Linearfold 0.658 0.645 0.633
ContextFold 0.596 0.636 0.604
RNAfold 0.593 0.720 0.640

RNAStructure 0.586 0.704 0.629
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Table S9: Benchmark results on the T'S1 dataset.

Table

Table

Method Prec Rec F1

UFold-PDBfinetune 0.781 0.664 0.712
Contrafold 0.826 0.603 0.688
MXfold2 0.823 0.604 0.686
SPOT-RNA 0.882 0.677 0.751
Eternafold 0.827 0.634 0.709
E2Efold 0.243 0.214 0.218
RNAsoft 0.796 0.549 0.634
Mfold 0.787 0.546 0.630
Linearfold 0.826 0.545 0.644
ContextFold 0.853 0.516 0.621
RNAfold 0.801 0.588 0.666
RNAStructure 0.786 0.570 0.649

S10: Benchmark results on the T'S2 dataset.

Method Prec Rec F1
UFold-PDBfinetune 0.943 0.848 0.891
Contrafold 0.923 0.744 0.818
MXfold2 0.947 0.744 0.828
SPOT-RNA 0.922 0.790 0.843
E2Efold 0.247 0.259 0.239
RN Asoft 0.965 0.749 0.836
Mfold 0.961 0.740 0.829
Eternafold 0.894 0.721 0.793
Linearfold 0.918 0.696 0.780
ContextFold 0.920 0.683 0.777
RNAfold 0.947 0.751 0.831
RNAStructure 0.940 0.742 0.824
S11: Benchmark results on the T'S3 dataset.
Method Prec Rec F1
UFold-PDBfinetune 0.849 0.647 0.731
Contrafold 0.912 0.578 0.692
MXfold2 0.906 0.586 0.700
SPOT-RNA 0.931 0.599 0.717
E2Efold 0.173 0.117 0.132
RNAsoft 0.891 0.610 0.712
Mfold 0.901 0.610 0.714
Eternafold 0.848 0.549 0.654
Linearfold 0.943 0.515 0.642
ContextFold 0.853 0.516 0.621
RNAfold 0.850 0.548 0.677
RNAStructure 0.845 0.562 0.663
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Table S12: non-canonical prediction F1 value of UFold compared with SPOT-
RNA on PDB datasets.

TS1 TS2 TS3
UFold 0.413 0.637 0.355
SPOT-RNA 0.278 0.282 0.212

Table S13: p-value of UFold compared with other methods on four datasets.

Archivell TS0 bpnew PDB
Contextfold 2.902e-62 5.381e-22 3.183e-10 9.261e-03
MXfold2 8.475e-200 3.539¢e-17 2.287e-01 9.937e-02
SPOT-RNA  0.000e+00 1.309e-03 1.134e-03 9.160e-01
Contrafold 0.000e+4-00 1.023e-14 1.122e-07 7.258e-02
Linearfold 0.000e+00 2.877e-18 7.071e-01 8.449e-04
Eternafold 0.000e+00 4.078e-16 1.942e-02 7.232¢-02

RNAfold 0.000e+00 7.005e-24 3.351e-01 3.560e-02
RNAStructure 0.000e+00 3.647e-24 1.983e-01 1.107e-02
RNAsoft 0.000e+00 1.231e-25 4.077e-03 1.021e-02
Mfold 0.000e+00 2.050e-24 1.880e-02 7.318e-03
e2efold 0.000e+00 3.923e-27 0.000e+00 1.154e-42

Table S14: 95% confidence intervals obtained by the bootstrap percentile
method for PDB dataset with various bootstrap steps.

Bootstrap steps TS1 TS2 TS3

20 (0.698, 0.726) (0.880, 0.907) (0.704, 0.730)
50 (0.704, 0.721) (0.890, 0.906) (0.719, 0.735)
100 (0.706, 0.719) (0.890, 0.902) (0.725, 0.737)
200 (0.710, 0.718) (0.889, 0.897) (0.728, 0.736)
500 (0.707, 0.712) (0.888, 0.893) (0.730, 0.736)
1000 (0.710, 0.714) (0.889, 0.892) (0.729, 0.732)
2000 (0.709, 0.712) (0.890, 0.892) (0.730, 0.732)
5000 (0.711, 0.712) (0.890, 0.892) (0.730, 0.732)
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4 Supplementary Figure

Long range base paring
on TSO dataset
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Figure S2: long range pairing benchmark result on TS0 dataset. Violin plot on
the TS0 dataset. Visualization of F1 value of long-range base pair prediction of
UFold versus other 10 RNA secondary structure predictions methods on TS0
dataset.
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PDB dataset
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Figure S3: Violin plot on the PDB dataset. Visualization of F1 value of
UFold versus other 11 RNA secondary structure predictions methods on three
datasets(TS1,TS2,TS3) separately.
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Figure S4: Violin plot on the 6 RNAs in PDB dataset. Visualization of F1
value of UFold versus other 12 RNA secondary structure predictions methods
on 6 RNAs. The results of competitors are retrieved from SPOT-RNA paper[4].
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Figure S5:  Performance comparison on 114 RNAs from PDB
dataset(TS14+TS2+TS3) by mapping to RFAM families. Each dot repre-
sents the F1 value of each sequence prediction.
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Figure S6: Violin plot of performance comparison between RNA sequences that
are mapped to known Rfam families and those sequences that are not existed in
any Rfam families.
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Figure S7: 95% bootstrap percentile confidence intervals for the F1 value of all
the compared methods on PDB dataset.
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Figure S8: Confidence interval width versus bootstrap step size in the PDB
dataset. Dot line plot of 95% confidence interval width of F1 values as the boot-
strap size increase.
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Figure S9: Performance benchmark result on Archivell and bpnew dataset us-
ing outer concatenation or Kronecker product input. Violin plot of F1 value
prediction on the Archivell and bpnew dataset of UFold(Kronecker product in-
put) vs. outer concatenation input.
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Figure S10: Comparison of UFold prediction with the ground truth structure
on three recent released crystal structures. The secondary structure of a syn-
thetic construct RNA with PDB ID A)6QN3 (Glutamine IT Riboswitch RNA)
B)6N2V (Manganese riboswitch from Xanthmonas oryzae bound to Mn(II))
C)6E8S (iMango-III aptamer bound to TO1-Biotin). Non-canonical base pairs
are colored in light green.
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Figure S11: Comparison of UFold prediction with MXfold2 and SPOT-RNA
predictions as well as ground truth structure on PDB database with RNA ID
TEZ0 (Apo L-21 Scal Tetrahymena ribozyme) released in 2021. The predicted
F1 values of UFold, MXFold2 and SPOT-RNA on the RNA 7EZ0 are 0.803,0.744
and 0.668 respectively.
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Figure S12: Running time vs. sequence length. Dot plots of running time on
GPU against sequence length on RNAStralign dataset.
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Figure S13: Running time vs. sequence length results of three compared meth-
ods. Dot plots of running time against sequence length on RNAStralign dataset
on UFold, RNAfold and Linearfold.
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