Supplementary Online Content

Lee M, Cheng CY, Wu YL, Lee JD, Hsu CY, Ovbiagele B. Association between intensity of low-density lipoprotein cholesterol reduction with statin-based therapies and secondary stroke prevention: a meta-analysis of randomized clinical trials. *JAMA Neurol.* Published online February 21, 2022. doi:10.1001/jamaneurol.2021.5578

eFigure 1. Study Selection

eFigure 2. Risk of Bias

eFigure 3: MACE

eFigure 4. Recurrent Ischemic Stroke

eFigure 5. Myocardial Infarction

eFigure 6. All-Cause Mortality

eFigure 7. Cardiovascular Mortality

eFigure 8. New-Onset Diabetes

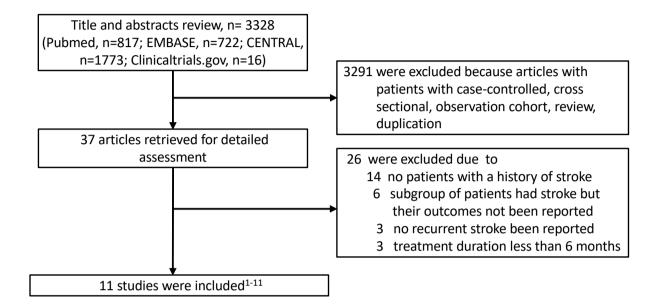
eFigure 9. Cognitive Adverse Events

eFigure 10. Recurrent Stroke

eFigure 11. Recurrent Stroke

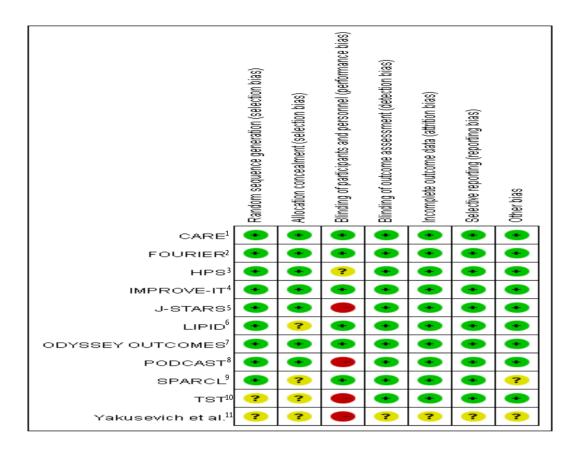
eFigure 12. Meta-regression

eFigure 13. Subgroup Analyses


eFigure 14. Publication Bias

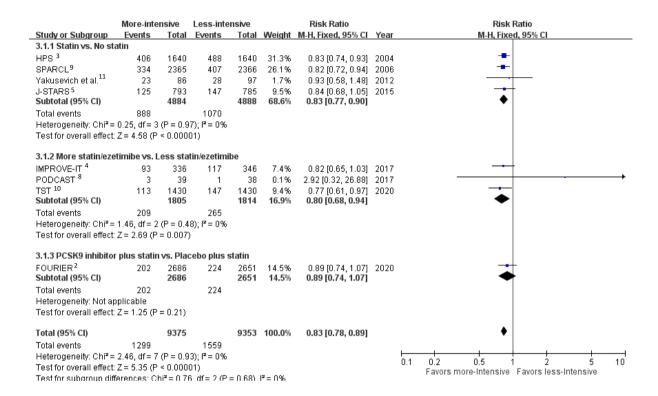
eReferences.

This supplementary material has been provided by the authors to give readers additional information about their work.


eFigure 1. Study Selection

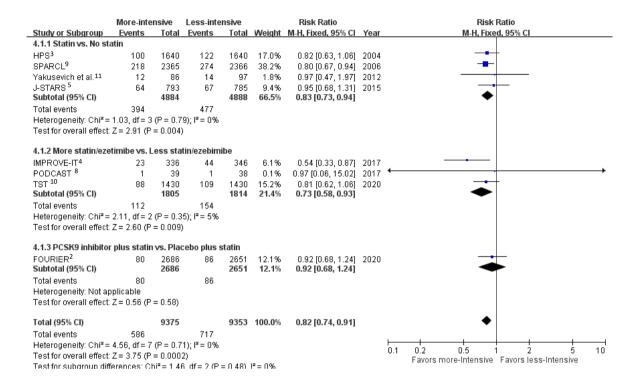
Legends: Flow of study selection

eFigure 2. Risk of Bias


Legends: Risk of bias for included trials

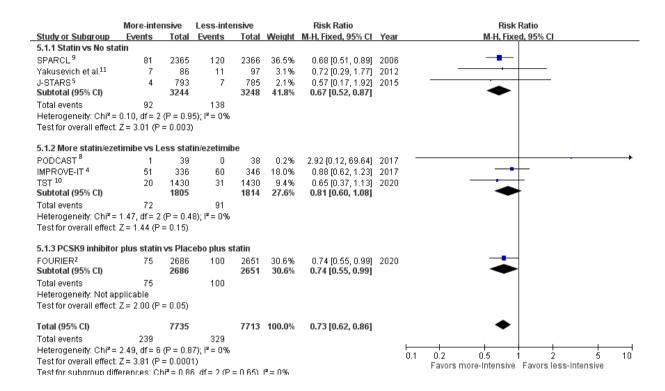
eFigure 3: MACE

Legends: Relative risk with 95% confidence interval of MACE in more intensive vs less intensive LDL-C lowering with statin-based therapies in patients with stroke


MACE: Major adverse cardiovascular events

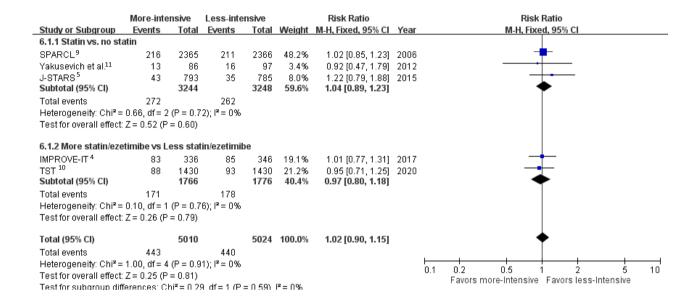
eFigure 4. Recurrent Ischemic Stroke

Legends: Relative risk with 95% confidence interval of recurrent ischemic stroke in more intensive vs less intensive


LDL-C lowering with statin-based therapies in patients with stroke

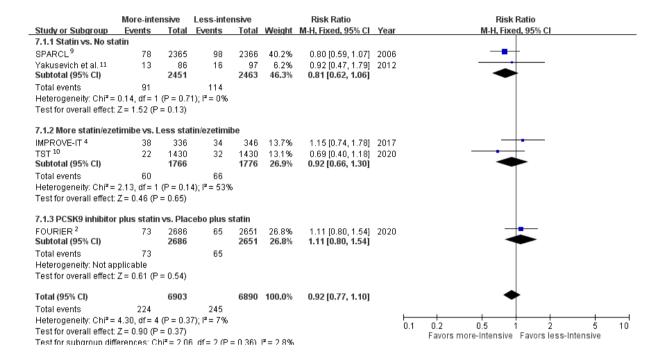
eFigure 5. Myocardial Infarction

Legends: Relative risk with 95% confidence interval of myocardial infarction in more intensive vs less intensive LDL-


C lowering with statin-based therapies in patients with stroke

eFigure 6. All-Cause Mortality

 $Legends: Relative\ risk\ with\ 95\%\ confidence\ interval\ of\ all\text{-}cause\ mortality\ in\ more\ intensive\ vs\ less\ intensive\ LDL\text{-}C$


lowering with statin-based therapies in patients with stroke

eFigure 7. Cardiovascular Mortality

Legends: Relative risk with 95% confidence interval of cardiovascular mortality in more intensive vs less intensive

LDL-C lowering with statin-based therapies in patients with stroke

eFigure 8. New-Onset Diabetes

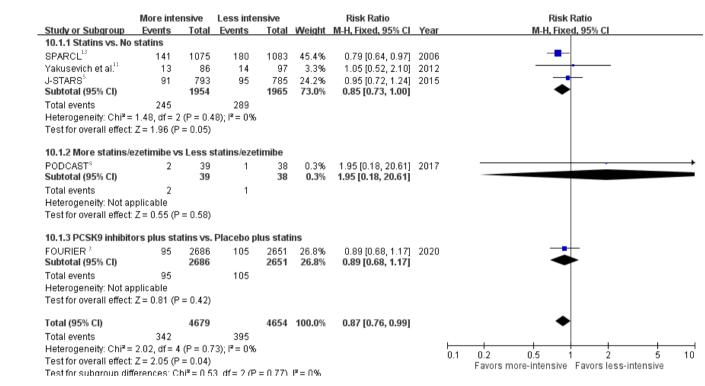
Legends: Relative risk with 95% confidence interval of new-onset diabetes in more intensive vs less intensive LDL-C

lowering with statin-based therapies in patients with stroke

	More-inte	nsive	Less-inte	nsive		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	Year	M-H, Fixed, 95% CI
8.1.1 Stains vs No st	atins							
SPARCL 12	166	1905	115	1898	38.0%	1.44 [1.14, 1.81]	2006	-
Subtotal (95% CI)		1905		1898	38.0%	1.44 [1.14, 1.81]		•
Total events	166		115					
Heterogeneity: Not ap	oplicable							
Test for overall effect	Z= 3.11 (P	= 0.002))					
8.1.2 More statins/ea	zetimibe vs.	Less st	atins/ezein	nibe				
TST ¹⁰	103	1092	82	1106	26.9%	1.27 [0.96, 1.68]	2020	
Subtotal (95% CI)		1092		1106	26.9%	1.27 [0.96, 1.68]		•
Total events	103		82					
Heterogeneity: Not ap	oplicable							
Test for overall effect	Z=1.70 (P	= 0.09)						
8.1.3 PCSK9 inhibito	rs plus stati	ins vs. P	lacebo plu	s statin	s			
FOURIER ²	114	1493	106	1475	35.2%	1.06 [0.82, 1.37]	2020	_
Subtotal (95% CI)		1493		1475	35.2%	1.06 [0.82, 1.37]		•
Total events	114		106					
Heterogeneity: Not ap	oplicable							
Test for overall effect	Z = 0.47 (P	= 0.64)						
Total (95% CI)		4490		4479	100.0%	1.26 [1.09, 1.46]		*
Total events	383		303					
Heterogeneity: Chi²=	3.01, df = 2	(P = 0.2)	2); I² = 34%)			⊢ 0.1	0.2 0.5 1 2 5 10
Test for overall effect	Z= 3.14 (P	= 0.002))				0.1	Favors more-Intensive Favors less-Intensive
Test for subgroup dif	ferences: Cl	$hi^2 = 3.0^{\circ}$	1 df = 2/P:	= 0.22)	$I^2 = 33.59$	K		Lavora more-intensive Travora less-intensive

eFigure 9. Cognitive Adverse Events

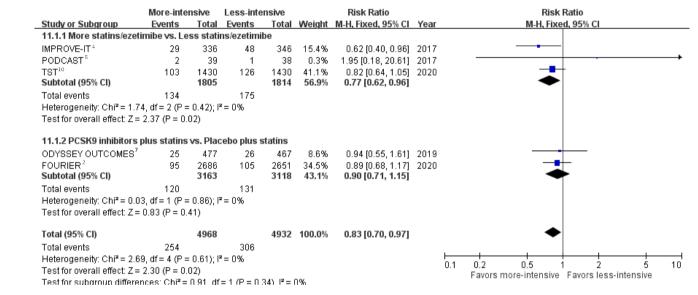
Legends: Relative risk with 95% confidence interval of cognitive adverse events in more intensive vs less intensive


LDL-C lowering with statin-based therapies in patients with stroke

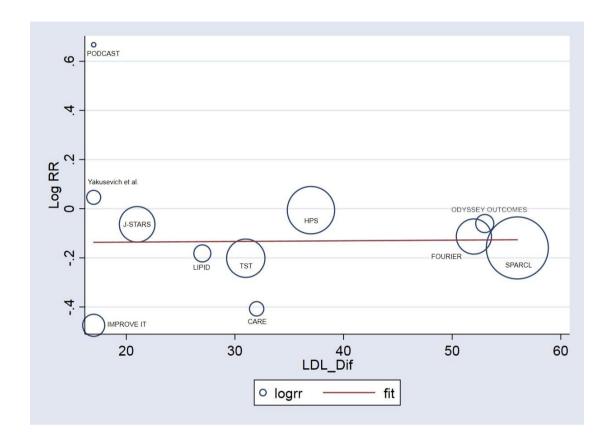
	More-inte	nsive	Less-inte	nsive		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	Year	M-H, Fixed, 95% CI
9.1.1 Statins vs. No s	statins							
J-STARS ⁵ Subtotal (95% CI)	33	793 793	33	785 785	38.3% 38.3 %	0.99 [0.62, 1.59] 0.99 [0.62, 1.59]	2015	
Total events Heterogeneity: Not as	33 pplicable	,,,,	33	100	551570	0.00 [0.02, 1.00]		
Test for overall effect:	Z= 0.04 (P	= 0.97)						
9.1.2 PCSK9 inhibitor	rs plus stati	ns vs. P	lacebo plu	s statin	s			
FOURIER ² Subtotal (95% CI)	53	2686 2686	53	2651 2651	61.7% 61.7 %	0.99 [0.68, 1.44] 0.99 [0.68, 1.44]	2020	*
Total events Heterogeneity: Not ap			53					
Test for overall effect:	Z = 0.07 (P)	= 0.95)						
Total (95% CI)		3479		3436	100.0%	0.99 [0.74, 1.33]		*
Total events Heterogeneity: Chi ² = Test for overall effect: Test for subaroun dif	Z= 0.08 (P	= 0.94)	**	= N 99\	l²= N%		⊢ 0	0.1 0.2 0.5 1 2 5 10 Favors more-intensive Favors less-intensive

eFigure 10. Recurrent Stroke

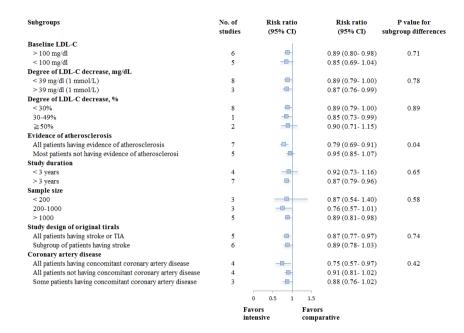
Legends: Relative risk with 95% confidence interval of recurrent stroke in more intensive vs less intensive LDL-C


lowering with statin-based therapies in patients with ischemic stroke as an entry event

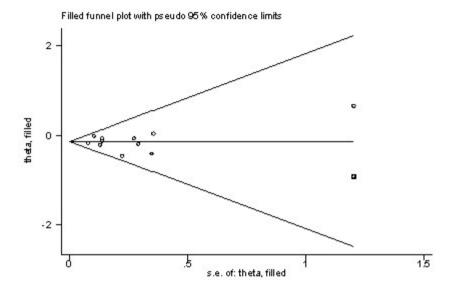
eFigure 11. Recurrent Stroke


Legends: Relative risk with 95% confidence interval of recurrent stroke in more intensive vs less intensive LDL-C

lowering with statin-based therapies in patients with stroke and taking statins in both arms


eFigure 12. Meta-regression

Legends: Meta-regression of included trials to explore the relation between degree of LDL-C lowering and recurrent stroke rate


eFigure 13. Subgroup Analyses

Legends: Subgroup analyses based on the characteristics of trials

eFigure 14. Publication Bias

Legends: Trim-and-fill analysis for included trials to explore potential publication bias

eReferences.

- Plehn JF, Davis BR, Sacks FM, et al. Reduction of stroke incidence after myocardial infarction with pravastatin: the Cholesterol and Recurrent Events (CARE) study. The Care Investigators. Circulation. 1999;99(2):216-223.
- 2. Giugliano RP, Pedersen TR, Saver JL, et al. Stroke Prevention With the PCSK9 (Proprotein Convertase Subtilisin-Kexin Type 9) Inhibitor Evolocumab Added to Statin in High-Risk Patients With Stable Atherosclerosis. Stroke. 2020;51(5):1546-1554.
- 3. Collins R, Armitage J, Parish S, Sleight P, Peto R, Heart Protection Study Collaborative G. Effects of cholesterol-lowering with simvastatin on stroke and other major vascular events in 20536 people with cerebrovascular disease or other high-risk conditions. Lancet. 2004;363(9411):757-767.
- 4. Bohula EA, Wiviott SD, Giugliano RP, et al. Prevention of Stroke with the Addition of Ezetimibe to Statin Therapy in Patients With Acute Coronary Syndrome in IMPROVE-IT (Improved Reduction of Outcomes: Vytorin Efficacy International Trial). Circulation. 2017;136(25):2440-2450.
- 5. Hosomi N, Nagai Y, Kohriyama T, et al. The Japan Statin Treatment Against Recurrent Stroke (J-STARS): A Multicenter, Randomized, Openlabel, Parallel-group Study. EBioMedicine. 2015;2(9):1071-1078.
- 6. White HD, Simes RJ, Anderson NE, et al. Pravastatin therapy and the risk of stroke. N Engl J Med. 2000;343(5):317-326.
- 7. Jukema JW, Zijlstra LE, Bhatt DL, et al. Effect of Alirocumab on Stroke in ODYSSEY OUTCOMES. Circulation. 2019;140(25):2054-2062.
- Bath PM, Scutt P, Blackburn DJ, et al. Intensive versus Guideline Blood Pressure and Lipid Lowering in Patients with Previous Stroke: Main Results from the Pilot 'Prevention of Decline in Cognition after Stroke Trial' (PODCAST) Randomised Controlled Trial. PLoS One. 2017;12(1):e0164608.
- 9. Amarenco P, Bogousslavsky J, Callahan A, 3rd, et al. High-dose atorvastatin after stroke or transient ischemic attack. N Engl J Med. 2006;355(6):549-559.
- Amarenco P, Kim JS, Labreuche J, et al. A Comparison of Two LDL Cholesterol Targets after Ischemic Stroke. N Engl J Med. 2020;382(1):9.
- 11. Yakusevich VV, Malygin AY, Lychenko SV, Petrochenko AS, Kabanov AV. The efficacy of high-dose simvastatin in acute period of ischemic stroke. Rational Pharmacother Card. 2012;8:4-16.

- 12. Waters DD, Ho JE, DeMicco DA, et al. Predictors of new-onset diabetes in patients treated with atorvastatin: results from 3 large randomized clinical trials. J Am Coll Cardiol. 2011;57(14):1535-1545.
- 13. Amarenco P, Benavente O, Goldstein LB, et al. Results of the Stroke Prevention by Aggressive Reduction in Cholesterol Levels (SPARCL) trial by stroke subtypes. Stroke. 2009;40(4):1405-1409.