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Supporting Methods 

Curve Fitting Using Results from Multiple Lectin Concentrations 
Relating data across concentrations can provide valuable insights into the binding to particular 
motifs but is reliable only for well-controlled datasets collected under consistent conditions. 
Given such datasets, MotifFinder fits logistic curves to motif binding across arrays, using N-1 
parameters (where N is the number of concentrations) up to a 4-parameter logistic regression, 
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where A is the asymptote, B is the hill slope, and C is the asymmetry parameter. 

Mapping Results onto Comparable Scales 
Integrating data between datasets allows the comparison of glycans that are unique to either 
array. The lectin concentration must be similar between arrays for the comparison to be valid. 
But even with this requirement, the scales of quantification can be greatly different, making it 
necessary to rescale the data. The process of cross-platform normalization is a challenging 
bioinformatics problem for which many different solutions have been proposed. MotifFinder 
adopts an approach similar to that of the XPN method1, with accommodations made for the 
differences between glycan arrays in content and format.  

Like the XPN method, our approach uses a maximum-likelihood estimator to solve for the 
rescale and shift parameters which maximize the likelihood of obtaining the observed data for 
one array, given the binding found on the other array. (“Likelihood” is the probability that the 
observed values in the comparison array could arise from normal distributions derived from the 
first array.) MotifFinder is different in that it uses average motif binding to estimate binding 
instead of average cluster binding. Furthermore, MotifFinder allows for motifs to bind in only one 
or the other array, using weights to reduce the influence of motifs which have low binding in just 
one array. This step allows motifs to not bind in one array due to differences between the 
arrays, without throwing off the mapping procedure. 

Predicting Lectin Binding to Glycans 
MotifFinder includes functionality for applying the binding-specificity model of a lectin to 
independent glycans in order to predict the level of lectin binding to those glycans. The first step 
is to identify which of the motifs in the model, if any, each glycan has. In cases where glycans 
have more than one motif, a unique motif assignment is achieved by following the hierarchical 
ordering of the regression tree. Next, each glycan is assigned a predicted binding corresponding 
to the relative binding of the motif at the lectin concentration of the new dataset. For 
concentrations not found in the training dataset, relative binding is interpolated using either a 
log-linear interpolation or (when available) the fitted motif logistic curves. In cases where 
observed glycan binding data is available (as in cross validation) the predicted binding is 
mapped onto the observed binding scale by solving for scale and shift parameters while 
optimizing R2 of the fit. Details of this algorithm have been published previously2. 
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Supporting Tables 

Supporting Table 1.  Comparison of MotifFinder and CCARL. Concentrations in bold 
indicate the concentration used for single concentration analysis (CCARL and MotifFinder 
Single Concentration) and the concentration used for testing all models. R2 and RMSE values in 
bold indicate the best value for the given lectin. 

           MotifFinder  

  CCARL Single Concentration All Concentrations 
Lectin Concentration R2 (SD) RMSE (SD) R2 (SD) RMSE (SD) R2 (SD) RMSE (SD) 
ABA 1, 10, 100 0.05 (0.09) 2,924 (1,285) 0.14 (0.09) 2,735 (1,515) 0.17 (0.10) 2,624 (1,459) 

ConA 1, 5, 10, 50 0.28 (0.05) 5,880 (179) 0.48 (0.10) 4,290 (1,083) 0.46 (0.08) 4,429 (674) 

DBA 0.1, 1, 10, 100 0.20 (0.05) 2,154 (1,225) 0.15 (0.16) 2,240 (1,321) 0.43 (0.43) 1,401 (1,496) 

DC-Sign 200 0.07 (0.08) 636 (420) 0.08 (0.10) 640 (451) N/A N/A 

DSL 0.1, 1, 10, 100 0.21 (0.03) 2,308 (575) 0.26 (0.17) 2,110 (481) 0.34 (0.13) 1,935 (656) 

ECL 0.01, 0.1, 0.5, 1, 5, 
50 0.27 (0.01) 1,250 (354) 0.40 (0.09) 1,007 (263) 0.37 (0.05) 1,068 (282) 

GSL-I-B4 0.5, 1, 10, 100 0.29 (0.08) 1,569 (929) 0.08 (0.09) 1,899 (989) 0.15 (0.11) 1,802 (1,040) 

H1N1 200 0.04 (0.16) 526 (337) 0.14 (0.11) 496 (361) N/A N/A 

H3N8 200 0.21 (0.10) 59 (25) 0.23 (0.09) 62 (34) N/A N/A 

Jacalin 0.1, 1, 10, 100 0.12 (0.02) 6,281 (1,014) 0.45 (0.13) 3,812 (597) 0.50 (0.12) 3,524 (675) 

LCA 0.1, 1, 10, 100 0.28 (0.03) 5,995 (763) 0.44 (0.30) 4,716 (2,745) 0.51 (0.18) 3,998 (1,450) 

MAL-I 0.1, 1, 10, 100 0.24 (0.03) 1,246 (206) 0.38 (0.15) 1,014 (285) 0.36 (0.19) 1,050 (404) 

MAL-II 0.1, 1, 10, 100 0.22 (0.01) 2,460 (1,056) 0.38 (0.23) 2,004 (1,306) 0.39 (0.24) 1,960 (1,309) 

PHA-E 0.1, 1, 10, 100 0.30 (0.03) 5,487 (1,099) 0.34 (0.13) 5,087 (970) 0.30 (0.08) 5,449 (1,029) 

PHA-L 0.1, 1, 10, 100 0.22 (0.03) 2,461 (716) 0.56 (0.21) 1,502 (1,007) 0.53 (0.14) 1,573 (859) 

PNA 0.1, 1, 10, 100 0.21 (0.02) 3,748 (1,951) 0.45 (0.15) 2,501 (1,283) 0.40 (0.20) 2,992 (2,409) 

PSA 0.1, 1, 10, 100 0.29 (0.02) 3,869 (783) 0.44 (0.16) 3,059 (1,235) 0.47 (0.13) 2,890 (896) 

RCA-I 0.1, 1, 10, 100 0.19 (0.05) 10,327 (438) 0.47 (0.08) 6,748 (869) 0.49 (0.08) 6,554 (972) 

SBA 0.1, 1, 10, 100 0.23 (0.02) 4,049 (920) 0.47 (0.22) 2,916 (1,709) 0.46 (0.19) 2,958 (1,618) 

SNA 0.005, 0.01, 0.1, 
0.5, 1, 5, 10, 50 0.24 (0.07) 7,677 (617) 0.63 (0.13) 3,659 (958) 0.63 (0.12) 3,733 (1,016) 

UEA-I 0.1, 1, 100 0.27 (0.03) 4,449 (1,523) 0.32 (0.15) 4,138 (1,997) 0.40 (0.17) 3,751 (2,049) 

WGA 0.01, 0.1, 1, 10, 
100 0.11 (0.04) 8,853 (1,633) 0.17 (0.06) 8,319 (1,800) 0.18 (0.07) 8,211 (1,937) 

TOTAL  0.21 (0.08) 3,828 (2,793) 0.34 (0.16) 2,952 (2,049) 0.40 (0.13) 3,258 (1,898) 
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Supporting Figures 

 

Supporting Figure 1. Identification of Complex, Fine Specificities. The binding intensities to 
the glycans (graphs on the left) are grouped according to their primary motifs or fine 
specificities. Each point indicates a unique glycan. In the graphical representations of the motifs 
(right), the colored boxes indicate the locations of the canonical motifs in the MotifFinder motifs.  
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Supporting Figure 2. Comparison of Alternative Array Results to CFG Results. The lectins 
presented here correspond to the lectins used in the non-CFG arrays (Fig. 2 of the main text 
and Supplementary Fig. 3). A. BC2L-A binding to the CFG array reveals only high-mannose N-
glycan epitopes, in contrast to results from the microbial array. B. Cholera toxin B binding to the 
CFG array shows the same motif as found on the CUPRA array (Supplementary Fig. 3A). C. 
GSL-I-B4 analysis on the CFG array shows a greater range of fine specificities, particularly 
among alpha- galactose structures, than the analysis on NGGM array (Supplementary Fig. 3B). 
D. SNA binding is similar to that found on the neoglycoprotein array (Supplementary Fig. 3C) 
with some additional fine specificities. E. ConA binding to the CFG array shows similarity to the 
binding to the asymmetric N glycan array (Supplementary Fig. 2D) but lacks definition of 
asymmetric motifs. 
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Supporting Figure 3. MotifFinder Applied to Additional Glycan-Array Platforms. A. The 
CUPRA array uses a depletion index (DI) to indicate the depletion of a proxy receptor. B. The 
NGGM (Next Generation Glycan Microarray) uses DNA barcodes for quantification. MotifFinder 
correctly found alpha-linked Gal as the main motif for GSL-I-B4. C. The MotifFinder analysis of 
SNA assayed on a neoglycoprotein array correctly identified binding to alpha-6 linked sialic 
acids in various contexts. D. An array of glycan structures from the cell walls of plants enables 
probing with anti-cell-wall antibodies such JIM-16. The MotifFinder results match the published 
results, with additional information about gradations. E. An array of asymmetrically branched N-
glycans allows the testing of branch-dependent binding, as demonstrated here for ConA. The 
fine-specificities of motif A reveal variation within the primary motif of the N-glycan core (motif 
A*).  

  



Automated Glycan Array Analysis 

 S9 

 

Supporting Figure 4. Comparing Model Generalization for Single-Source and Mixed-
Source Models. A. MotifFinder maps the various datasets onto a common scale to allow 
comparisons of glycans not found on both arrays. B. For five datasets collected with RCA-I, the 
diverse ranges of RFU values were mapped onto a common scale for direct comparison. C. 
Models were generated using data from only one source or, alternatively, from multiple sources. 
The datasets used in type of model are indicated by the Venn diagram. The models were 
applied to predict lectin binding to the glycans in the validation sets listed at right, which were 
not used in the creation of the models. D. Using 5-fold cross validation, the models that were 
generated from 4/5 of the glycans were used to predict lectin binding to the remaining 1/5, and 
the average R2 between predicted and observed binding was calculated. Each point represents 
an individual dataset. ** indicates p < 0.01; * indicates p < 0.05; NS, not significant, paired t-test 
with unequal variance.  
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Supporting Figure 5. Complete Motifs for Comparison of Analysis Tools for the Lectin 
ECL. A. The canonical motifs for ECL binding. B. The motifs obtained using the GlyMDB tool. 
These motifs are simple subtrees and therefore do not specify substitution intolerance such as a 
terminal epitope. C. A graphical representation of the MCAW-DB alignment of top glycans. The 
alignment as presented can be found in the MCAW-DB 
(https://mcawdb.glycoinfo.org/detail.html?737). The top-binding glycans used for the alignment 
are given (right). D. The motifs obtained using the CCARL method. For readability, all 
substitution tolerant carbons in motif M6 are not noted as all carbons are substitution tolerant. E. 
The motifs obtained using MotifFinder. These motifs include motifs C and D which are similar to 
canonical motifs not found with other methods. 


