Genome-based characterization of a plasmid-associated micrococcin P1 biosynthetic gene cluster and virulence factors in *Mammaliicoccus sciuri* IMDO-S72

David Van der Veken¹, Charlie Hollanders², Marko Verce¹, Chris Michiels³, Steven Ballet², Stefan Weckx¹ and Frédéric Leroy^{1*}

¹Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium

²Research Group of Organic Chemistry (ORGC), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium

³Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium

Content

- 1. Supplementary Methods (p. 2)
- 2. Supplementary Tables S1-S3 (pp. 3-12)
- 3. Supplementary Figures S1-S9 (pp. 13-32)

SUPPLEMENTARY METHODS

Growth experiments and kinetic modelling

The meat simulation medium (MSM) contained the following ingredients (expressed per L): 8.8 g Lab-Lemco (Oxoid), 11.0 g bacteriological peptone (Oxoid), 2.2 g yeast extract (Oxoid), 1 mL Tween 80 (Sigma), 0.038 g MnSO₄.5H₂O (VWR International, Radnor, PA, USA), 40.0 g NaCl (VWR International), 2.96 g arginine (Oxoid), 13.0 g glucose (VWR International), 100 mg oleic acid (Merck), 50 mg palmitic acid (Merck), 50 mg linoleic acid (Merck) and 25 mg stearic acid (Merck). All compounds were dissolved in ultrapure water and sterilized *in situ* at 121°C for 20 min, except for glucose and fatty acids which were sterilized separately and then aseptically added to the bioreactor.

Inoculum build-up of *M. sciuri* IMDO-S72 was achieved through three subcultures. A single colony from MSA was transferred into 10 mL of BHI broth and incubated for 8 h at 30°C. From this first subculture, 1 mL was transferred to 100 mL of MSM (pH 6.5) and incubated for 24 h at 30°C. The third subculture was obtained by transferring 1 mL of the second subculture into 100 mL of MSM (pH 6.5) followed by an incubation of 16 h at 30°C and was used as final inoculum. The MSM used in the inoculum build-up was free of arginine and fatty acids.

Experiments were performed for 46 h at a constant pH of 5.7 through automated addition of 1 M of NaOH and HCl solutions, and at a temperature of 25°C. Aerobic conditions were assumed by dispersing an airflow of 2.0 L min⁻¹ through the cultivation medium at an agitation rate of 200 rpm. Microaerobic conditions were achieved without airflow and agitation rate of 200 rpm. To avoid excessive foam formation, 10 mL of Antifoam 204 (Merck) was added to aerobic fermentations. Samples were taken at regular time intervals, after which the sampling valve was steam-sterilized during 15 min. For microbial enumeration, appropriate dilutions were made in PBS and plated on MSA followed by a 24 h incubation at 30°C. Supernatant was obtained by immediate centrifugation (4696 x g for 20 min at 4°C) of the culture liquid after sampling and stored at -20°C until further analysis.

Semi-quantitative determination of the antibacterial activity was performed using an agar spot test against *Staphylococcus carnosus* IMDO-S5 as susceptible indicator strain. For each time point, a two-fold dilution series of cell-free supernatant in PBS was made after heat treatment for 15 min at 80°C. Ten μ L of each dilution was spotted onto BHI agar and overlayed with BHI soft agar (0.7%, w/v) inoculated with 100 μ L of an overnight grown indicator strain, followed by an incubation of 15 h at 30°C.

SUPPLEMENTARY TABLES S1-S3

Supplementary Table S1. Sequence alignment (blastp) output for the functional comparison of the thiopeptide gene clusters of *Mc. caseolyticus* 115, *M. sciuri* IMDO-S72 and *B. cereus* ATCC 14579 as depicted in Figure 1.

Locus tags of	Mad	crococcus caseolyticus 115	Ва	cillus cereus ATCC 14579	Predicted enzyme function	Functional	Color
pIMDO-S72-2	Protein homolog	qcovs/evalue/bitscore/pident/ppos*	Protein homolog	qcovs/evalue/bitscore/pident/ppos*		classification	
SSCS72_02882	-	-	BC_RS25430	13/1.3/18.5/31.25/75	M. sciuri: replication initiator protein Mc. caseolyticus: - B. cereus: -	Plasmid replication	Orange
SSCS72_02883	-	-	-	-	M. sciuri: - Mc. caseolyticus: - B. cereus: -	-	-
SSCS72_02884	-	-	-	-	M. sciuri: transposase Mc. caseolyticus: - B. cereus: -	DNA recombination	Rose
SSCS72_02885	AIU53931.1	26/1.6/19.2/31.818/45.45	-	-	M. sciuri: - Mc. caseolyticus: ATPase B. cereus: -	-	-
SSCS72_02886	AIU53928.1	19/1.5/18.9/36.111/44.44	BC_RS25370	11/0.18/23.1/41.176/82.35	M. sciuri: invertase Mc. caseolyticus: integrase B. cereus: -	DNA recombination	Rose
SSCS72_02887	AIU53929.1	9/0.98/20.0/32.143/53.57	-	-	M. sciuri: transposase Mc. caseolyticus: - B. cereus: -	DNA recombination	Rose
SSCS72_02888	AIU53951.1 (<i>tclU</i>)	70/3.35E-10/44.3/32.5/53.75	BC_RS25310 (<i>tclU</i>)	57/4.86E-10/44.3/36.842/61.84	M. sciuri: transcriptional regulator Mc. caseolyticus: transcriptional regulator B. cereus: transcriptional regulator	Transcriptional regulation	Brown
SSCS72_02889	AIU53950.1 (<i>tclP</i>)	100/7.49E-83/238/55.932/69.49	BC_RS25335 (<i>tclP</i>)	73/1.72E-58/177/51.613/68.28	M. sciuri: dehydrogenase Mc. caseolyticus: decarboxylase B. cereus: dehydrogenase	Dehydrogenation	Green
SSCS72_02890	AIU53949.1 (<i>tclN</i>)	98/1.10E-125/363/44.045/63.82	BC_RS25345 (<i>tclN</i>)	97/5.32E-17/72.8/24.225/41.09	M. sciuri: - Mc. caseolyticus: cyclodehydratase B. cereus: dehydrogenase	Heterocyclization	Blue
SSCS72_02891	AIU53948.1 (<i>tclM</i>)	92/1.36E-62/189/43.725/63.16	BC_RS25350 (<i>tclM</i>)	71/9.69E-25/91.7/29.31/48.71	M. sciuri: - Mc. caseolyticus: - B. cereus: -	Macrocyclization	Purple
SSCS72_02892	AIU53947.1 (<i>tclL</i>)	98/1.55E-67/201/42.857/63.53	BC_RS25355 (<i>tclL</i>)	94/1.16E-32/112/30.263/48.03	M. sciuri: dehydratase Mc. caseolyticus: dehydratase B. cereus: dehydrogenase	Dehydration	Red
SSCS72 02893	AIU53946.1	99/0/564/41.065/62.01	BC RS25360	89/4.98E-58/203/26.289/47.04	M. sciuri: dehvdratase	Dehvdration	Red

	(tclK)		(tclK)		<i>Mc. caseolyticus</i> : dehydratase		
SSCS72_02894	AIU53945.1 (<i>tclJ</i>)	99/1.81E-170/486/47.602/65.72	BC_RS25365 (<i>tclJ</i>)	76/2.30E-82/261/35.838/50.67	M. sciuri: cyclodehydratase Mc. caseolyticus: cyclodehydratase B. cereus: cyclodehydratase	Heterocyclization	Blue
SSCS72_02895	AIU53944.1 (<i>tcll</i>)	98/4.57E-33/111/36.111/54.76	- (<i>tcll</i> gene of BC has best hit with SSCS72_02886)	-	M. sciuri: - Mc. caseolyticus: thiopeptide biosynthesis protein B. cereus: -	Heterocyclization	Blue
SSCS72_02896	AIU53943.1 (<i>tclQ</i>)	100/7.55E-76/213/72.34/87.94	BC_RS25315 (<i>tclQ</i>) BC_RS25330 (<i>tclT</i>)	99/6.00E-60/172/56.429/76.43 99/6.00E-60/172/56.429/76.43	<i>M. sciuri</i> : 50S ribosomal protein L11 <i>Mc. caseolyticus</i> : 50S ribosomal protein L11 <i>B. cereus</i> : 50S ribosomal protein L11	Immunity	Yellow
SSCS72_02897	AIU53940.1	92/4.30E-13/54.3/29.221/48.7	BC_RS25435	13/0.079/24.3/27.143/42.86	M. sciuri: - Mc. caseolyticus: - B. cereus: thiol cytolysin	Unknown	Gray
SSCS72_02898	AIU53941.1 (<i>tclS</i>)	100/8.83E-37/119/39.207/55.51	BC_RS25320 (<i>tclS</i>)	53/4.72E-14/59.3/31.746/50	M. sciuri: dehydrogenase Mc. caseolyticus: decarboxylase B. cereus: dehydrogenase	Dehydrogenation	Green
SSCS72_02899	AIU53942.1 (<i>tclE</i>)	86/0.024/20.4/66.667/83.33	BC_RS25375 (<i>tclE</i>) BC_RS25380 (<i>tclF</i>) BC_RS25385 (<i>tclG</i>) BC_RS25390 (<i>tclH</i>)	13/9/14.2/57.143/85.71 13/9/14.2/57.143/85.71 13/9/14.2/57.143/85.71 13/9/14.2/57.143/85.71	<i>M. sciuri</i> : precursor peptide <i>Mc. caseolyticus</i> : precursor peptide <i>B. cereus</i> : precursor peptide	Precursor peptide	Black
SSCS72_02900	-	-	-	-	M. sciuri: - Mc. caseolyticus: - B. cereus: -	-	-
SSCS72_02901	-	-	-	-	M. sciuri: membrane associated Mc. caseolyticus: - B. cereus: -	-	-
SSCS72_02902	AIU53934.1	42/0.027/21.6/40.741/66.67	-	-	M. sciuri: membrane associated Mc. caseolyticus: - B. cereus: -	-	-
SSCS72_02903	-	-	BC_RS25440	19/0.11/22.7/32.653/46.94	M. sciuri: membrane associated Mc. caseolyticus: - B. cereus: ABC transporter	-	-
SSCS72_02904	-	-	-	-	M. sciuri: membrane associated Mc. caseolyticus: - B. cereus: -	-	-
SSCS72_02905	-	-	-	-	M. sciuri: - Mc. caseolyticus: - B. cereus: -	-	-

SSCS72_02906	-	-	-	-	M. sciuri: - Mc. caseolyticus: -	-	-
					B. cereus: -		
SSCS72_02907	AIU53937.1	97/3.30E-37/124/26.563/54.3	BC_RS25295	2/2.8/19.2/62.5/75	M. sciuri: partitioning protein	Plasmid replication	Orange
					Mc. caseolyticus: plasmid-replication		
					associated protein		
					B. cereus: transporter		
SSCS72_02908	-	-	-	-	M. sciuri: membrane associated	-	-
					Mc. caseolyticus: -		
					B. cereus: -		

*qcovs, Query coverage per subject; evalue, Expect value; bitscore, Bit score; pident, Percentage of identical matches; ppos, Percentage of positive-scoring matches.

Supplementary Table S2. Dataset of the comparative pathogenomic output generated by VFanalyzer and used for plotting of the heatmap represented in Figure 5. Numbers 0 and 1 represent 'no detection of a homologue gene' and 'detection of at least one homologue gene', respectively. Gene_ID represents the *M. sciuri* IMDO-S72 locus tags that were detected as homologues of known virulence factors. The data in the column of *M. sciuri* IMDO-S72 is the result of a detection by either VFanalyzer and/or manual sequence alignment (blastp) as indicated by the last three columns (output for the other strains is solely based on VFanalyzer). Reference strains whose preanalyzed genomes were used by VFanalyzer to construct orthologous groups are shaded in orange, while strains whose genomes were queried are shaded in blue.

Virulence_Class	Virulence_Factors	Related_Genes	Gene_ID	M. sciuri IMDO-572	S.aureus subsp. aureus JH1	S. aureus subsp. aureus MRSA252	<i>S. aureus</i> subsp. <i>aureus</i> MW2	<i>S. aureus</i> subsp. <i>aureus</i> USA300_TCH1516	S. epidermidis RP62A	S. haemolyticus JCSC1435	<i>S. saprophyticus</i> subsp. <i>saprophyticus</i> ATCC 15305	S. carnosus TM300	S. xylosus HKUOPL8	S. equorum KS1039	VFanalyzer	BLASTP	Detected by both methods
Adherence	Autolysin	atl	SSCS72_02005, SSCS72_02030, SSCS72_01175, SSCS72_00583, SSCS72_02003	1	1	1	1	1	1	1	1	0	1	1	0	1	0
Adherence	Cell wall associated fibronectin binding protein	ebh	SSCS72_01534	1	1	1	1	1	1	0	0	0	0	0	0	1	0
Adherence	Clumping factor A	clfA		0	1	1	1	1	0	0	0	0	0	0	0	0	0
Adherence	Clumping factor B	clfB	SSCS72_00342	1	1	1	1	1	0	0	0	0	0	0	1	0	0
Adherence	Collagen adhesion	спа		0	0	1	1	0	0	0	0	0	0	0	0	0	0
Adherence	Elastin binding protein	ebp	SSCS72_01488	1	1	1	1	1	1	1	1	0	1	1	0	1	0
Adherence	Extracellular adherence protein/MHC analogous protein	eap/map		0	1	1	1	1	0	0	0	0	0	0	0	0	0
Adherence	Fibrinogen binding protein	efb		0	1	1	1	1	0	0	0	0	0	0	0	0	0
Adherence	Fibronectin binding proteins	fnbA		0	1	1	1	1	0	0	0	0	1	0	0	0	0
Adherence	Fibronectin binding proteins	fnbB		0	1	0	1	1	0	0	0	0	0	0	0	0	0

Adherence	Intercellular adhesin	icaA	SSCS72_02865	1	1	1	1	1	1	0	0	0	0	0	1	1	1
Adherence	Intercellular adhesin	icaB	SSCS72_02863	1	1	1	1	1	1	0	0	0	1	0	1	1	1
Adherence	Intercellular adhesin	icaC	SSCS72_02862, SSCS72_00185, SSCS72_01996	1	1	1	1	1	1	0	0	0	1	0	1	1	1
Adherence	Intercellular adhesin	icaD	SSCS72_02864	1	1	1	1	1	1	0	0	0	0	0	1	1	1
Adherence	Intercellular adhesin	icaR	SSCS72_02866, SSCS72_00184	1	1	1	1	1	1	0	0	0	1	0	1	1	1
Adherence	Ser-Asp rich fibrinogen-binding proteins	sdrC	SSCS72_00382	1	1	1	1	1	0	0	0	0	0	0	1	1	1
Adherence	Ser-Asp rich fibrinogen-binding proteins	sdrD		0	1	0	1	1	0	0	0	0	0	0	0	0	0
Adherence	Ser-Asp rich fibrinogen-binding proteins	sdrE		0	1	1	1	1	0	0	0	0	0	1	0	0	0
Adherence	Ser-Asp rich fibrinogen-binding proteins	sdrF		0	0	0	0	0	1	0	0	0	0	0	0	0	0
Adherence	Ser-Asp rich fibrinogen-binding proteins	sdrG		0	0	0	0	0	1	0	0	0	0	0	0	0	0
Adherence	Ser-Asp rich fibrinogen-binding proteins	sdrH		0	0	0	0	0	1	0	0	0	0	0	0	0	0
Adherence	Staphylococcal protein A	spa		0	1	1	1	1	0	0	0	0	0	0	0	0	0
Enzyme	Cysteine protease	sspВ		0	1	1	1	1	1	0	0	0	0	0	0	0	0
Enzyme	Cysteine protease	sspC		0	1	1	1	1	0	0	0	0	0	0	0	0	0
Enzyme	Hyaluronate lyase	hysA		0	1	1	1	1	0	0	0	0	0	0	0	0	0
Enzyme	Lipase	geh		0	1	1	1	1	1	0	1	1	1	0	0	0	0
Enzyme	Lipase	lip		0	1	1	1	1	1	1	1	1	1	0	0	0	0
Enzyme	Serine V8 protease	sspA	SSCS72_01332, SSCS72_02553	1	1	1	1	1	1	0	1	0	1	1	1	1	1
Enzyme	Serine protease	splA		0	1	0	1	1	0	0	0	0	0	0	0	0	0
Enzyme	Serine protease	splB		0	1	0	1	1	0	0	0	0	0	0	0	0	0

Enzyme	Serine protease	spIC		0	1	1	1	1	0	0	0	0	0	0	0	0	0
Enzyme	Serine protease	splD		0	1	1	0	1	0	0	0	0	0	0	0	0	0
Enzyme	Serine protease	splE		0	0	1	0	1	0	0	0	0	0	0	0	0	0
Enzyme	Serine protease	splF		0	0	1	1	1	0	0	0	0	0	0	0	0	0
Enzyme	Staphylocoagulase	соа		0	1	1	1	1	0	0	0	0	0	0	0	0	0
Enzyme	Staphylokinase	sak		0	1	1	1	1	0	0	0	0	0	0	0	0	0
Enzyme	Thermonuclease	nuc	SSCS72_02216	1	1	1	1	1	1	1	1	1	1	1	0	1	0
Immune evasion	AdsA	adsA		0	1	1	1	1	0	0	0	1	0	0	0	0	0
Immune evasion	CHIPS	chp		0	1	1	0	1	0	0	0	0	0	0	0	0	0
Immune evasion	Capsule	Undetermined	SSCS72_00443, SSCS72_00779, SSCS72_01982, SSCS72_00350, SSCS72_00562	1	1	1	1	1	0	1	1	1	1	1	1	1	1
Immune evasion	SCIN	scn		0	1	1	1	1	0	0	0	0	0	0	0	0	0
Immune evasion	Sbi	sbi		0	1	1	1	1	0	0	0	0	0	0	0	0	0
Secretion system	Type VII secretion system	esaA		0	1	1	1	1	0	0	0	0	0	0	0	0	0
Secretion system	Type VII secretion system	esaB		0	1	1	1	1	0	0	0	0	0	0	0	0	0
Secretion	Type VII secretion	esaD		0	1	0	1	1	0	0	0	0	0	0	0	0	0
Secretion	Type VII secretion system	esaE		0	1	0	1	1	0	0	0	0	0	0	0	0	0
Secretion system	Type VII secretion system	esaG		0	1	1	1	1	0	0	0	0	0	0	0	0	0
Secretion system	Type VII secretion system	essA		0	1	1	1	1	0	0	0	0	0	0	0	0	0
Secretion system	Type VII secretion system	essB		0	1	1	1	1	0	0	0	0	0	0	0	0	0
Secretion system	Type VII secretion system	essC		0	1	1	1	1	0	0	0	0	0	0	0	0	0
Secretion system	Type VII secretion system	esxA		0	1	1	1	1	0	0	0	0	0	0	0	0	0
Secretion system	Type VII secretion system	esxB		0	1	0	1	1	0	0	0	0	0	0	0	0	0

Secretion system	Type VII secretion system	esxC	0	1	0	1	1	0	0	0	0	0	0	0	0	0
Secretion system	Type VII secretion system	esxD	0	1	0	1	1	0	0	0	0	0	0	0	0	0
Toxin	Alpha hemolysin	hly/hla	0	1	1	1	1	0	0	0	0	0	0	0	0	0
Toxin	Beta hemolysin	hlb	0	1	1	1	1	1	0	0	0	0	0	0	0	0
Toxin	Delta hemolysin	hld	0	1	1	1	1	1	0	0	0	0	0	0	0	0
Toxin	Enterotoxin A	sea	0	0	1	1	0	0	0	0	0	0	0	0	0	0
Toxin	Enterotoxin B	seb	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Toxin	Enterotoxin C	sec	0	0	0	1	0	0	0	0	0	0	0	0	0	0
Toxin	Enterotoxin D	sed	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Toxin	Enterotoxin E	see	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Toxin	Enterotoxin G	seg	0	1	1	0	0	0	0	0	0	0	0	0	0	0
Toxin	Enterotoxin H	seh	0	0	0	1	0	0	0	0	0	0	0	0	0	0
Toxin	Enterotoxin I	sei	0	1	1	0	0	0	0	0	0	0	0	0	0	0
Toxin	Enterotoxin J	sej	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Toxin	Enterotoxin Yent1	yent1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Toxin	Enterotoxin Yent2	yent2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Toxin	Enterotoxin-like K	selk	0	0	0	1	1	0	0	0	0	0	0	0	0	0
Toxin	Enterotoxin-like L	sell	0	0	0	1	0	0	0	0	0	0	0	0	0	0
Toxin	Enterotoxin-like M	selm	0	1	1	0	0	0	0	0	0	0	0	0	0	0
Toxin	Enterotoxin-like N	seln	0	1	1	0	0	0	0	0	0	0	0	0	0	0
Toxin	Enterotoxin-like O	selo	0	1	1	0	0	0	0	0	0	0	0	0	0	0
Toxin	Enterotoxin-like P	selp	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Toxin	Enterotoxin-like Q	selq	0	0	0	1	1	0	0	0	0	0	0	0	0	0
Toxin	Enterotoxin-like R	selr	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Toxin	Enterotoxin-like U	selu	0	0	1	0	0	0	0	0	0	0	0	0	0	0
Toxin	Exfoliative toxin type A	eta	0	1	1	1	1	0	0	0	0	0	0	0	0	0
Toxin	Exfoliative toxin type B	etb	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Toxin	Exfoliative toxin type C	etc	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Toxin	Exfoliative toxin type D	etd	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Toxin	Exotoxin	set10	0	1	0	0	0	0	0	0	0	0	0	0	0	0
Toxin	Exotoxin	set11	0	1	0	0	0	0	0	0	0	0	0	0	0	0
Toxin	Exotoxin	set12	0	1	0	0	0	0	0	0	0	0	0	0	0	0
Toxin	Exotoxin	set13	0	1	0	0	0	0	0	0	0	0	0	0	0	0
Toxin	Exotoxin	set14	0	1	0	0	0	0	0	0	0	0	0	0	0	0
Toxin	Exotoxin	set15	0	1	0	0	0	0	0	0	0	0	0	0	0	0
Toxin	Exotoxin	set16	0	0	0	1	0	0	0	0	0	0	0	0	0	0
Toxin	Exotoxin	set17	0	0	0	1	0	0	0	0	0	0	0	0	0	0
Toxin	Exotoxin	set18	0	0	0	1	0	0	0	0	0	0	0	0	0	0
Toxin	Exotoxin	set19	0	0	0	1	0	0	0	0	0	0	0	0	0	0
Toxin	Exotoxin	set1	0	0	1	0	0	0	0	0	0	0	0	0	0	0
Toxin	Exotoxin	set20	0	0	0	1	0	0	0	0	0	0	0	0	0	0
Toxin	Exotoxin	set21	0	0	0	1	0	0	0	0	0	0	0	0	0	0
Toxin	Exotoxin	set22	0	0	0	1	0	0	0	0	0	0	0	0	0	0
Toxin	Exotoxin	set23	0	0	0	1	0	0	0	0	0	0	0	0	0	0
Toxin	Exotoxin	set24	0	0	0	1	0	0	0	0	0	0	0	0	0	0
Toxin	Exotoxin	set25	0	0	0	1	0	0	0	0	0	0	0	0	0	0
Toxin	Exotoxin	set26	0	0	0	1	0	0	0	0	0	0	0	0	0	0
Toxin	Exotoxin	set2	0	0	1	0	0	0	0	0	0	0	0	0	0	0
Toxin	Exotoxin	set30	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Toxin	Exotoxin	set31	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Toxin	Exotoxin	set32	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Toxin	Exotoxin	set33	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Toxin	Exotoxin	set34	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Toxin	Exotoxin	set35	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Toxin	Exotoxin	set36	0	0	0	0	1	0	0	0	0	0	0	0	0	0

Toxin	Exotoxin	set37		0	0	0	0	1	0	0	0	0	0	0	0	0	0
Toxin	Exotoxin	set38		0	0	0	0	1	0	0	0	0	0	0	0	0	0
Toxin	Exotoxin	set39		0	0	0	0	1	0	0	0	0	0	0	0	0	0
Toxin	Exotoxin	set3		0	0	1	0	0	0	0	0	0	0	0	0	0	0
Toxin	Exotoxin	set40		0	0	0	0	1	0	0	0	0	0	0	0	0	0
Toxin	Exotoxin	set4		0	0	1	0	0	0	0	0	0	0	0	0	0	0
Toxin	Exotoxin	set5		0	0	1	0	0	0	0	0	0	0	0	0	0	0
Toxin	Exotoxin	set6		0	1	0	0	0	0	0	0	0	0	0	0	0	0
Toxin	Exotoxin	set7		0	1	0	0	0	0	0	0	0	0	0	0	0	0
Toxin	Exotoxin	set8		0	1	0	0	0	0	0	0	0	0	0	0	0	0
Toxin	Exotoxin	set9		0	1	0	0	0	0	0	0	0	0	0	0	0	0
Toxin	Gamma hemolysin	hlgA		0	1	1	1	1	0	0	0	0	0	0	0	0	0
Toxin	Gamma hemolysin	hlgB		0	1	1	1	1	0	0	0	0	0	0	0	0	0
Toxin	Gamma hemolysin	hlgC		0	1	1	1	1	0	0	0	0	0	0	0	0	0
Toxin	Leukocidin M	lukF-like		0	0	0	0	0	0	0	0	0	0	0	0	0	0
Toxin	Leukocidin M	lukM		0	0	0	0	0	0	0	0	0	0	0	0	0	0
Toxin	Leukotoxin D	lukD		0	1	1	1	1	0	0	0	0	0	0	0	0	0
Toxin	Leukotoxin E	lukE		0	1	1	1	1	0	0	0	0	0	0	0	0	0
Toxin	Panton-Valentine leukocidin	lukF-PV		0	0	0	1	1	0	0	0	0	0	0	0	0	0
Toxin	Panton-Valentine leukocidin	lukS-PV		0	0	0	1	1	0	0	0	0	0	0	0	0	0
Toxin	Toxic shock syndrome toxin	tsst		0	0	0	0	0	0	0	0	0	0	0	0	0	0
Phagosome arresting	Nucleoside diphosphate kinase	ndk	SSCS72_01502	1	0	0	0	0	0	0	0	0	0	0	1	1	1
Surface protein anchoring	Lipoprotein diacylglyceryl transferase	lgt	SSCS72_02264	1	0	0	0	0	0	0	0	0	0	0	1	1	1

Supplementary Table S3. Log values [log(CFU mL⁻¹)] of raw count data with corresponding standard deviation (SD) and antibacterial activity values (AU) of supernatant obtained during aerobic and microaerobic growth experiments, which was used for modelling. In the aerobic case, values represent the average based on three biological independent replicates.

		Aerobi	c condition	Micro	aerobic condition
Time (h)	Log(CFU mL ⁻¹)	SD	Antibacterial activity (AU)	Log(CFU mL ⁻¹)	Antibacterial activity (AU)
0	5.85	0.21	0	5.39	0
2	5.80	0.18	0	5.28	0
4	6.31	0.55	0	5.89	0
6	6.93	0.27	0	6.17	0
8	7.47	0.33	0	6.94	0
10	7.98	0.17	0	7.69	0
12	8.42	0.25	100	7.43	0
14	8.86	0.13	233	7.92	50
16	9.28	0.38	333	7.90	100
18	9.26	0.17	433	8.12	100
20	9.46	0.21	800	8.18	150
22	9.69	0.20	800	8.18	150
24	9.63	0.26	1600	8.06	150
26	9.65	0.21	2133	8.16	150
28	9.68	0.14	2400	8.12	200
30	9.55	0.13	2400	8.19	200
32			2933	\land	100
34	9.98	0.15	3200	8.42	200
36			3200	\land	150
38	10.01	0.09	3200	8.75	200
40			3200	\land	200
42	10.28	0.32	3200	8.13	200
44			3200	>>	300
46	9.87	0.10	3200	8.13	100

SUPPLEMENTARY FIGURES S1-S9

Supplementary Figure S1. PCR profiles of the heat-treated isolates used to determine the frequency of the plasmid genotypes found. Each isolate was screened in duplicate and is indicated with a C number above each two lanes [excluding the non-antibacterial isolates (C12, C16, C18, C22, C25, C38, C39, C47, C52, C61, C63, C76, C86, C87, C88, C94, C100, C117, C121, C127, C133, C154, C156, C167, C168 and C178), the profiles of which are shown in Supplementary Figure S2]. Lanes denoted with M represent molecular size markers, lanes denoted with N represent negative PCR controls and lanes denoted with P represent the PCR profile of the native *M. sciuri* IMDO-S72 strain.

Supplementary Figure S2. PCR profiles of non-antibacterial isolates (indicated with C numbers for each lane) next to the profile of the native *M. sciuri* IMDO-S72. Profiles are based on multiplex PCR using extracted genomic DNA as input. Lanes denoted with M represent molecular size markers, the lane denoted with N represents a negative PCR control.

Supplementary Figure S3. Confirmation of the purified micrococcin P1 from fermentation supernatant with LC-MS. (A) Chromatogram showing the elution of micrococcin P1 around 15 min (upper graph) and the total ion count of the corresponding peak (lower graph). (B) Mass spectrum of the eluted fraction at 14.87 min, with an m/z ratio of 1144.572 approximating that of the protonated micrococcin P1 [M+H]⁺.

В

25

Supplementary Figure S4. Chromatogram of the purified micrococcin P1 extract based on reversed-phase HPLC (A) and its corresponding high-resolution mass spectrum based on HRMS (B).

Supplementary Figure S4. continued

В

27

Supplementary Figure S5. ¹H NMR spectrum of the purified compound with the signals of micrococcin P1 indicated on top and peak integrations represented in red on the bottom. Signals related to impurities are indicated with a red frame. The sample was recorded in DMSO-*d6* at a field strength of 500 MHz.

Supplementary Figure S6. ¹H NMR spectrum overlay of the purified compound (blue) with the commercially available micrococcin P1 (red) from Cayman Chemical with a purity of 95%. The samples were recorded in DMSO-*d6* at a field strength of 500 MHz.

Supplementary Figure S7. ¹H-¹H COSY spectrum of the purified compound recorded in DMSO-*d*₆ with a 500 MHz field strength.

Supplementary Figure S8. ¹H-¹³C HSQC spectrum of the purified compound recorded in DMSO- d_6 with a 500 MHz field strength.

Supplementary Figure S9. ¹H-¹³C HMBC spectrum of the purified compound recorded in DMSO-*d*₆ with a 500 MHz field strength.

