
 Supplementary Materials 

 Materials and methods 

 Data and Code Availability 
 Source code for data preprocessing and modeling and available at 
 https://github.com/broadinstitute/pyro-cov  . GISAID  sequence data is publicly available at 
 https://gisaid.org  .  PANGO lineage aliases are available  at  https://cov-lineages.org  with source 
 code at  https://github.com/cov-lineages/lineages-website  and lineage aliases available at 
 https://github.com/cov-lineages/pango-designation  .  UShER phylogenies of public data are 
 available at  http://hgdownload.soe.ucsc.edu/goldenPath/wuhCor1/UShER_SARS-CoV-2  .  The 
 whole genome map is available as part of NextClade at 
 https://github.com/nextstrain/ncov/blob/50ceffa/defaults/annotation.gff  .  Structures of ORFab 
 regions are available at  https://www.ncbi.nlm.nih.gov/protein  . 

 Regression model of relative fitness (PyR  0  model) 
 We fit a Bayesian, hierarchical multinomial logistic regression model to data from GISAID using 
 Pyro. Details are provided in the supplemental note below. 

 Simulation of lineages 
 We carried out a simulation study to determine whether the process of clustering genomes into 
 named lineages could generate an artifactual increase in estimated fitness. The simulation was of 
 a single neutrally evolving viral population with discrete generations and a stochastic population 
 size generated by a highly overdispersed negative binomial distribution with the current fitness. 
 (Overdispersion parameter = 0.11, which yields 10% of cases causing 80% of transmission.) The 
 fitness is 2.5 for the first 10 generations; subsequently it drops to 1.5 until the viral population 
 reaches 80,000 infections, whereupon it drops again to 0.8. When the population decreases to 
 10,000, the growth switches back to 1.5, and continues cycling when the high and low 
 population thresholds are reached. (A model with a roughly constant-sized population yields 
 similar results.) The population starts as a single named lineage. Each generation, the most 
 successful nodes in that generation are determined by looking ahead four generations and 
 counting descendants. New lineages are assigned to the nodes with the most descendants 
 (minimum of 200 descendants), up to a maximum of 10 lineages per generation. 10% of all 
 infections are randomly sampled and any lineage with fewer than 20 descendants is discarded. 
 When all new lineages have been generated and all nodes assigned a lineage, a global 
 multinomial logistic regression is performed, using the Python package sklearn.linear_model, 
 yielding relative fitness estimates of all lineages. 

 Spatial analysis of mutation coefficients 
 To assess the spatial structure of the inferred amino acid coefficients β  f  (described in 
 Probabilistic Model below), we utilize the Moran I spatial autocorrelation statistic.  We report 
 (see Table S1) one-sided p-values for Moran I computed using a permutation test with 999,999 
 random permutations. We use a gaussian weighting function of the form 
 exp(-distance  2  /lengthscale  2  ), where distance is measured  in units of nucleotides. We compute 
 Moran I statistics both for individual genes and the entire genome. For larger genes whose extent 
 is 1000+ nucleotides we use a length scale of 50 nucleotides. For smaller genes (e.g. ORF8) we 
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 set the length scale to one twentieth of the extent of the gene. When considering the entire set of 
 amino acid changes, i.e. all 2,904 coefficients that make up β  f  , we compute the Moran I statistic 
 for two different length scales. We note, however, that the Moran I statistic is somewhat 
 simplistic, since it is designed to pick up spatial structure at a single length scale. In particular it 
 can be insensitive to complex spatial structure that involves multiple overlapping substructures at 
 different scales. Nevertheless it offers a simple quantitative metric for identifying spatial 
 structure in the coefficients β  f  . 

 Analysis of substitution statistics 
 To assess enrichment of amino acid changes we compared the event frequencies for the leading 
 mutation sets (as determined by posterior mean/std ranking) against a background of all 
 mutations used as features in the model using multiple testing corrected binomial tests. We 
 performed this analysis for both the asymmetric case (where A->V and V->A are different 
 events) and for the symmetric case. 

 Comparison to other regression models 
 We fit logistic regression models in R version 4.0.3. The stats::glm() was used to fit binomial 
 logistic regression models and the nnet::multinom function was used to fit multinomial logistic 
 regression models. For multinomial logistic regressions, the data were filtered to contain 
 sequences between January 1 2021 and December 31 2021 from the most common 25 pango 
 lineages in the 10 countries with the most sequences available. The resulting dataset was 
 downsampled to 10% of its initial size. 

 Supplemental Note 1: Detailed description of PyR  0  model 

 Data Preparation 
 We downloaded 6,466,300 samples from GISAID  (  13  ,  14  )  on January 20, 2021.  Each sample 
 record includes labels for time, location, PANGO lineage annotation  (  11  )  , and genetic sequence. 
 We discard records with missing time, location, or lineage.  We use UShER  (  20  )  to build a 
 mutation-annotated phylogenetic tree, discarding sequences whose alignment quality is not 
 reported as “good”.  We bin time intervals into 14-day segments, choosing a multiple of 7 to 
 minimize weekly seasonality, but binning coarser than a week so as to reduce memory 
 requirements; this results in 56 time bins. 

 Because sample counts vary widely across GISAID geographic region (by as much as five orders 
 of magnitude), we aggregate regions into the following coarse partitions: each country counts as 
 a region, and any first level subregion of a country counts as a region if it has at least 50 samples; 
 otherwise it is aggregated into a whole-country bin. Note this means that e.g. a country may be 
 split up into its larger regions, with smaller regions being subsumed into an aggregate country 
 level bin. We then drop regions without samples in at least two different time intervals, resulting 
 in 1560 regions in total. Figure S17 shows the distribution of samples among countries and 
 GISAID regions. 

 After preprocessing, the model input data are a T × P × C = 56 × 1560 × 3000 shaped array y  tpc  ∈ 
 ℕ of counts (this array is sparse and our inference code uses a sparse representation), and an C × 
 F = 3000 × 2904 shaped array X  sf  ∈ {0, 1} of mutation  features. 
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 Cases per day (see Figure 3 inset) were estimated by multiplying confirmed case count data from 
 Johns Hopkins University by the estimated proportion of each lineage within each (time, region) 
 bin. We manually matched each GISAID region to the finest enclosing JHU region. 

 Lineage Clustering 
 Our method relies on a partitioning of genetic samples into clusters, where we estimate the 
 fitness of each cluster. We initially tried to use the 1544 PANGO lineages as clusters, but found 
 that some PANGO lineages appeared to include multiple distinct viruses of different fitness, e.g. 
 B.1.1. exhibits two peaks in relative abundance in England, contrary to our multivariate logistic 
 growth model. We therefore refined the 1544 PANGO lineages into 3000 finer clusters, with 
 rates estimated individually for each cluster.  Indeed Figure S4 shows that some PANGO 
 lineages contain multiple distinct clusters of fitness estimates differing by more than a factor of 
 two. 

 To create genetic clusters finer than PANGO lineages we began with a complete 4,833,238 node 
 phylogeny of all GISAID samples maintained by Angie Hinrichs  (  20  )  (this phylogeny was 
 created using UShER  (  21  )  , excluding private mutations,  masking difficult-to-sequence regions, 
 eliding deletions, parsimoniously imputing missing sequence data). To coarsen the 
 4,833,238-node phylogenetic tree down to 3000 nodes (treated as clusters) we greedily collapsed 
 parent-child edges, minimizing the the following distance function  TreeDistance  (-,-) between 
 two mutation annotated trees 

 𝑇𝑟𝑒𝑒𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ( 𝑇 ,  𝑇  ' )   =
 𝑢 
∑

 𝑣 
∑  𝐸𝑑𝑖𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ( 𝑚𝑟𝑐𝑎 ( 𝑇 ,  𝑢 ,  𝑣 ),     𝑚𝑟𝑐𝑎 ( 𝑇  ' ,  𝑢 ,  𝑣 )))

 where T is the true mutation annotated tree, T' is the collapsed tree whose nodes we treat as 
 clusters, u and v are sample sequences,  mrca  (T,u,v)  is the sequence of the most recent common 
 ancestor of u,v in the mutation annotated tree T, and  EditDistance  (-,-) counts amino acid 
 substitutions between two sequences. This objective function minimizes the mean edit distance 
 between the true mrca sequence and its cluster's sequence, for each pair of sequences. Changes in 
 the objective function can be computed cheaply, and the O(n log(n)) time greedy algorithm can 
 process the entire n=4,833,238 node phylogeny in under 5 minutes. Empirically this heuristic 
 clustering produces trees that are approximately balanced in both cluster size and cluster-cluster 
 edit distance, on both the true data and on synthetic datasets. Figure S18 shows the distribution 
 of samples among both coarse PANGO lineages and the finer clusters. Figure S19 shows small 
 example trees produced by clustering large synthetic trees. 

 Probabilistic Model 
 We model relative lineage growth with a hierarchical Bayesian regression model with a 
 multinomial likelihood. Arrays in the model index over one or more indices: T=56 time steps 
 (increments of 14 days) t; C=3000 clusters c; P=1560 regions (“places”) p; and F=2904 amino 
 acid substitutions (“features”) f. The model, shown below, regresses lineage counts y  tpc  ∈ ℕ in 
 each time-region-lineage bin against amino acid mutation covariates X  cf  ∈ {0,1}. The variables y 
 and X are observed and all other variables in the model are latent.  Each latent variable is 
 governed by a prior distribution. The full model is specified as follows (visualized in Figure 
 S20), where the observed counts y  tpc  are underlined: 
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 The proportion of lineages in a single time-region bin is modeled as a Multinomial distribution 
 whose probability parameter is a multivariate logistic growth function softmax(α  p  ·  + tβ  p  ·  /τ) with 
 intercept α  pc  and slope β  pc  in units of generation  time τ = 5.5 days (these units are for 
 interpretability only; the model does not use the notion of generation, and thus is robust to 
 changes in generation time). Here the dot subscripts α  p  ·  ∈ ℝ  C  , β  p  ·  ∈ ℝ  C  , and y  tp.  ∈ ℕ  C  denote vectors 
 over cluster ids. The softmax function implements the multivariate generalization of logistic 
 growth, inputting and outputting vectors, and is defined as 

 For a simple model of two lineages, each of the two components of the softmax function are 
 sigmoid curves; however for more lineages, the functional forms may be more complex. Early 
 iterations of the model used overdispersed likelihoods such as Dirichlet-Multinomial to account 
 for additional variability not directly encoded in the generative process. However, we found that 
 we can obtain much more accurate model predictions by using a Multinomial likelihood and 
 accounting for model misfit by adding hierarchical structure elsewhere. The intercepts α  pc  denote 
 initial relative log prevalence of cluster c in region p; these are modeled hierarchically around the 
 global relative log prevalence α  c  of each cluster.  The slopes β  pc  are modeled hierarchically around 
 global per-cluster fitness  that  are linearly regressed against amino acid substitution Σ

 𝑓 
   β

 𝑓 
    𝑋 

 𝑐𝑓 
 features X  cf  .  These linear coefficients β  f  can be  directly interpreted as the effect of a mutation on 
 a lineage’s fitness, all other variation being equal. In figures we plot posterior means 

 as an estimate of effect size  and plot the posterior z-score  𝔼 [β
 𝑓 
 |  𝑑𝑎𝑡𝑎 ]   =:    ∆ log  𝑅 

 as a proxy for statistical significance.  |𝔼 [β
 𝑓 
 |  𝑑𝑎𝑡𝑎 ] |     /     𝕍    [β

 𝑓 
 |  𝑑𝑎𝑡𝑎 ] 1/2 =:     | µ |/ σ

 Note that by regressing against amino acid changes we obviate the need to directly incorporate 
 phylogenetic information into the model: if two lineages are close together in a phylogeny, then 
 their amino acid features are likely also similar, so their regressed fitness values will likely be 
 similar. By sharing statistical strength in this way we are also able to make accurate predictions 
 for emergent lineages with few observations. (Note phylogenetic information is still used in 
 preprocessing, since our clustering is created from an UShER phylogenetic tree.) Both of the 
 hierarchies in α and β empirically improve model fit in the presence of heavily skewed 
 observations (e.g. most samples are from the UK, and there is a long tail of sparsely sampled 
 regions). We chose these model structures based on extensive cross-validation and forecasting 
 experiments. 
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 We place weak priors on scale parameters σ  1  , σ  2  , and σ  4  (these denote standard deviations, the 
 square roots of prior variance). The σ  1  and σ  2  priors are centered at large values to allow for wide 
 variation in initial infection proportions across regions. The σ  4  prior is centered around the 
 smaller value e  −4  ≈ 0.018 because we expect little  variation of relative fitness across geographic 
 regions a priori (some variation is expected, due to geographic variations in e.g. age distribution, 
 behavior, or genetics as in binding affinity due HLA complex genotypes  (  22  )  ). We fix the linear 
 regression scale parameter σ  3  to a small value, forcing  the regression problem towards a sparse 
 solution (i.e. we assume a priori that most observed mutations have little effect on fitness). We 
 choose a Laplace prior on regression coefficients because it is heavier-tailed than a Normal prior, 
 but not so heavy-tailed that the regression problem becomes multimodal (as it would for e.g. a 
 Cauchy or Student’s t prior). 

 This proportional growth model differs from many forecasting models in the literature that are 
 formulated in terms of absolute sample counts. Whereas our Multinomial likelihood allows us to 
 model only the relative portions of lineages in each (time,region) bin, a Poisson likelihood would 
 force us to additionally model the total number of genome samples in each (time,place) bin, a 
 task which is less related to viral dynamics and more related to local lab capacity, political 
 dynamics, and local calendars. We choose to model relative proportions rather than absolute 
 counts because the relative model is robust to a number of sources of bias, including: sampling 
 bias across regions (e.g. one region samples 1000x more than another); sampling bias over time 
 (e.g. change in sampling rate over time); and change in absolute fitness of all lineages, in any 
 (time, region) bin (e.g. due to changes in local policies or weather, as long as those changes 
 affect all lineages equally). However the model is susceptible to the following sources of bias: 
 biased sampling in any (time, region) cell (e.g. sequencing only in case of S-gene target failure); 
 and changes in sampling bias within a single region over time (e.g. a country has a lab in only 
 one city, then spins up a second lab in another distant city with different lineage proportions). 

 This model has several advantages over existing approaches. First, it provides a principled, 
 agnostic approach that can be applied to a large dataset to identify lineages that demonstrate 
 concerning epidemiological features. Second, by modeling the relative fitness of lineages 
 separately across 1560 geographic regions, the model is robust to region-specific differences in 
 non-pharmaceutical interventions and vaccination rates. Third, the hierarchical nature of the 
 model which represents lineages as collections of mutations reflects the underlying biology and 
 yields both strain- and lineage-specific coefficients from a single inferential approach. While the 
 linear-additive model of mutation biology is a coarse approximation to true biology including 
 epistasis, our hierarchical model serves as a framework to explore such models  (  23  ,  24  )  on 
 SARS-CoV-2 genomic surveillance data. 

 We interpret the regression coefficients as the relative fitness based on a well-known result in 
 population genetics  (Crow and and Kimura 1970)  that  the change in genotype frequency in a 
 large haploid population under selection follows a logistic curve, where the logistic growth rate 
 parameter defines the relative fitness of genotypes. 

 Probabilistic Inference 
 The model is implemented in the Pyro probabilistic programming language  (  15  )  built on 
 PyTorch  (  25  )  . To fit an approximate joint posterior  distribution over all latent variables (a space 
 of dimension 375,909), we train a flexible reparameterized variational distribution using 
 stochastic variational inference. Our variational approach starts by reparameterizing the model 
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 via a sequence of learnable but distribution-preserving decentering transforms  (  26  )  on the α and 
 β latent variables.  Reparameterizing is particularly helpful in avoiding Neal’s-funnel situations 
 (  27  )  by smoothing out the geometry of latent variables  with Normal prior whose scale parameter 
 is also a latent variable. After reparameterizing we model the posterior over all variables as a 
 joint multivariate Normal distribution whose covariance matrix 𝝨 is parametrized by a rank-200 
 matrix plus a diagonal matrix  D  with positive entries: 

 where  is an unconstrained matrix of size 375,909  x 200. This low-rank multivariate Normal 
 distribution allows the approximate posterior to capture correlated uncertainty among competing 
 mutations each of which might explain increased fitness. This variational distribution has 
 75,936,525 parameters to be optimized (much larger than the number 375,909 of latent variables, 
 but much smaller than the 375,909 ⨉ (375,909 + 1) / 2 ≅ 7 ⨉ 10  10  parameters that would be 
 required to represent a full-rank covariance matrix). 

 Variational inference is performed for 10,000 iterations with the Adam optimizer  (  28  )  with 
 clipped gradients and an exponentially decreasing learning rate schedule and initial learning rates 
 between 0.05 and 0.0025 for different parameter groups (see Figure S21). Optimization proceeds 
 in batch-mode, i.e. without any data subsampling.  We initialize model parameters to median 
 prior values with a small amount of noise added to avoid scale parameters collapsing early in 
 training. After inference we make predictions by drawing 1000 posterior samples. See source 
 code for detailed optimizer and initialization configuration. 

 Inference and prediction on a single GPU (NVIDIA Tesla A100 with 48GB of RAM) takes about 
 10 minutes (compared to 14.5 hours on an 8-core CPU), which is less than the amount of time 
 required to download and preprocess each daily snapshot of data from GISAID. The cost of 
 fitting the model is O((TP+F)C), dominated by pointwise mathematical operations, particularly 
 computing the softmax function on a dense array of shape T×P×C. This cost does not depend 
 directly on the number of genetic samples, since samples are aggregated into counts y of constant 
 shape T×P×C. 

 We emphasize that inference in this model is very challenging due to the large dimension of the 
 latent space (namely 375,909), itself a consequence of the large number of regions, lineages, and 
 mutations considered by the model  (  29  )  . While variational  inference has a number of attractive 
 features, especially computationally, like any approximate inference scheme it comes with 
 disadvantages. In our case the most notable disadvantage of variational inference is its tendency 
 to yield biased posterior uncertainty estimates. Typically posterior uncertainty is underestimated, 
 leading to credible intervals (CI) that in some cases can be unrealistically narrow. The primary 
 parameters of interest in the PyR  0  model are the mutation-level  coefficients β  f  and the per-lineage 
 fitness values  . Since the latter  quantity governs the prior over β  pc  , which in turn  directly Σ

 𝑓 
   β

 𝑓 
    𝑋 

 𝑐𝑓 
 feeds into the multinomial likelihood, the per-lineage fitness estimates are more-or-less tightly 
 constrained by the observed counts y  tpc  . Consequently  the posterior uncertainty of per-lineage 
 fitness is comparatively easy to estimate and we expect variational inference to yield reasonable 
 credible intervals for these quantities. In contrast the mutation-level coefficients β  f  interact with 
 correlated features X  cf  (leading to a multi-modal  posterior) and are less directly constrained by 
 the observed counts y  tpc  . Consequently it is significantly  more challenging to estimate the 
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 corresponding posterior uncertainty. In practice we obtain implausibly narrow credible intervals 
 for these quantities and the posterior uncertainty must be interpreted with caution. Importantly, 
 while the uncertainty estimates for β  f  should not  be taken at face value, we believe that they are 
 still very useful for interpreting inferred model parameters, since they  can be used to 
 rank/prioritize different hits β  f  . In particular,  while the absolute magnitudes of β  f  uncertainty 
 estimates are implausible, their  relative  magnitudes  are representative of the amount of 
 supporting evidence, and thus are useful for ranking. Since we consider a large number of 
 mutations (F=2904) this information is invaluable for designing experiments for functional 
 characterization. 

 Implementation 
 We implemented the PyR  0  model using the probabilistic  programming language Pyro  (  15  )  . The 
 model leverages PyTorch and Pyro to scale efficiently to large data sets and can therefore be 
 applied continuously as datasets grow, completing model training and prediction with millions of 
 viral genomes in minutes on a single GPU. We chose the Pyro framework because it cleanly 
 separates model specification from inference customization, and scales to large models and 
 datasets by leveraging GPUs. This flexible modeling framework allowed us to experiment with 
 different hierarchical structures. Additionally by relying on an open source and well-tested 
 modeling and inference framework, we minimize the risk of introducing software bugs into our 
 analysis. The speed of inference—which took about 10 minutes on a single GPU on the full 
 dataset of >6 million genomes—allowed quick model iteration and thorough validation on 
 subsets of the data, including both geographic cross-validation and temporal data truncation. 

 Prediction 
 In Figure 3, the 95% confidence intervals in parentheses were estimated by drawing 1000 
 samples from the variational posterior distribution. Confirmed cases per day were estimated at 
 the end of the training period (Jan 20 2021) by combining our model's relative lineage portions 
 with confirmed case count data from Johns Hopkins university. Quantities defined over our 3000 
 fine clusters were aggregated up to coarser PANGO lineages for reporting. To facilitate 
 downstream use of model predictions we have provided complete tables of lineage fitness 
 estimates (Data S1) and mutation coefficients (Data S2). These predictions have been used e.g. 
 by Nextstrain.org to visualize our predicted mutational fitness along a phylogenetic tree (Figure 
 S22). 

 Validation 
 We considered the possibility of biased submission to the GISAID database and compared results 
 obtained from the full dataset with results obtained from disjoint subsets. For this purpose we 
 divided the data into samples from the most heavily sampled region (Europe, with 3.3M 
 samples) and those from the rest of the world (with 3.1M samples) (Figures S1,S11).  This split 
 is motivated by most samples originating from the UK: we widened the region around the UK 
 until the region and its complement both had roughly equivalent statistical strength and narrow 
 posterior estimates. We conducted two-fold cross-validation experiments for both lineages 
 (Figure S1) and mutations (Figure S11). Additionally, in Figure S23, we show that PyR  0 
 lineage-level Δ log R estimates are largely driven by regions with the largest numbers of samples 
 and are thus robust to the manner in which under-sampled regions are organized into spatial 
 units. 
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 We found the full GISAID dataset to be invaluable to making accurate predictions. Using data up 
 to July 2021, we tried restricting to either all CDC data or CDC’s randomly sampled NS3 dataset 
 and found those subsets to result in insufficient diversity and lead to unclear results (Pearson 
 correlation 0.49, 0.28, respectively). Using data snapshots from mid January 2022, we tried 
 restricting to open data available in GENBANK, but found the model made implausible 
 estimates of Omicron fitness, due to a combination of lack of geographic diversity (GENBANK 
 has only about 1/10 as many geographic regions as we were able to extract from GISAID data, 
 and particularly has very few samples from South Africa) and data upload latency (GISAID 
 appeared to have ~1 week upload latency, versus ~1 month for GENBANK). 

 Our model assumes each single point mutation independently linearly contributes to change in 
 fitness.  A natural generalization is to search for groups of mutations that affect fitness. To 
 explore this we fit a similar model of both single and pair mutations, considering only pairs that 
 lie within the same gene. Fitting this model on data up to July 2021, we discovered no pairwise 
 mutations stronger than the top 100 single mutations. While these experiments did not discover 
 pairwise mutations, we believe that more sophisticated models would be able to measure 
 epistasis, but sophistication in that area is beyond the scope of the present work. 

 Finally, to compare our multinomial multivariate logistic growth model to simple binomial 
 univariate logistic growth, we compared lineage fitness estimates (Figure S24) and logistic 
 growth curves (S25) of all but one lineage at a time, showing good agreement on the narrow 
 selection of lineages examined by each binomial logistic fit. 

 Supplemental Note 2: 

 Cell culture 
 Cells were cultured in humidified incubators with 5% CO  2  at 37º C, and monitored for 
 mycoplasma contamination using the Mycoplasma Detection kit (Lonza LT07-318). HEK293 
 Homo sapiens  , female, embryonic kidney cells (ATCC  CRL-1573) were cultured in DMEM 
 supplemented with 10% heat-inactivated FBS, 1 mM sodium pyruvate, 20 mM GlutaMAX, 1× 
 MEM non-essential amino acids, and 25 mM HEPES, pH 7.2. 

 Virus production 
 24 hrs prior to transfection, 6 × 10  5  HEK-293 cells  were plated per well in 6 well plates. All 
 transfections used 2.49 µg plasmid DNA with 6.25 µL TransIT LT1 transfection reagent (Mirus, 
 Madison, WI) in 250 µL Opti-MEM (Gibco). Single-cycle HIV-1 vectors pseudotyped with 
 SARS-CoV-2 Spike protein, either D614 or D614G, were produced by transfection of  either 
 HIV-1 pNL4-3 Δenv Δvpr luciferase reporter plasmid (pNL4-3.Luc.R-E-),  or pUC57mini NL4-3 
 Δenv eGFP reporter plasmid, in combination with the indicated Spike expression plasmid, at a 
 ratio of 4:1. ACE2 expression vectors were produced by transfecting cells with one of the 
 pscALPSpuro-ACE2 plasmids, along with the HIV-1  gag-pol  expression plasmid psPAX2, and 
 the VSV glycoprotein expression plasmid pMD2.G (4:3:1 ratio of plasmids). 16 hrs 
 post-transfection, culture media was changed. Viral supernatant was harvested 48 hours after 
 media change, passed through a 0.45 µm filter, and stored at 4ºC. TMPRSS2 expression transfer 
 vector was produced similarly but with pscALPSblasti-TMPRSS2. 

 Generation of cell lines expressing ACE2 and TMPRSS2 
 2.5 x 10  5  HEK-293 cells were plated per well in a  12 well plate. The next day cells were 
 transduced with 250 uL of supernatant containing TMPRSS2-encoding lentivirus for 16 hr at 
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 37°C, after which fresh media was added to cells. 48 hrs after transduction cells were replated 
 and selected with blasticidin (InvivoGen, catalogue #ant-bl-1) at 10 ug/ml. After selection, cells 
 were transduced similarly with supernatant containing ACE2-encoding lentivirus and selected 
 with 1 ug/mL of puromycin (InvivoGen, San Diego, CA, catalogue #ant-pr-1). 

 Virus Infectivity Assays 
 16 hours prior to transduction, adherent cells were seeded in 96 well plates. HEK-293 cells were 
 plated at 5 x 10  4  cells per well. Cells were incubated  in virus-containing media for 16 hrs at 37°C 
 when fresh medium was added to cells. 48 to 72 hours after transduction cells were assessed for 
 luciferase activity. Cells transduced with luciferase expressing virus were assessed using 
 Promega Steady-Glo system (Promega Madison, WI).  GraphPad  Prism 8.4.3 was used to analyze 
 the infectivity data using a ratio paired t test. In these experiments, all values shown are the mean 
 with standard deviation, with the actual calculated two-tailed  P  value indicated. 
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 Supplemental Note 3: 

 We include here an extended discussion of high-scoring mutations. 

 Relation to other viruses 
 The concentration of putative transmission-promoting substitutions in N at positions 160-210 is 
 remarkable, but is supported by a similar observation in Ebola virus  (  30  )  , and recent data for 
 SARS-CoV-2 showing mutations in that region increase the efficiency of viral packaging  (  31  )  , 
 validating some of the model’s most unexpected predictions and supporting its ability to identify 
 novel biology. 

 Potential functional roles of mutations within ORF1 
 Our model highlighted mutations within the ORF1 non-structural proteins (nsps) whose 
 functions are not fully understood (e.g. Table S3). We found two predominant clusters within 
 ORF1a: one in the C-terminal ~120 amino acids of nsp4 and the other within the N-terminal 
 ~160 amino acids of nsp6 (Figure S13C). Nsp4 and nsp6 are both membrane-anchored proteins 
 with roles in assembly and concentration of the viral replication and transcription complex 
 (RTC) machinery within double-membrane vesicles  (  32  )  .  Amino acid substitutions in these 
 regions, combined with transmission-associated mutations identified within additional 
 RTC-associated nsps (e.g., nsp12-16, Figure S13D), may therefore affect the kinetics of 
 replication and gene expression, resulting in higher virus yields from infected cells. Nsp2, a 
 rapidly evolving accessory protein  (  33  )  (  34  )  (  35  )  whose  proposed function in disrupting host cell 
 signaling  (  36  )  and viral mRNA translation initiation  (  37  )  remains obscure, harbored many 
 additional mutations associated with higher fitness (Figure S13C). 

 The ORF1a-ORF1b polyprotein is processed into 16 non-structural proteins by two viral 
 proteases: a papain-like protease (nsp3) and 3C-like protease (nsp5). Multiple 
 transmission-associated mutations were found within the protease coding regions (e.g., 
 ORF1a:V1750A, ORF1a:P3395H). Most of the amino acid substitutions identified by our model 
 were outside of the domains containing catalytic residues for nsp3 (C1674, H1835, D1849) or 
 nsp5 (H3304, C3408)  (  38  )  (  39  )  . However, the potential  effects of these mutations on protease 
 architecture and activity warrant further experimentation. A few of the top mutations from our 
 model (e.g., ORF1a:T3255I, ORF1a:A3571V) are positioned adjacent to nsp cleavage sites, 
 potentially influencing local structures and kinetics of polyprotein processing by nsp3 and nsp5 
 (Figure S13C-D). 

 Multiple highly-ranked mutations are distributed across the replication and 
 transcription-associated nsps in ORF1b (Figure S13D). The P314L (P323L) mutation in nsp12 – 
 the viral RNA-dependent RNA polymerase (RdRP) – emerged early during the pandemic and 
 became established in circulating lineages alongside S D614G  (  6  )  . A later variant at this site 
 (P314F) was also highly ranked in our list. Additional mutations in nsp12 can be found within 
 the canonical fingers (D445A, V631I, D514N, G662S), palm (M592I, H604Y, T701I, C721R, 
 S763F), and thumb (L820F, L829I, D870N) subdomains of the RdRP conserved catalytic fold 
 (Figure S15). The functional effects of these mutations on polymerase processivity and fidelity 
 remain to be investigated. A structural model of the SARS-CoV-2 polymerase complex has been 
 resolved  (  40  )  (  41  )  , and contains a single subunit of  nsp12, two subunits of the nsp13 helicase, and 
 additional RdRP cofactor proteins (nsp7, 8, and 9). The ORF1b P314 residue is located at the 
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 interaction interface between nsp12 and a single subunit of nsp8. Moreover, several of the top 
 mutations from our dataset ORF1b (e.g., P1000L, P1001S, Q1011H) are harbored within the 
 nsp13 N-terminal zinc-binding domain that directly interacts with nsp8  (  42  )  . These findings 
 implicate transmission-associated mutations within the SARS-CoV-2 RNA synthesis machinery 
 in altering the stability of the replication complex, possibly via interactions with nsp8. 

 Nsp14 is a dual-functional enzyme with N-terminal 3’-to-5’ exonuclease (ExoN) and C-terminal 
 guanine-N7 methyltransferase (N7-MTase) activities  (  43  )  (  44  )  and is a core component of the 
 coronavirus RNA proofreading complex. Nsp14 is uniquely responsible for excision of 
 mismatched bases from the nascent RNA and methylation of the viral mRNA cap structure. Two 
 mutational hotspots in nsp14 map to discrete regions in the ExoN (e.g., T1540I, I1566V) and 
 N7-MTase (e.g., D1848Y, P1936H) domains. The functional consequences of these clusters of 
 transmission-associated mutations on mRNA synthesis and genome replication remain unknown. 
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 Supplementary Figures 
 A. 

 B. 

 Figure S1.  A  . Sensitivity of lineage fitness estimates  to data subset. We depict the relative fitness 
 of all lineages as estimated by either the full data or two disjoint geographic subsets (within 
 Europe and outside Europe). High Pearson correlation (ρ) suggests estimates are largely 
 insensitive to data subset.  B  . Estimates of fold increases  in fitness for the top 20 lineages. 
 Sensitivity analysis shows consistency across estimates from subsets of the data in different 
 geographic regions. 
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 Figure S2.  Simulation study assessing bias. Distribution  of inferred fitness of new lineages as a 
 function of time, for a simulated neutrally evolving viral population. The most successful 
 subclades of each generation are designated as new lineages, leading to a trend toward higher 
 estimated fitness even though all lineages are equally transmissible. 
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 A. 
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 B. 

 Figure S3  .  A.  Regional fits and forecasts for USA,  France, England, Brazil, Australia and 
 Russia. Solid circles at the beginning of each two week time interval denote observed lineage 
 proportions on a [0, 1] scale for the top 20 lineages. Solid curves and 95% confidence bands 
 denote model predictions and three-month forecasts. Each of the six (aggregate) regions is made 
 up of multiple subregions. The behavior of each SARS-Cov-2 cluster in each subregion is 
 represented by only two numbers in the model: a slope and an intercept. The complex model fit 
 results from the multivariate logistic function applied jointly to multiple competing trends, which 
 are then aggregated over subregions and multiple clusters per lineage. England shows clear 
 waves of dominance: B.1.1, B.1.177, B.1.1.7 (Alpha), AY.4 (Delta), and finally BA.1 (Omicron), 
 with the latter currently being overtaken by BA.1.1 (also Omicron). Massachusetts and Brazil 
 both start with very low sampling rates early in the pandemic. The legend reports the estimated 
 fitness for the top 15 lineages.  B.  Region-specific  fits for several regions in Asia, demonstrating 
 better fits in regions with high sampling (Japan, India), and degraded fits in regions with low 
 sampling (Myanmar, Pakistan). 
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 Figure S4.  Heterogeneity of PANGO lineages.  We hypothesized  that the PANGO lineage 
 clustering conflated viruses with distinct growth rate, e.g. B.1.1 exhibits two peaks in relative 
 abundance in England, contrary to our multivariate logistic model.  To test this hypothesis we 
 refined 1544 PANGO lineages into 3000 finer clusters and estimated each cluster's growth rate. 
 As shown in the figure some PANGO lineages include clusters with estimated fitness differing 
 by more than a factor of 6, including the B.1.1 lineage.  This heterogeneity is also reflected in the 
 temporal structure: for example, the three B.1.1 clusters with the largest growth rate emerged in 
 December 2021 and January 2022, whereas the majority of B.1.1 clusters emerged in the twelve 
 months leading up to April 2021.  The top four clusters in B.1.1 and the top cluster in B.1 are 
 labeled by their top 5 fitness-increasing mutations to the S gene, relative to the PANGO lineage's 
 basal sequence. 
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 Figure S5.  Forecasts in England with time-truncated  input data. (A) Prediction for rise of B.1.1.7 
 using data through late November 2020 (solid circles at the beginning of each two-week time 
 interval). (B) Prediction for rise of AY.4 using data through early May 2021. (C) Prediction for 
 rise of BA.1 using data through mid December 2021, and (D) late December 2021. Future data 
 points, not used during the model training, are shown in crosses. The legend reports lineage 
 fitness estimates based on all available data. 
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 Figure S6  . We depict the ability of PyR  0  to predict  the fitness of Omicron sublineages BA.1 and 
 BA.2 as the number of sequenced genomes increased throughout the last two months of 2021. 
 PyR  0  predicted that BA.1 (respectively, BA.2) was  substantially more fit than Delta by 
 December 1  st  (15  th  ) 2021, by which time 2906 (76)  genomic sequences had been collected. The 
 substantial heterogeneity of the BA.1 sublineage is reflected in the uncertainty in BA.1 R 
 estimates; this heterogeneity also helps explain why PyR  0  required more sequences to identify 
 the elevated fitness of BA.1 as compared to the case of BA.2.  Left:  The number of amino acid 
 mutations that make up BA.1 and BA.2 that had been observed in at least 10/10  2  /10  3  /10  4 

 sequences by the given date.  Middle:  Estimates of  R/R  A  using sequences collected by the given 
 date.  Right:  The total number of BA.1 and BA.2 sequences  collected by the given date. 
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 Figure S7  : Forecasting evaluation based on independently  trained models at 45 time points 
 during the pandemic, t  censor  , and predicting at time  t  predicted  up to 12 two-week periods into the 
 future. The results are shown for (A) England and (B) Massachusetts, USA. The top panels are 
 as in Figure S3, heatmaps depict the prediction L1 error, and the inset bar plots depict the 
 aggregated prediction errors over all periods. Note the rapid increase in error as new fit lineages 
 emerge in a region (vertical dashed lines provided as a guide to the eye), followed by rapid 
 recovery and stabilization of forecasting accuracy within only a single period, highlighting the 
 predictive value of PyR  0  for detecting variants of  concern. Refer to Table S1 for tabulated 
 forecasting accuracy figures in several other regions. 
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 Figure 

 Figure S8.  A.  Histogram of the number of independent  emergences across all observed 
 mutations. A mutation was considered to have emerged independently if it was present in a 
 lineage but not in its parent.  B.  Scatterplot of the  fold-change in fitness versus the number of 
 independent emergences. The top 10 ranked mutations are labeled, colored by ORF. Linear 
 regression with standard error for the slope given as shaded area.  C.  Violin plots of fold-change 
 in fitness for mutation, grouped by gene. The top 10% most statistically significant mutations are 
 shown (where significance is determined by z-score of the approximate variational posterior). 
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 Figure S9.  Accuracy of predicted fitness based solely  on mutation content.  Left:  estimated 
 log(R/R  A  ) for each lineage based on the full set of  GISAID samples (y axis), and on the 
 leave-one-out subset with each lineage's subclade removed and the fitness estimated from the 
 mutations present in the lineage (x axis).  Right:  the same quantities but relative to a baseline 
 estimator in which each child lineage's fitness is the same as that of its parent lineage. If a 
 mutation is entirely removed from the LOO dataset, then the corresponding mutation coefficient 
 is estimated as zero. The evaluation metrics are Pearson correlation (⍴) and mean absolute error 
 (MAE). The MAE of the leave-one-out estimator is 0.001, more than 100x smaller than the MAE 
 of the baseline estimator (0.129). Both panels highlight the CDC's variants of concern and 
 variants of interest. The lineages selected for testing are those with at least 100 samples and with 
 the largest deviations from their parent, i.e. where the baseline estimator performs worst. Note 
 that the fitness of child lineages can deviate substantially from that of the parent, e.g. BA.1 is 
 surprisingly higher fitness than its parent B.1.1.529. 
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 Figure S10.  Volcano plot highlighting the most statistically  significant mutations linked to 
 increased fitness.  The x-axis depicts the effect size as a ratio of estimated fitness of lineages 
 with-versus-without each mutation.  The y-axis depicts z-score from the approximate variational 
 posterior as a proxy for statistical significance. The top 50 most statistically significant mutations 
 are labeled, colored by gene. The 540 growth-associated mutations with z-score greater than 5 
 are shaded dark gray. 
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 Figure S11.  Sensitivity of mutation estimates.  A.  Scatterplot of the mutation coefficients on the 
 full model and geographic subsets, with Pearson correlation (ρ) as shown.  B.  Box-and-whisker 
 plot depicting estimated growth rates with corresponding uncertainties  for the 20 lineages with 
 highest growth rate (effect size) across geographic subsets.  C.  Same as B but with the top 20 
 lineages sorted by statistical significance (z-score).  Note that in B, the World estimates (center) 
 tend to be higher than subsets (left and right) only because the ranked selection is based on those 
 estimates. 
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 A. 

 B. 

 Figure S12.  Information content of different subsets  of the SARS-CoV-2 genome in explaining 
 fitness. The metric is the expected log likelihood. The dotted line at the top shows the 
 performance of the full model that regresses against all genes (A) or against all of ORF1 (B). The 
 circles show estimators based on only single genes (A) or single nonstructural proteins (B). The 
 most informative genes are S, ORF1a, M, N, and ORF1b; within ORF1 the most informative 
 nsps are nsp4, 3, 5, 6, 12 and 7. The bottom dashed lines show the performance of a naive 
 estimator that ignores genetic information, effectively estimating each lineage's growth rate in 
 each region independent of growth rate estimates in other regions. 
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 C. 

 D. 

 Figure S13.  Manhattan plot details of the four most  informative genes. See Figure 3 for a 
 whole-genome view and Figure S12 for ranking by information.  A.  View of the 1237 amino 
 acids of the S protein, annotated by structure  (  45  )  ;  many mutations occur in the N-terminal 
 domain (NTD), receptor-binding domain (RBD), and furin cleavage (FC) site. Regions 
 containing the fusion peptide (FP), heptad repeat (HR) 1 and 2, transmembrane domain (TM), 
 and C-terminal domain (CTD) are annotated.  B.  View  of the 419 amino acids of the 
 nucleocapsid (N) protein domains, annotated by structure  (  46  )  ; many mutations occur in the 
 serine–arginine rich region (SR), identified by  (  47  )  as immunogenic.  C.  View of the ORF1a 
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 polyprotein, including 11 non-structural proteins (nsps).  D.  View of the ORF1b polyprotein, 
 including nsp12-16; note the amino acid positions do not account for 9 additional residues at the 
 N-terminus of nsp12 (RNA polymerase) resulting from the -1 ribosomal frameshift. 
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 (A) 
 (B) 

 (C)  (D) 

 Figure S14  : Enrichment analysis of amino acid changes  among top-ranked mutations  A. 
 Mutation frequency in top 1000 most significant mutations (as ranked by posterior mean/stddev) 
 B.  Leading set enrichment analysis of most significant  mutations predicted by the model for 
 non-symmetrical (e.g. A->V) (left) and symmetrical (e.g. A<->V) (right) amino acid changes. 
 The blue curve depicts the most significant p-value obtained for different top-N mutation cutoff 
 values across all amino acid changes, while the red curve depicts the mean p-value.  C.  Further 
 examination reveals that top mutations are enriched in K to N changes in the S gene.  D.  No other 
 genes (gray) other than S (in red) show significant enrichment. 
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 Figure S15.  Top-ranked mutations in the viral RNA-dependent  RNA polymerase (RdRP, nsp12, 
 PDB: 7CYQ). Amino acid positions corresponding to top mutations are shown as red spheres. 
 The catalytic site residues 750-SDD-752 are highlighted as yellow spheres. The 
 coronavirus-specific domains (NiRAN, Interface) are shown as cartoon structures. The 
 conserved RdRP domains (Fingers, Palm, Thumb) are shown as cartoon and surface filling 
 structures. 

 Figure S16  . Top-ranked mutations in the two viral  proteases, PLpro (A) and M  pro  (B). Both 
 protease structures are shown in light blue. Amino acid positions corresponding to top mutations 
 are shown as red spheres. The catalytic cysteine residues for each are shown as yellow spheres. 
 Two active-site inhibitors, VIR250 and N3, are shown as orange spheres. 
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 Figure S17.  Distribution of samples among regions.  Each 2nd level GISAID region (country) is 
 plotted as a curve, with the sizes of 3rd level GISAID regions (usually provinces or states) 
 plotted as points along the curve.  The 3rd level is dominated by a few countries with many small 
 regions (e.g. Belgium with 1475 regions), so we merge regions smaller than a threshold (50 
 samples) into their respective countries. 

 41 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 16, 2022. ; https://doi.org/10.1101/2021.09.07.21263228doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.07.21263228
http://creativecommons.org/licenses/by-nd/4.0/


 Figure S18.  Distribution of samples among PANGO lineages  and refined clusters.  PANGO 
 lineage sizes are heavy-tailed and appear heterogeneous, so we split into a larger number of 
 clusters (colored). We chose a final clustering of 3000 clusters (orange), balancing between a 
 smaller number of clusters (which improves statistical efficiency) and a larger number of clusters 
 (which better represents lineage heterogeneity). 
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 A.                                                B.                                              C. 

 Figure S19:  Example algorithmic clustering of three  synthetic trees. Example synthetic mutation 
 annotated trees are clustered into smaller trees with only 10 nodes. Nodes are annotated by the 
 number of sequences represented by each cluster. Edges are annotated by the edit distance 
 between clusters. (A) clusters a balanced binary tree of 262,143 nodes, (B) clusters a single 
 linear chain of 20,001 nodes, (C) clusters a random binary tree with Geometric(½)-many 
 children at each node and 200,000 nodes. In all examples the clustered trees are approximately 
 balanced insofar as they exhibit narrow distributions of edge distances (in SNPs) and the cluster 
 sizes (in genomes sampled). 
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 Figure S20.  Probabilistic graphical model structure  of the PyR  0  model. Variables σ are scale 
 parameters of distributions. Variable β  f  is the per-amino-acid-substitution  fitness coefficient. 
 Variables β  pc  and α  pc  are respectively the per-region  per-cluster slope and intercepts parametrizing 
 multivariate logistic growth curves. The mean parameter of β  pc  is determined by β  f  via matrix 
 multiplication by the feature matrix X  cf  . The mean  parameter of α  pc  is a per-cluster intercept α  c 
 shared across regions. The multinomial observations are vectors y  tp.  each of whose entries y  tpc  is 
 the number of samples of cluster c in place p in time bucket t. Green boxes denote plates, i.e. 
 conditionally independent replicas of random variables. Note the vector-valued observation y  tp.  is 
 outside of the C plate because the multinomial distribution couples entries across the cluster 
 coordinate c. Because the P x C plates are sparse (in most places most clusters never appear) the 
 model omits α  pc  and β  pc  for pairs (p,c) with no observations  in y. 
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 (A) 

 (B) 

 Figure S21.  Convergence of variational inference algorithm.  A.  Convergence of ELBO loss.  B. 
 Convergence of posterior medians of scale parameters. 
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 Figure S22:  Screenshot of https://nextstrain.org displaying  Nextstrain's subsampled phylogeny 
 with color and y-axis (mutational fitness) determined by our model predicted Δ log R for each 
 lineage (here using a slightly older version of our model). Although PyR  0  does not explicitly rely 
 on phylogenetic information, fitness estimates vary smoothly across the phylogeny. 
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 Figure S23  . We show that PyR  0  lineage-level Δ log  R estimates are largely driven by regions 
 with the largest numbers of samples, as would be expected from a Bayesian hierarchical model. 
 The vertical axis depicts Δ log R estimates based on all 1560 regions, while the horizontal axis 
 on the left (respectively, right) depicts Δ log R estimates based on the 112 (60) regions with at 
 least 10  4  (2 ⨉ 10  4  ) samples. Collectively these regions  contain 80.7% (69.8%) of the total number 
 of SARS-CoV-2 sequences in our full dataset. 
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 Figure S24  . Comparison of mutation-level regression  coefficients for growth rate among 50 
 most prevalent lineages using a standard multinomial logistic regression model with estimates of 
 lineage growth rates from PyR  0  . Pearson’s R = 0.95. 
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 A. 

 B. 

 Figure S25  .  A.  Estimated growth rate per viral generation  (5.5 days) in each state using binomial 
 logistic regressions for the emergence of BA.1 against a background consisting of Delta 
 (B.1.617.2 and sublineages) viruses in all 50 US states between November 1 2021 and January 7 
 2022. Fold increase in relative fitness is expressed as exp(𝝱  1  ), where time is measured in viral 
 generations. Error bars show exp(𝝱  1  +/- SE(𝝱  1  )).  For all 50 US states, the median growth rate per 
 viral generation of Omicron over Delta was 3.9. For all states, the confidence interval for the 
 binomial logistic regression coefficient contained the estimate for the ratio of Omicron to Delta 
 from the PyR  0  model, which was 3.1 for BA.1.1 / B.1.617.2  and 2.8 for BA.1 / B.1.617.2.  B. 
 Estimated probability of BA.1 by state from the binomial logistic regression. 
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 Region  4-week forecast  8-week forecast 

 USA  82.9%  68.3% 

 France  75.6%  61.0% 

 England  75.6%  58.5% 

 Brazil  65.9%  51.2% 

 Australia  56.1%  39.0% 

 Russia  73.2%  68.3% 

 Table S1.  Regional evaluation of forecasts. We evaluate  the ability of PyR  0  to accurately forecast 
 the dominant lineage 4- and 8-weeks into the future in six selected regions with a relatively large 
 number of GISAID samples. Percentage accuracies are obtained by averaging over 45 training 
 windows. 

 Spatial region  # of mutations 
 Extent of 
 region (nt)  p-value  Lengthscale 

 Entire genome  2904  29394  0.000001  100 

 Entire genome  2904  29394  0.000001  500 

 S  415  3786  0.001910  50 

 N  220  1251  0.017627  50 

 ORF7a  75  360  0.024066  18 

 ORF3a  198  789  0.024307  39 

 ORF1a  1107  13182  0.029710  50 

 ORF7b  26  126  0.089589  6 

 ORF14  69  213  0.112527  11 

 ORF6  19  177  0.138634  9 

 ORF1b  552  8052  0.329416  50 

 E  17  195  0.455606  10 

 M  42  639  0.518497  32 

 Table S2.  Spatial structure of the inferred amino  acid coefficients β  f  .  We report one-sided 
 p-values for the Moran I spatial autocorrelation statistic computed using a permutation test. We 
 use a gaussian weighting function of the form exp(-distance  2  /lengthscale  2  ),  where distance is 
 measured in units of nucleotides. We find that there is significant evidence for spatial structure in 
 S, N, ORF7a, ORF3a, and ORF1a as well as across the SARS-CoV-2 genome  as a whole. 
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 Table S3.  Table of the most statistically significant  mutations in spike, ORF1b, and 
 nucleocapsid. The top 9 mutations for each of the listed ORFs is shown. Mutations such as 
 S:H655, S:T95I, and N:R203M have emerged independently in VoC lineages. 
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 Data S1.  (separate file strains.tsv) 
 Complete list of PANGO lineages with inferred relative fitness, ranked by fitness. 
 Mirrored at  https://github.com/broadinstitute/pyro-cov/blob/v0.2/paper/strains.tsv 

 Data S2.  (separate file mutations.tsv) 
 Complete list of amino acid changes with inferred effect size, ranked by z-score. 
 Mirrored at  https://github.com/broadinstitute/pyro-cov/blob/v0.2/paper/mutations.tsv 

 Data S3.  (separate file accession_ids.txt.xz) 
 Complete list of GISAID accession numbers of viral genomes used in this study. 
 Mirrored at  https://github.com/broadinstitute/pyro-cov/blob/v0.2/paper/accession_ids.txt.xz 
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