Algorithms for the Automated Correction of Vertical
Drift in Eye Tracking Data

Supplementary Item 1: Pseudocode

For reference, we present the algorithms here in a pseudocode that should be clear to programmers of any
high-level scientific programming language. Matlab/Octave, Python, and R implementations may be found at
https://github.com/jwcarr/drift or https://osf.io/7srkg/. We have generally emphasized readability over optim-
ization, and we make very minimal assumptions about the input and output. Most of the algorithms take two
inputs: fixation_XY, an array of size n x 2 representing the xy positions of » fixations, and line_Y, an array
of length m representing the y positions of the m lines of text. Some algorithms take slightly different input or
additional arguments as detailed below. All algorithms return a modified fixation_XY as output, in which
only the y values have been adjusted.

Attach

function attach(fixation_XY, line_Y)
n = length(fixation_XY)
for fixation_i in 1 : n
fixation_y = fixation_XY[fixation_i, 2]
line_i = argmin(abs(line_Y - fixation_y))
fixation XY[fixation_i, 2] = line_Y[line_ il
return fixation_XY

Chain

chain takes two additional arguments, x_thresh and y_thresh, which determine how much change is re-
quired on the x- or y-axis to start a new chain of fixations.

function chain(fixation_XY, line_Y, x_thresh=192, y thresh=32)

n = length(fixation_XY)

dist_X = abs(diff(fixation_XY[:, 11))

dist_ Y = abs(diff(fixation_XY[:, 21))

end_chain_indices = where(dist_X > x_thresh or dist_Y > y_thresh)

end_chain_indices = append(end_chain_indices, n)

start_of_chain =1

for end_of_chain in end_chain_indices
mean_y = mean(fixation_XY[start_of_chain:end_of_chain, 2])
line_i = argmin(abs(line_Y - mean_y))
fixation_XY[start_of_chain:end_of_chain, 2] = line_Y[line_i]
start_of_chain = end_of_chain + 1

return fixation_XY


https://github.com/jwcarr/drift
https://osf.io/7srkg/

Cluster

cluster calls on one external function, kmeans, which returns clusters, an array of length # that gives the
cluster index of each fixation, and centers, an array of length m that gives the mean y value of each cluster.

function cluster(fixation_XY, line_Y)
n = length(fixation_XY)
m = length(line_Y)
fixation_ Y = fixation XYI[:, 2]
clusters, centers = kmeans(fixation_Y, m)
ordered_cluster_indices = argsort(centers)
for fixation_i in 1 : n
cluster_i = clusters[fixation_i]
line_i = where(ordered_cluster_indices == cluster_i)
fixation_XY[fixation_i, 2] = line_YI[line_il
return fixation_XY

Compare

Instead of line_Y, compare takes word_XY as its second argument, an array representing the xy positions of
the centers of all words in the order in which they are expected to be read. It takes two additional arguments:
x_thresh, which specifies the threshold for considering backward saccades to be return sweeps, and
n_nearest_lines, which determines how many neighboring text lines a gaze line will be compared to.
compare calls on one external function, dynamic_time_warping, which returns the DTW cost between a
gaze line and text line.

function compare(fixation_XY, word_XY, x_thresh=512, n_nearest_lines=3)
n = length(fixation_XY)
line_Y = unique(word_XY[:, 21)
diff_X = diff(fixation_XY[:, 11)
end_line_indices = where(diff_X < —-x_thresh)
end_line_indices = append(end_line_indices, n)
start_of_line =1
for end_of_line in end_line_indices
gaze_line = fixation_XY[start_of_line:end_of_linel
mean_y = mean(gaze_line[:, 2])
lines_ordered_by_proximity = argsort(abs(line_Y - mean_y))
nearest_line_I = lines_ordered_by_proximity[1l:n_nearest_lines]
line_costs = zeros(n_nearest_lines)
for candidate_i in 1 : n_nearest_lines
candidate_line_i = nearest_line_I[candidate_il
candidate_line_y = line_Y[candidate_line_i]
text_line = word_XY[word_XY[:, 2] == candidate_line_y]
cost, _ = dynamic_time_warping(gaze_linel[:, 1], text_linel:, 1])
line_costs[candidate_i] = cost
line_i = nearest_line_I[argmin(line_costs)]
fixation_XY[start_of_line:end_of_line, 2] = line_Y[line_il
start_of_line = end_of_line + 1
return fixation_XY



Merge

merge takes three additional arguments: y_thresh determines how much change is required on the y-axis to
start a new sequence of progressive fixations; g_thresh determines the maximum absolute gradient of the fit
regression lines; and e_thresh determines the maximum regression error. merge calls on one external func-
tion, linear_model, which fits a regression line to a candidate set of fixations and returns g, the absolute
gradient, and e, the regression error (RMSD). The global variable phases defines three parameters per phase
of the merge process: the minimum number of fixations in the first candidate sequence; the minimum num-
ber of fixations in the second candidate sequence; and a Boolean that removes the gradient and error con-
straints (this should be TRUE in the final phase to ensure that the number of sequences can be reduced to m).

phases = [[3, 3, FALSE], [1, 3, FALSE], [1, 1, FALSEI, [1, 1, TRUE]]

function merge(fixation_XY, line_Y, y_thresh=32, g_thresh=0.1, e_thresh=20)
n = length(fixation_XY)
m = length(line_Y)
diff_X = diff(fixation_XY[:, 11)
dist_Y = abs(diff(fixation_XY[:, 21))
sequence_boundaries = where(diff_X < @ or dist_Y > y_thresh)
sequence_boundaries = append(sequence_boundaries, n)
sequences = []
start_of_sequence =1
for end_of_sequence in sequence_boundaries
sequence = start_of_sequence : end_of_sequence
sequences = append(sequences, sequence)
start_of_sequence = end_of_sequence + 1
for min_i, min_j, no_constraints in phases
while length(sequences) > m
best_merger = NONE
best_error = INFINITY
for i in 1 : length(sequences) - 1
if length(sequences[i]) < min_i
next
for j in i+l : length(sequences)
if length(sequences[j]) < min_j
next
candidate_sequence = concatenate(sequences[il, sequences[j])
g, e = linear_model(fixation_XY[candidate_sequencel)
if no_constraints == TRUE or (g < g_thresh and e < e_thresh)
if e < best_error
best_merger = [i, j]
best_error = e
if best_merger == NONE
break
i, j = best_merger
combined_sequence = concatenate(sequences[i]l, sequences[j])
sequences = append(sequences, combined_sequence)
delete sequences[j], sequences[il
mean_Y = zeros(length(sequences))
for sequence_i in 1 : length(sequences)
mean_Y [sequence_i] = mean(fixation_XY[sequences[sequence_il, 21)
ordered_sequence_indices = argsort(mean_Y)
for sequence_i in 1 : length(sequences)
line_i = where(ordered_sequence_indices == sequence_i)
fixation_XY[sequences[sequence_i], 2] = line_Y[line_il
return fixation_XY



Regress

regress takes three additional arguments, K, 0, and S, which give the lower and upper bounds of the slope,
offset, and standard deviation. regress calls on one external function, minimize, which minimizes the ob-
jective function fit_lines. The fit_lines function is nested inside regress so that it inherits its lexical
scope.

function regress(fixation_XY, line_Y, K=[-0.1,0.1], 0=[-50,50], S=[1,20])
n = length(fixation_XY)
m = length(line_Y)

function fit_Tlines(params, return_line_assignments=FALSE)
density = matrix(n, m)

k = K[1] + (K[2] - K[1]) % cdf(params[1])
o = 0[1] + (0[2] - O[1]) * cdf(params[2])
s = S[1] + (S[2] - S[1]) * cdf(params[3])
predicted_Y_from_slope = fixation_XY[:, 1] *x k

line_Y_plus_offset = line_Y + o

for line_i in 1 : m
fit_Y = predicted_Y_from_slope + line_Y_plus_offset[line_il
density[:, line_i] = logpdf(fixation_XY[:, 21, fit Y, s)

if return_line_assignments == TRUE
return argmax(density, axis=2)

return —sum(max(density, axis=2))

initial_params = [0, 0, 0]
best_params = minimize(fit_lines, initial_params)
line_assignments = fit_lines(best_params, TRUE)
for fixation_i in 1 : n
line_i = line_assignments|[fixation_i]
fixation_XY[fixation_i, 2] = line_Y[line_i]
return fixation_XY

Segment

function segment(fixation_XY, line_Y)
n = length(fixation_XY)
m = length(line_Y)
diff_X = diff(fixation_XY[:, 11)
saccades_ordered_by_length = argsort(diff_X)
line_change_indices = saccades_ordered_by_length[1:m-1]
current_line_i =1
for fixation_i in 1 : n
fixation_XY[fixation_i, 2] = line_Yl[current_line_il
if fixation_i is in line_change_indices
current_line_i = current_line_i + 1
return fixation_XY



Split

split calls on one external function, kmeans, which returns clusters, an array of length n-1 that gives the
cluster index of each saccade, and centers, an array of length 2 that gives the mean saccade length of each
cluster. Whichever cluster has the smaller (i.e., more negative) mean saccade length is assumed to be the
cluster that contains the return sweeps.

function split(fixation_XY, line_Y)

n = length(fixation_XY)

diff_X = diff(fixation_XY[:, 11)

clusters, centers = kmeans(diff_X, 2)

sweep_marker = argmin(centers)

end_line_indices = where(clusters == sweep_marker)

end_line_indices = append(end_line_indices, n)

start_of_line =1

for end_of_line in end_line_indices
mean_y = mean(fixation_XY[start_of_line:end_of_line, 2])
line_i = argmin(abs(line_Y - mean_y))
fixation_XY[start_of_line:end_of_line, 2] = line_Y[line_il
start_of_line = end_of_line + 1

return fixation_XY

Stretch

stretch takes two additional arguments, S and 0, which give the lower and upper bounds of the vertical scal-
ing factor and vertical offset. stretch calls on one external function, minimize, which minimizes the object-
ive function fit_lines. The fit_lines function is nested inside stretch so that it inherits its lexical scope.

function stretch(fixation_XY, line_Y, S=[0.9,1.1], 0=[-50,50])
n = length(fixation_XY)
fixation_Y = fixation_XY[:, 2]

function fit_Tlines(params, return_correction=FALSE)
candidate_Y = fixation_Y x params[1] + params[2]
corrected_Y = zeros(n)
for fixation_i in 1 : n
line_i = argmin(abs(line_Y - candidate_Y[fixation_il))
corrected_Y[fixation_i] = line_Y[line_il
if return_correction == TRUE
return corrected_Y
return sum(abs(candidate_Y - corrected_Y))

initial_params = [1, 0]

1_bounds = [S[1], 0[1]]

u_bounds = [S[2], 0[2]]

best_params = minimize(fit_lines, initial_params, 1_bounds, u_bounds)
fixation_XY[, 2] = fit_lines(best_params, return_correction=TRUE)
return fixation_XY



Warp

Instead of line_Y, warp takes word_XY as its second argument: an array representing the xy center positions
of all words in the order in which they are expected to be read. warp calls on one external function,

dynamic_time_warping, which returns the warping path, a list-of-lists structure that records which words
are mapped to each fixation.

function warp(fixation_XY, word_XY)

n = length(fixation_XY)

_, path = dynamic_time_warping(fixation_XY, word_XY)

for fixation_i in 1 : n
words_mapped_to_fixation_i = path[fixation_i]
candidate_Y = word_XY[words_mapped_to_fixation_i, 2]
fixation_XY[fixation_i, 2] = mode(candidate_Y)

return fixation_XY



	Attach
	Chain
	Cluster
	Compare
	Merge
	Regress
	Segment
	Split
	Stretch
	Warp

