eMethods.

1. Search strategy from databases

1.1 Pubmed and Cochrane library

- Search syntax: (colon cancer OR rectal cancer OR colorectal cancer) AND (capecitabine OR 5 fluorouracil OR leucovorin OR irinotecan OR bevacizumab OR cetuximab OR oxaliplatin OR panitumumab) AND rando*

- Search filter: clinical trial and human

1.2 Embase

- Search syntax: ('colon cancer' OR 'rectal cancer' OR 'colorectal cancer') AND (capecitabine OR 5-fluorouracil OR leucovorin OR irinotecan OR bevacizumab OR cetuximab OR oxaliplatin OR panitumumab) AND rando*

- Search filter: clinical trial and human

1.3 Clinicaltrials.gov

- Search syntax: colorectal cancer AND (capecitabine OR 5-fluorouracil OR leucovorin OR irinotecan OR bevacizumab OR cetuximab OR oxaliplatin OR panitumumab)

- Search filter: having result studies

1.4 Bibliography

(1) Ba-Sang DZ, Long ZW, Teng H, Zhao XP, Qiu J, Li MS. A network meta-analysis on the efficacy of sixteen targeted drugs in combination with chemotherapy for treatment of advanced/metastatic colorectal cancer. *Oncotarget* 2016;7: 84468-79.

(2) Mocellin S, Baretta Z, Roque IFM, Solà I, Martin0Richard M, Hallum S, et al. Second-line systemic therapy for metastatic colorectal cancer. *Cochrane Database Syst Rev* 2017;1:CD006875. (3) Petrelli F, Ardito R, Ghidini A, Zaniboni A, Ghidini M, Barni S, et al. Different Toxicity of Cetuximab and Panitumumab in Metastatic Colorectal Cancer Treatment: A Systematic Review and Meta-Analysis. *Oncology* 2018;94: 191-9.

(4) Tikhonova IA, Huxley N, Snowsill T, Crathorne L, Varley-Campbell J, Napier M, et al. Economic Analysis of First-Line Treatment with Cetuximab or Panitumumab for RAS Wild-Type Metastatic Colorectal Cancer in England. *PharmacoEconomics* 2018; 36:837-51.

(5) Wu DM, Wang YJ, Fan SH, Zhuang ZF, Shan Q, Han XR, et al. Network meta-analysis of the efficacy of first-line chemotherapy regimens in patients with advanced colorectal cancer. *Oncotarget* 2017;8: 100668-77.

2. Scheme for data analysis

In the current study, arm-based data provides the absolute effect of each treatment arm for overall response rate (ORR), disease control rate (DCR), adverse events (AEs) grade \geq 3, and serious adverse events (SAEs) outcomes, while contrast-based data performs the relative effect between treatment arms for overall survival (OS) and progression-free survival (PFS) outcomes.

3. Model identification and parameters

The current network meta-analysis takes the form as generalized linear model $(GLM)!$ ¹

$$
g(\gamma) = \theta_{ik} = \mu_i + \delta_{ik}
$$

where *g* represents the appropriate link function, θ_{ik} is the linear predictor, which is simply a regression model with S-1 treatment effect parameters for the network of S treatments, μ_i represent the trial-specific effects of treatment in arm 1 of trial i , and δ_{ik} represent the trial-specific effects of treatment in arm *k* compared with the treatment in arm 1 in the same trial:

$$
\delta_{ik} \sim Normal\big(d_{t_{i1}, t_{ik}}, \sigma^2\big)
$$

with $d_{t_{i1}, t_{ik}} = d_{1,t_{ik}} - d_{1,t_{i1}}$ is the mean effect of treatment in arm *k* in trial *i*, t_{ik} , compared with the treatment in arm 1, t_{1k} , and σ^2 is the between-trial variability in treatment effects.

3.1 Fixed effects model

In the fixed effects model,¹ when there is no between-trial heterogeneity ($\sigma^2 = 0$), the GLM formula can be written as:

$$
\theta_{ik} = \mu_i + d_{t_{i1}t_{ik}} = \mu_i + d_{1,t_{ik}} - d_{1,t_{i1}}
$$

3.1.1 Arm-based data

For binomial data (ORR, DCR, AE grade \geq 3, and SAE outcomes), the probabilities of event p_{ik} are modeled on the logit scales as:

$$
logit(p_{ik}) = \mu_i + d_{1,t_{ik}} - d_{1,t_{i1}}
$$

where the number of events r_{ik} and the number of patients n_{ik} in arm *k* of trial *i* follow the binomial likelihood:

$r_{ik} \sim Binomial(p_{ik}, n_{ik})$

3.1.2 Contrast-based data

For continuous data (OS and PFS outcomes), there is no trial-specific effect on control treatment and the linear predictor becomes:

$$
\theta_{ik} = \delta_{ik}
$$

The log hazard ratios γ_{ik} which measure the treatment effect of arm *k* relative to arm 1 in trial *i* with variance V_{ik} are defined in the normal likelihood:

$$
\gamma_{ik} \sim Normal(\delta_{ik}, V_{ik})
$$

3.2 Random effect model

In the random effects model, $¹$ the GLM formula additionally counts for between-trial heterogeneity</sup> $(\sigma^2 > 0)$ and the cumulative adjustment for multi-arm trials $sw_{i,k}$

$$
sw_{i,k} = \sum_{i=1}^{k-1} \frac{1}{k-1} \Big(\delta_{i,k} - \left(d_{1,t_{ik}} - d_{1,t_{i1}} \right) \Big)
$$

Then, the GLM formula can be written as:

$$
\delta_{i,k} | \delta_{i,2}, \ldots, \delta_{i,(k-1)} \sim Normal(d_{1,t_{ik}} - d_{1,t_{i1}} + sw_{i,k}, \frac{k}{2(k-1)} \sigma^2)
$$

3.3 Meta-regression model

In the meta-regression model, 2 the interaction treatment effect per unit increases in the covariate value in comparisons of treatment 2, 3, …, S to treatment 1. Thus, the GLM becomes:

$$
\theta_{ik} = \mu_i + \delta_{ik} + \beta_{t_{i1}t_{ik}} x_i = \mu_i + \delta_{ik} + (\beta_{1,t_{ik}} - \beta_{1,t_{i1}}) x_i
$$

The trial-level subgroup indicator, x_i , is defined:

$$
x_i = \begin{cases} 0 \text{ if study } i \text{ is a primary study} \\ 1 \text{ if study } i \text{ is a secondary study} \end{cases}
$$

3.4 Model parameters

 D_{res} , the residual deviance,³ is equal to the deviance for a given model, D_{model} , minus the deviance for a saturated model, D_{sat} , which estimates how good the model fit:

$$
D_{res} = D_{model} - D_{sat}
$$

 \overline{D}_{model} , posterior mean residual deviances,³ is obtained after computing D_{res} at each iteration of the MCMC simulation.

 \overline{D}_{model} , posterior mean deviances,³ is defined as -2 times the log-likelihood, Loglik_{model}, which likelihood function measures how 'likely' observed data are given a particular model, for a given model, thus estimates how far the model predictions deviate from the observed data:

$$
\overline{D}_{model} = -2Loglik_{model}
$$

 p_p , the effective number of parameters,³ is calculated by the posterior mean deviance for a given model, \overline{D}_{model} , minus the deviance calculated at some 'plug-in' estimate for the parameters, $\hat{\theta}$:

$$
p_D = \overline{D}_{model} - D(\hat{\theta})
$$

DIC, deviance information criterion,³ is equal to the posterior mean deviance, \overline{D}_{model} , plus the effective number of parameters, p_D . The lower DIC value suggests a more parsimonious model:

$$
DIC = \overline{D}_{model} + p_D
$$

4. References

1. Dias S, Sutton AJ, Ades AE, Welton NJ. Evidence synthesis for decision making 2: a generalized linear modeling framework for pairwise and network meta-analysis of randomized controlled trials. *Med Decis Making* 2013;33: 607-17.

2. Dias S, Sutton AJ, Welton NJ, Ades AE. Evidence synthesis for decision making 3: heterogeneity--subgroups, meta-regression, bias, and bias-adjustment. *Med Decis Making* 2013;33: 618-40.

3. Dias S, Welton NJ, Sutton AJ, Ades AE. NICE DSU Technical support document 2: A generalised linear modelling framework for pairwise and network meta-analysis of randomised controlled trials. *London*, 2014.

4. van Valkenhoef G, Kuiper J. gemtc: Network Meta-Analysis Using Bayesian Methods. R package version 08-2. https://cran.r-project.org/web/packages/gemtc/gemtc.pdf, 2016.