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S1. Implementation of QM/MM in GENESIS

QM/MM in GENESIS is invoked by specifying four keywords in a newly set [QMMM]
section as shown in Fig. S1 (a). The QM program is specified by a keyword, “qmtyp”. The
current version supports Gaussian09/16, Q-Chem 4 x, TeraChem 1.9, and DFTB+ 18.1. “gmcent”
and “gmexe” specify a template to generate an input file and a shell script to execute a QM
program, respectively. The template file includes options for QM calculations, but without
atomic coordinates and MM charges. As illustrated in Fig. S1 (b), the coordinates and charges
are provided by GENESIS at runtime, and supplemented to the template file to generate an input.
Then, the shell script is executed by calling a system function in Fortran. Using a shell script
enables a flexible control of a QM program; for example, setting a local scratch folder, the
number of cores, an archive of molecular orbitals for restarting the self-consistent field (SCF)

calculations, etc. Examples are found in our GitHub repository
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Figure S1. (a) Keywords for QM/MM calculations in an input file and (b) the scheme to interface

GENESIS and QM programs.



(https://github.com/yagikiyoshi/QMMMscripts). When the quantum chemistry calculation is
done and the control returns to GENESIS, the necessary data are retrieved from log files. The
last keyword, “qmatm_select_index”, specifies QM atoms using a selector function in GENESIS,
which facilitates selection of atoms in terms of atom and residue numbers, segment ID,
interatomic distance, etc. Note that link hydrogen atoms are automatically added by the program
using the information of bond connectivity provided in a PSF file, thereby requiring no input
about the QM and MM boundary.

The QM/MM calculation is often done in a two-step procedure, where the conventional MD
simulation is fist performed using a force field to sample relevant structures, and then static
QM/MM calculations are performed for those structures to obtain accurate molecular properties.
For the convenience of such scheme, we have developed a tool to create QM/MM systems from
a MD trajectory (gqmmm_generator). Given a QM region and snapshot ID in the input, the tool
wraps all molecules in a PBC box around the center of mass of QM atoms (or any center
specified by user), and optionally truncates the MM region to generate coordinate files and PSF

for each snapshot.



S2. QFF coefficients derived from numerical differentiations of gradient

The third- and fourth-order coefficients of QFF is computed by numerical differentiations of
the gradient by the following formula.
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4MR-QFF terms:
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Here, g; and g;(+3;) are the i-th component of the gradient at the equilibrium geometry and at

the grid point deviated by §; to the i-th direction, respectively. The number of grid points for

calculating the 3MR and 4MR-QFF is,
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S3. VSCF and VQDPT?2 methods

In this study, the vibrational Schrédinger equation is solved based on nMR-PES derived

from QM/MM calculations. The VSCF equation is first solved for the vibrational ground state,
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which yields a set of one-mode function and energy, { ( )} and { } respectively. In VQDPT2,

the VSCF solution is improved by the second-order perturbation theory. Let us define VSCF

configuration functions and the zero-th order energy as,
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We divide the VSCF configuration functions to those that are nearly degenerate to the target

state, {|p)}, and others that are non-resonant, {|q)}. Then, the effective Hamiltonian matrix reads,
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The diagonalization of this matrix yields the VQDPT?2 energy and wavefunction.
The degenerate P space, {|p)}, and the complementary Q space, {|q)}, are specified by

parameters, k and N,,,. For each target state (e.g., fundamentals), VSCF configurations, in which



the difference in quantum number is equal to or less than k, are selected for Q space. If a
configuration of the Q space has the zero-th order energy closely degenerate to that of the target
configuration, it is selected as a P space configuration. The same procedure is repeated setting
the newly selected P space configurations to target state for N, times. See Ref.' for further

gen

details.



S4. On the width of Lorentz functions to construct the IR spectrum of a phosphate ion

The IR spectrum of a phosphate ion in solution shown in Fig. 4 was constructed using a

Lorentzian line shape function,
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where v; and y are the vibrational excitation energy of a state i and a broadening factor,

respectively. The weight averaged IR spectra obtained with different y is shown in Fig. S2.
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Figure S2. The weight averaged IR spectrum obtained with y = 20, 30, 40, 50, and 60 cm™.



S5. On the electronic structure of Fe™(NO)

From the result in Fig. 6, the electronic structure of Fe'

(NO) can be understood in terms of
two types of orbital interaction diagrams. Fig. S3 (a) illustrates a case where an axial ligand (L)
weakly interacts with Fe such that the energy levels of d orbitals (d,, and d,,) are separated from
7% orbitals of NO. In this case, the character of the orbital is kept unchanged, and the radical
electron of NO in the 7* orbital is transferred to one of the d orbitals of Fe, literally forming a
complex, Fe"(NO*). Consequently, the two 7* orbitals of NO are both unoccupied, thereby
yielding a linear Fe-NO perpendicular to the heme plane. A typical such ligand is histidine,
which we confirmed a formation of linear Fe-NO by a QM cluster calculation using imidazole in
place of thiolate (data not shown). On the other hand, Fig. S3 (b) illustrates the other extreme,
where the axial ligand (e.g. the thiolate of cysteine) strongly interacts with Fe, so that the energy
levels of d and 7* orbitals are sufficiently close to form strongly mixed, hybrid orbitals. In this
case, the unpaired electrons of Fe and NO occupy the hybrid orbital, resulting in a partial
occupation of 7* orbitals. The partial occupation of 7* orbitals not only breaks the symmetry to

make the NO molecule tilted, but also weakens the N-O bond resulting in a lowering of the NO

stretching frequency.
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Figure S3. Schematic diagram of orbital interaction giving rise to (a) linear NO and (b) tilted NO.



An alternative configuration, an open-shell singlet (os-1et) state, has one of the unpaired
electrons in 7* orbitals of NO, and the other electron with opposite spin in d orbitals of Fe". In

other words, the radical electrons remain in unperturbed orbitals.
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Table S1. The type of simulation, simulation time (in ns), time step (in fs), and force constants
(in kcal mol”" A?) of harmonic positional restraints for heavy atoms employed in MD

simulations for P450nor.

Restraints
Step Type® Time Time step
Backbone Other atoms”
1 Minimize 5000 steps - fixed fixed
2 NVT 3.0 20 fixed fixed
3 NPT 3.0 20 fixed fixed
4° NVT 3.0 20 fixed fixed
5 NVT 3.0 20 50 20
6 NVT 3.0 20 50 1.0
7 NVT 3.0 20 25 1.0
8 NVT 3.0 20 2.5 0.5
9 NVT 3.0 20 1.0 0.5
10 NVT 3.0 20 1.0 0.1
11 NVT 3.0 20 1.0 0.0
12 NVT 3.0 20 0.5 0.0
13 NVT 3.0 20 0.1 0.0
14 NVT 10.0 25 0.0 0.0
15¢ NVT 70.0 25 0.0 0.0

a. The temperature and pressure were controlled at 300 K and 1 atm, respectively.
b. Sidechain, heme NO unit, and crystal water molecules.
c. The last snapshot of step land 4 is XtalV and XtalW, respectively.

d. Production run. NVT1 to 5 are taken from this trajectory.
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Table S2. Representative geometric parameters in the active site of P450nor [bond lengths (r in
A), bond angles (0 in degree), and dihedral angles (¢ in degree)], and the N-O and Fe-N
harmonic stretching vibrations [ in cm™] obtained from QM/MM calculations with different

sizes of QM region for the NVT4 snapshot, together with the numbers of QM atoms (Nyy,) and

basis functions (V).

QM region A QM region B° QM region C° QM region D*

FFe-NO 1.653 1.650 1.653 1.653
IN-O 1.137 1.136 1.136 1.137
FFeS 2.310 2.314 2.314 2.306
OreN-0 165.0 168.3 168.7 165.7
ONA-Fe N-O 130.8 105.9 103.3 126.3
Pcp-s-N-0 125.3 103.8 103.3 123.6
ON-O 2017.4 2025.2 2026.8 2016.3
WFe-NO 628.4 628.7 628.1 629.9
Nowm 79 88 102 99
Not 892 964 1107 1129

“ A ferric heme-NO unit and a side chain of Cys352 (-CgH,S).

b Three water molecules within 3.5 A of NO ligand in addition to the QM region A.

“ Two water molecules forming hydrogen bonds with O atom of Cys352, and backbone of
Cys352 and Ile353 (C,, C, O, and H atoms of Cys352 and N, C,, H atoms of [le353) in addition
to the QM region B.

‘C,, C, 0, and H atoms of Cys352, backbone atoms of 1le353 and Ala354, and N, C,, H atoms

of Glu355 in addition to the QM region A.
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