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1 Computational Models

We built four models of the task which integrate the visual feedback in different ways.
The simplest of these is the Path Integration model. This model ignores visual feedback
completely and bases its estimate on pure path integration. As shown in the Results
section, this model describes the behavior of at least one participant quite well and was
used for all participants to fit data from the No Feedback condition.

The second model is the Kalman Filter model. This model integrates the visual feedback
using the equations of the Kalman filter [1], which performs optimal cue combination
under the assumption that the feedback error is Gaussian (which is not the case in our task
because the feedback is sometimes sampled from a uniform distribution, see Eq. 1.

The third and fourth models extend the Kalman filter to better match the actual genera-
tive process of the experiment. These models assume that the feedback can be misleading
and take this possibility into account by computing the probability that the feedback is
‘true’ (i.e. comes from the Gaussian distribution, p(true|f)) and false (i.e. comes from the
uniform distribution, p(false|f). The Cue Combination model, averages over this proba-
bility to form its estimate of heading. Conversely, the Hybrid model, samples from this
probability, incorporating feedback just like the Kalman filter with probability p(true|f)
and ignoring the feedback with probability p(false|f). In the following sections we develop
each of these models in detail.

1.1 Path Integration model

We begin by modeling the case in which feedback is either absent (as in the No Feedback
condition) or ignored (as in some participants). In this case, the estimate of heading is
based entirely on path integration of vestibular cues. To make a response, i.e. to decide
when to stop turning, we assume that participants compare their heading angle estimate,
computed by path integration, with their memory of the target angle. Thus, the Path
Integration model can be thought of as comprising two processes: a path integration
process and a target comparison process (Fig S3).

Path integration In the encoding phase of the task, participants are guided through an
initial turn of −α degrees to face heading angle, θ0. In the retieval phase, they must then
undo this rotation without visual feedback to return to θ0 + α. For simplicity, and without
loss of generality, we take the initial head direction on each trial to be θ0 = 0o.

During retrieval, we assume that participants receive vestibular cues about their angular
velocity as they rotate. For simplicity we model this process in discrete time, although the
extension to continuous time is straightforward. We assume that on each time step t of the
turn they receive a biased and noisy measure of their angular velocity, dt, which is related
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A) Graphical representation of the Path Integration model
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Fig S1: The Path Integration model. (A) The model comprises two processes: path integra-
tion and target comparison. In the path integration process the models’ estimate of heading
angle, mt (and corresponding uncertainty in this mean, st) is computed by integrating
biased and noisy velocity information, dt, over time. In the target comparison process, this
estimate of heading is compared with the models’ biased and noisy memory of the target
angle, A, to decide when to stop at measured angle θt. Blue nodes correspond to variables
that are ‘observed’ by the model (i.e. the participant) and can be used to compute the
response. Red nodes correspond to variables that are observed by the experimenter and are
the measurements we use to analyze behavior. White nodes correspond to parameters that
are unobserved (by either the participant or the experimenter) describing imperfections
in the coding of velocity (γd, σd) and target (γA, βA, σA). Free parameters are denoted by
a double line. To further distinguish between variables available to the participant and
those that are not, we write variables available to the participant with Roman letters and
variables that are not available to the participant with Greek letters. (B) The model predicts
that both the mean and variance of the response error will be linear in target angle, α.
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to their true angular velocity, δt by

dt = γdδt + νt (S1)

where γd denotes the gain on the velocity signal, which contributes to systematic under-
or over-estimation of angular velocity. νt is zero-mean Gaussian noise with variance that
increases in proportion to the magnitude of the angular velocity, |δt|, representing a kind
of Weber–Fechner law behavior [2],

νt ∼ N
(
νt
∣∣0, σ2

d|δt|
)

(S2)

where σ2
d is a constant that determines the relationship between noise and angular velocity.

Next we assume that participants use this noisy velocity information to compute a
probability distribution over their current heading angle.

p (θt|d1:t−1) = N (θt|mt, s
2
t ) (S3)

where the mean of the distribution is given by

mt =
t∑

i=1

dt = γdθt +
t∑

i=1

νi = γdθt + nd (S4)

where nd =
∑t

i=1 νi. The variance of the distribution is given by

s2t = s20 + θts
2
d (S5)

where s20 is the participant’s initial uncertainty in their location and s2d is the participant’s
estimate of the variance of noise in their own vestibular system.

Strictly speaking, the behavior of the Path Integration model only depends on the
mean, mt, and we do not need to make the assumption that participants compute a full
distribution over possible heading. However, as we shall see, computing both the mean
and variance of p (θt|d1:t−1) will be necessary for the models that incorporate feedback.

Target comparison Estimating the current heading angle is not enough to complete the
task. In addition participants have to remember the target angle and compare it to their
current estimate of heading. As with the encoding of velocity, we assume that this memory
encoding is a noisy and biased process such that the participant’s memory of the target
angle is

A = γAα + βA + nA (S6)

where γA and βA are the gain and bias on the memory that leads to systematic over- or
under-estimation of the target angle, and nA is zero mean Gaussian noise with variance σ2

A.
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In the Supplementary Section 2 we show how this form of a gain and bias on the target
angle can result from Bayesian decoding of a noisy memory with no gain or bias.

To determine the response, we assume that participants stop moving when their current
heading estimate matches the remembered angle. That is, when

mt = A (S7)

Substituting in the expressions for mt and A, we get that the measured head angle when
they stop, θt, will satisfy

θt =
1

γd
(γAα + βA + nA − nd) (S8)

Because the noise terms (nA and nd) are Gaussian, the measured error (θt − α) will also be
Gaussian. Thus we can characterize the probability distribution over the measured error
by its mean and variance

E [θt − α] =
(γA − γd)α + βA

γd
; V [θt − α] =

σ2
dα + σ2

A

γ2
d

(S9)

The Path Integration model technically has seven free parameters (γd, σd, γA, βA, σA, sd,
s0). However, because the variance of the model’s estimate does not affect θt, two of these
parameters (sd and s0) cannot be estimated. In addition, the remaining five parameters all
appear as ratios with γd giving us four free parameters in the Path Integration model. In
practice when fitting the Path Integration model we set γd = 1 and interpret the remaining
parameters as ratios (e.g. γA/γd, Table 2.

1.2 Kalman Filter model

Unlike the Path Integration model, which always ignores feedback, the Kalman Filter
model always incorporates the visual feedback into its estimate of location. To model this
process, we split the retrieval phase into four components: initial path integration, before
the visual feedback is presented; feedback incorporation, when the feedback is presented;
additional path integration, after the feedback is presented; and target comparison, to
determine when to stop (Fig S2).

Initial path integration Initial path integration is identical to the Path Integration model.
The model starts at a heading θ0 = 0 and integrates noisy angular velocity information
over time to form an estimate of the mean, mt and uncertainty, st, over the current heading
angle θt.
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A) Graphical representation of the Kalman Filter model
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Fig S2: Graphical representation of the Kalman Filter model. (A) The model comprises
four processes: initial path integration, feedback incorporation, final path integration, and
target comparison. The initial path integration process proceeds exactly as in the Path
Integration model, estimating heading angle mt from noisy velocity information d. In
the feedback incorporation process, the path integration estimate is combined with the
feedback f to form a combined estimate m̂tf . In the final path integration process, the
model incorporates the new noisy velocity information to update the combined estimate
of heading. Finally, in the target comparison process, the combined estimate is compared
with the remembered target angle A to generate the response θt. (B) Expressions for the
mean and variance of the measured response error. Of note is that the mean is linear in
both the target angle and the prediction error f − γdθtf .
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Feedback incorporation At time tf the feedback, f , is presented. The Kalman Filter
model assumes that the feedback can be noisy, but that it is always carries some information
about the true heading angle θtf . In particular, this model assumes that the feedback angle
is sampled from a Gaussian distribution centered on the true heading angle, θtf , such that

p(f |θtf ) = N (f |θtf , s2f ) (S10)

where s2f is the participant’s estimate of the variance of the feedback.
With this Gaussian assumption for the likelihood of the feedback, the Kalman Filter

model then combines the feedback with the estimate from path integration via Bayes rule

p(θtf |f, d1:tf−1) ∝
feedback︷ ︸︸ ︷
p(f |θtf ) ×

path integration︷ ︸︸ ︷
p(θtf |d1:tf−1)

= N (f |θtf , s2f )×N (θtf |mtf , s
2
tf
)

=⇒ p(θtf |f, d1:tf−1) = N (θtf |m̂tf , ŝ
2
tf
)

(S11)

where the mean and variance of this posterior distribution over (θtf ) are given by

m̂tf = mtf +
s2tf

s2tf + s2f

(
f −mtf

)
and ŝ2tf =

s2tf s
2
f

s2tf + s2f
(S12)

Note that the feedback updates the mean according to the prediction error f−mtf weighted
by the ‘Kalman gain’

Ktf =
s2tf

s2tf + s2f
=

s20 + θtf s
2
d

s20 + θtf s
2
d + s2f

(S13)

The Kalman gain captures the influence of the prediction error on the estimate of heading
angle. The more certain the model is that the feedback is accurate (i.e. smaller sf ) the
closer the Kalman gain is to 1 and the larger the effect of the feedback. Conversely, the
more certain the model is in its path integration estimate (i.e. smaller stf ) the closer the
Kalman gain is to 0 and the smaller the effect of the feedback.

Additional path integration After the feedback has been incorporated, the model con-
tinues path integration using noisy velocity information. Thus the estimate of the mean
continues to update as:

m̂t = m̂tf +
t−1∑
i=tf

δi (S14)
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Substituting in the expressions for m̂tf , di, and mtf we get

m̂t = mtf +Ktf

(
f −mtf

)
+

t−1∑
i=tf

(γdδi + νi)

=

tf−1∑
i=1

(γdδi + νi) +Ktf

(
f −

tf−1∑
i=1

(γdδi + νi)

)
+

t−1∑
i=tf

(γdδi + νi)

= γdθt +Ktf

(
f − γdθtf

)
+

tf−1∑
i=1

(1−Ktf )νi +
t−1∑
i=tf

νi︸ ︷︷ ︸
noise, ϵ

(S15)

Target comparison Finally, the response is determined as the point at which m̂t is equal
to the noisy target angle, A

m̂t = γAα + βA + nA (S16)

Substituting in the expression for m̂t and rearranging for the response angle gives

θt =
1

γd

(
γAα−Ktf

(
f − γdθtf

)
+ βA + nA − ϵ

)
(S17)

This implies that the distribution of errors (θt − α) is Gaussian with a mean given by

E [θt − α] =
1

γd

(
γAα−Ktf (f − γdθtf ) + b

)
(S18)

and a variance given by

V [θt − α] =
1

γ2
d

(
σ2
A + (1−Ktf )

2θtfσ
2
d + (α− θtf )σ

2
d

)
=

1

γ2
d

(
σ2
A +

(
α−

(
2−Ktf

)
Ktf θtf

)
σ2
d

) (S19)

Note that, because s2f , s20, and s2d appear as part of a ratio in the equation for Ktf , only two
out of the three of these can be estimated from data. Thus, of the eight free parameters in
the Kalman Filter model (γd, σd, γA, βA, σA, s0, sd, and sf ), only seven can be estimated from
the data. In practice, when fitting this model we set s2f = 1 and interpret the participant’s
initial uncertainty and estimate of velocity noise as ratios, s0/sf and sd/sf respectively
Table 2.
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1.3 Cue Combination model

The Cue Combination model takes into account the possibility that the feedback will
be misleading. To do this it computes a mixture distribution over heading angle with
one component of the mixture assuming that the feedback is false and the other that
the feedback is true. These two components are weighted according to the computed
probability that the feedback is either false or true.

Mathematically, the Cue Combination model computes the probability distribution
over heading angle by marginalizing over the truth of the feedback

p(θtf |f, d1:tf ) = p(θtf |false, d1:tf )p(false|f, d1:tf ) + p(θtf |true, f, d1:tf )p(true|f, d1:tf ) (S20)

where p(true|f, d1:tf ) = ptrue = 1− pfalse is the probability that the feedback is true given
the noisy velocity cues seen so far. Thus the Cue Combination model requires two steps to
incorporate the feedback: first compute ptrue and second average over ptrue to determine
how much to take the feedback into account.

Computing ptrue Using Bayes rule, we can write the probability that the feedback is true,
ptrue as

p(true|f, d1:tf ) =
p(f |true, d1:tf )p(true)

p(f |true, d1:tf )p(true) + p(f |false, d1:tf )p(false)
(S21)

where p(f |true, d1:tf ) is the likelihood of the feedback assuming it is true, p(f |false, d1:tf )
is the likelihood of the feedback assuming it is false, and p(true) = 1 − p(false) is the
participant’s estimate of the prior probability that the feedback is true.

The likelihood of the feedback given that it is true, p(f |true, d1:tf ), can be computed by
marginalizing over the estimate of heading direction as

p(f |true, d1:tf ) =
∫

dθtfp(f |θtf , true)p(θtf |d1:tf ) (S22)

where p(θtf |d1:tf ) is the heading angle distribution computed by path integration and
p(f |θtf , true) is the likelihood of the feedback given the heading angle, which we assume
to be Gaussian; i.e.,

p(f |θtf , true) = N (f |θtf , s2f ) (S23)

This implies that p(f |true, d1:tf ) is the convolution of two Gaussians, which is itself another
Gaussian

p(f |true, d1:tf ) = N (f |θtf , s2f )⊛N (θtf |mtf , s
2
tf
)

= N (f |mtf , s
2
f + s2tf )

(S24)

The likelihood of the feedback given that it is false, p(f |false, d1:tf ), is simply a uniform
distribution over f

p(f |false, d1:tf ) = U(f) = 1

2π
(S25)
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A) Graphical representation of the Cue Combination and Hybrid models
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θ0

θt

θtf

f

ρ σf

r

sf

sd

α

A

γA

βA

σA

ptrue

Observed by subject Observed by experimenter Observed by both Free parameter

B) Mean and variance of error for the Cue Combination model

E [θt − α] =
1

γd

(
(γA − γd)α−Ktfptrue(f − γdθtf ) + βA

)
V [θt − α] =

1

γ2
d

(
σ2
A +

(
α−

(
2−Ktfptrue

)
Ktfptrueθtf

)
σ2
d

)
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Fig S3: The Cue Combination and Hybrid models. (A) Graphical representations of the
parameters in the Cue Combination and Hybrid models. In the feedback incorporation
stage, both models compute the probability that the feedback is true, ptrue. They then use
this probability to modulate the effect of feedback on their estimate of heading — the Cue
Combination model by averaging over ptrue, the Hybrid model with sampling from ptrue.
(B) The mean and variance of the measured error for the Cue Combination model are
linear in the target angle, α, but non-linear in the prediction error, f − γdθtf because ptrue is
non-linear in the prediction error. (C) The response distribution for the Hybrid model is a
mixture of two Gaussians.
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Finally, we define the participant’s estimate of the prior probability that the feedback is
true as a free parameter p(true) = 1− p(false) = r.

Putting it all together gives the following expression for ptrue

ptrue = p(true|f, d1:tf ) =
N (f |mtf , s

2
f + s2tf )r

N (f |mtf , s
2
f + s2tf )r + U(f)(1− r)

=
1

1 +

√
s2f+s2tf

2π
exp

(
(f−mtf )

2

2(s2f+s2tf
)

)(
1−r
r

) (S26)

Note, that ptrue depends on the square of the prediction error (f −mtf )
2 such that when

the prediction error has a large magnitude, ptrue is small. Unfortunately this dependence
requires an approximation before we can use it for model fitting. The reason is that mtf is
not observed by the experimenter, only θtf . In addition, because the dependence of ptrue
on mtf is non-linear it is not easy to average over this exactly. Instead we approximate mtf

in the expression for ptrue with its average, γdθtf , thus our approximate expression for ptrue
becomes

ptrue ≈
1

1 +

√
s2f+s20+θtf s

2
d

2π
exp

(
(f−γdθtf )

2

2(s2f+s20+θtf s
2
d)

)(
1−r
r

) (S27)

Note that s0, sd, and sf do not appear as a ratio in the expression for ptrue. This implies that,
unlike the Kalman Filter model, all three of these parameters can be estimated from the
data.

Cue Combination over ptrue The Cue Combination model incorporates feedback by
computing the mixture distribution

p(θtf |f, d1:tf ) = p(θtf |false, d1:tf )pfalse + p(θtf |true, f, d1:tf )ptrue (S28)

This sum is the weighted sum of the distributions from the Path Integration model,
p(θtf |false, d1:tf ), and the Kalman Filter model, p(θtf |true, f, d1:tf ). Thus, at time t, the
mean of the combined heading angle distribution is simply the weighted sum of the Path
Integration estimates and the Kalman Filter estimates; i.e.,

m̃av
t = mtpfalse + m̂tptrue

= (γdθt + ν) pfalse +
(
γdθt +Ktf (f − γdθtf ) + ϵ)

)
ptrue

= γdθt +Ktfptrue(f − γdθtf ) +
(
1−Ktfptrue

) tf−1∑
i=1

νi +
t−1∑
i=tf

νi

(S29)

Computing the variance of p(θtf |f, d1:tf ) is a little more involved. However, because this
variance is unrelated to the measured behavior, we ignore it.

11



Target comparison As with the other models, we assume that participants stop turning
when their estimate of the mean heading angle matches their noisy memory of the target,
i.e. when

m̃av
t = γAα + βA + nA (S30)

Rearranging for the measured response angle, θt, gives

θt =
1

γd

γAα−Ktfptrue(f − θtf ) + βA + nA −
(
1−Ktfptrue

) tf−1∑
i=1

νi −
t−1∑
i=tf

νi

 (S31)

Which implies that the error follows a Gaussian distribution with mean and variance given
by

E [θt − α] =
1

γd

(
(γA − γd)α−Ktfptrue(f − γdθtf ) + βA

)
V [θt − α] =

1

γ2
d

(
σ2
A +

(
α−

(
2−Ktfptrue

)
Ktfptrueθtf

)
σ2
d

) (S32)

The Cue Combination model has nine free parameters Table 2, all of which can be estimated
from the data.

1.4 Hybrid model

Instead of averaging over the possibility that the feedback is true or false, the Hybrid model
makes a decision to either incorporate the feedback (in the same way as the Kalman Filter
model) or ignore it (in the same way as the Path Integration model) (Fig S3). We assume
that the model makes this decision according to ptrue, by sampling from the distribution
over the veracity of the feedback. Thus with probability ptrue, this model behaves exactly
like the Kalman Filter model, with

m̃samp
t = m̂t (S33)

and with probability pfalse = 1− ptrue this model behaves exactly like the Path Integration
model with

m̃samp
t = mt (S34)

This implies that the distribution of errors is a mixture of two Gaussians, such that with
probability ptrue, the mean and variance of the response error are

E(θt − α) =
1

γd

(
(γA − γd)α−Ktf (f − γdθtf ) + b

)
V(θt − α) =

1

γ2
d

(
σ2
A +

(
α−

(
2−Ktf

)
Ktf θtf

)
σ2
d

) (S35)
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and with probability pfalse = 1− ptrue, the mean and variance of the response error are

E(θt − α) =
1

γd
((γA − γd)α + βA)

V(θt − α) =
1

γ2
d

(
σ2
dα + σ2

A

) (S36)

Like the Cue Combination model, the Hybrid model has nine free parameters (Table 2) all
of which can be estimated from the data.

2 Bayesian decoding of target position

In the main text we assumed the following form for the biased and noisy memory of the
target

A = γAα + βA + nA (S37)

where γA and βA are the gain and bias on the memory, which lead to systematic over- and
under-estimation of the target angle, and nA is zero mean Gaussian noise with variance σ2

A.
While this expression could simply reflect imperfect encoding of the target, here we

show how this expression can be related to Bayesian decoding of a noisy, but otherwise
unbiased target angle

A = α + n (S38)

In particular, we assume that participants are aware that their memory is imperfect and
can, to some degree correct for this noise by incorporating prior knowledge about possible
α angles. That is, participants use Bayesian inference compute a posterior over α given A
as

p(α|A) ∝ p(A|α)p(α) (S39)

Assuming both the prior and likelihood are Gaussian such that

p(α) = N
(
α|mα, s

2
α

)
p(A|α) = N

(
A|α, s2A

) (S40)

where mα is the participant’s estimate of the mean of the prior distribution, s2α is their
estimate of the variance of the prior, and s2A is the their approximation to the variance of
the memory noise (i.e. their estimate of the variance of nA).

Substituting these expressions for the likelihood and prior into Eq. S39 implies that the
posterior over target angle is also a Gaussian with a mean and variance given by

p(α|A) = N
(
α

∣∣∣∣ s2αA+ s2Amα

s2A + s2α
,

s2As
2
α

s2A + s2α

)
(S41)
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Note that the mean of this distribution is

mean target estimate =
s2αA+ s2Amα

s2A + s2α

variance of target estimate =
s2As

2
α

s2A + s2α

(S42)

Note that the expression for the mean can be further related to the target by substituting
A = α + n giving

mean target estimate =

(
s2α

s2A + s2α

)
α +

(
s2Amα

s2A + s2α

)
+

(
s2α

s2A + s2α

)
n (S43)

Comparing this expression for the mean with Eq. S37 we can make the identifications

γA =
s2α

s2A + s2α
and βA =

s2Amα

s2A + s2α
(S44)

3 Fitting simulated data

We tested the validity of our model fitting procedure by fitting simulated data. This
allowed us to determine whether data generated by a given model would be best fit by
that model (model recovery) and whether the parameters used to generate the data could
be recovered by the fitting process (parameter recovery).

3.1 Simulated data

Simulated data for each model were generated by simulating the models using the gen-
erative processes described in the main text. To ensure that the parameter values used
to simulate data were in a reasonable range, we used the parameter values fit to the
participants’ behavior to generate parameters for the simulations. In particular, for each
simulated participant we sampled each parameter randomly from the values fit to the
participants. Thus, the first simulated participant could have γd from participant number
5, σd from participant number 27, and so on. In this way we ensured that the simulation
parameters were in a reasonable range, but removed any correlations between the param-
eters in the simulation. This latter point was important for testing whether the fitting
procedure induced correlations between the parameters. In all we simulated behavior
from 30 participants per model (total 120 simulated participants) on the same (but scram-
bled) set of trials seen by real participants in the experiment. Thus the simulated data we
obtained had the same number of trials as the real data set, but four times the number of
participants (30 per model).
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3.2 Fitting simulated data

We fit the simulated data using the same procedure used to fit the real data in the main
paper. This allowed us to compute the best fitting parameter values and a BIC score for
each

3.3 Model recovery

We tested the ability of the model to identify the generating model by fitting all 120
simulated data sets with all four models. Using the BIC scores for each participant, we
then computed the ‘confusion matrix’ [3] as the fraction of times that data generated by
model X was best fit by model Y , p(fit = Y |sim = X) (Fig S4A). In a perfect world this
matrix would be the identity matrix indicating that data generated by model X is always
best fit by model X . In practice, limitations in the experiment design and fitting procedure
often cause these matrices to be non-diagonal as is the case here. Nevertheless, for every
model, more than 50% of the data sets generated by model X are best fit by model X .

To further help interpret the model recovery data, we also computed the ‘inversion
matrix’ [3]. Unlike the confusion matrix, which approximates p(fit|sim), the inversion
matrix approximates p(sim|fit). This we compute from the confusion matrix using Bayes
rule

p(sim|fit) = p(fit|sim)p(sim)∑
sim p(fit|sim)p(sim)

(S45)

under the assumption that the prior on generating models p(sim) is uniform.
The inversion matrix more closely matches the inference process we face when inter-

preting the model fitting data in the paper. That is, we observe which model best fits each
subject and must infer the model that generated it. Again we see that model recovery is
good, but not perfect, such that (for example) 74% of the time that a model is best fit with
the Hybrid model it was actually generated by the Cue Hybrid model.
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3.4 Parameter recovery

For the parameter recovery analysis we simulated and fit the data with the same model.
First, we fit data from the Path Integration model on just the No Feedback trials S5.
Parameter recovery is excellent int his case with no correlation between simulated and fit
data falling below 0.84.
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Next we performed the same analysis for the Hybrid model, this time fitting all trials,
including both the No Feedback and Feedback conditions (Fig S6). Again, parameter
recovery is good for this model.
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Critically, the model fitting process did not introduce new correlations into the data set.
In Fig S7 we show this for the correlations between γA and γd and σd.
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Finally, for completeness we performed parameter recovery for the remaining three
models (No Feedback, Landmark Navigation, and Cue Combination model) using all
trials (i.e. from the No Feedback as well as the Feedback condition). Parameter recovery
was pretty good for all models Figures S8, S9, and S10.
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4 Parameter values for the Hybrid model

Fit parameter values for the Hybrid model are shown in Fig S11. Like the model-free
measures of behavior, there was considerable variability in the parameter values across
participants. Thus, while the group average of the velocity gain was close to 1 (mean
γd = 1.01) individuals varied from systematically under-weighting velocity (γd < 1) to
systematically over-weighting it (γd > 1). All participants exhibited noise in their velocity
coding process, with σd = 1.38 on average. This latter result suggests that the variance of
the uncertainty in location from path integration grows rapidly, at around 1.38 times the
rotation angle. At this rate of growth, the noise in path integration will swamp the signal
in less than one turn.

Similarly suboptimalities were observed in the coding of the target. Like the velocity
gain, the group average of the target gain was close to 1 (mean γA = 1.04), there was
considerable variation between people from systematic under-weighting (γA < 1) to
systematic over-weighting of the target (γA > 1). In addition, as in the No Feedback
condition, all participants were biased towards over-estimating the target (mean βA = 13.0
degrees) and had considerable noise in the target coding process (mean σA = 7.5 degrees).

There were also considerable individual differences in participants’ inference parame-
ters: s0, sd, sf , and r. Most participants underestimated the feedback noise (mean sf = 8.68
versus the true value in the experiment of σf = 30o). Conversely, the group average of the
prior probability was more accurate (mean r = 0.69 which is remarkably close to the true
value of ρ = 0.7, although again there was considerable variability across the group.

The individual differences in s0, sd, and sf lead to considerable variability in the Kalman
gain across participants and (in some participants) across trials (Fig 12). Some participants
show almost no variation across trials (left and right sides of Fig 12), while others show
large variability across trials (middle participants in Fig 12). This pattern can be explained
by recalling the equation for Kalman gain

Ktf =
s20 + s2dθtf

s2f + s20 + s2dθtf
(S46)

This equation implies that participants with both small and large noise in their path
integration process (i.e. sd ≈ 0 or sd ≫ sf and s0) will have approximately constant
Kalman gain across trials. When the velocity noise is small (sd ≈ 0),

Ktf ≈ s20/(s
2
0 + s2f ) (S47)

which is a constant between 0 and 1 depending on the ratio of participants initial uncer-
tainty s0 to their estimate of feedback noise sf . This is the case for participants on the left
hand side of Fig 12.

When the velocity noise is large (sd ≫ sf and s0)

Ktf ≈ s2dθtf/s
2
dθtf = 1 (S48)
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That is the Kalman gain is a constant with value equal to 1. This is the case for participants
on the right hand side of Fig 12.

For participants whose velocity noise is intermediate in value, the uncertainty in their
estimate of heading at the time of feedback is close to their estimate of the feedback noise
giving them a Kalman gain between 0 and 1 that varies considerably depending on the
exact value of the true heading angle at feedback θtf .

4.1 Correlations between parameters

Finally we consider the correlations between fit parameter values (Fig S12). Although
our relatively small sample size limits the power of this analysis, we find three significant
correlations and two near-significant correlations after Bonferroni correction for multiple
comparisons.
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Fig S12: Correlations between parameters in the Hybrid model. (A) Spearman correlation
coefficients for all nine parameters. * indicates p < 0.05 after Bonferroni correction for
multiple comparisons. (B) The correlation between the gain on velocity, γd, and the gain
on the target γA is near perfect. The red line corresponds to the linear least squares fit, the
black dashed line to the equation γA = 2γd − 1. (C) γd also correlates with the velocity
noise, σd, as does γA (not plotted).

The most striking of these correlations is the near-perfect correlation (r = 0.96) between
the target gain γA and velocity gain γd (Fig S12B). As shown by the parameter recovery
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analysis in Fig S7, this correlation is not an artefact of the fitting procedure. Instead we
believe that this reflects a redundancy in the model whereby the same gain process that
contributes to people’s imperfect coding of the target also contributes to imperfect coding
of velocity. Intriguingly, the correlation in Fig S12B is almost perfectly described by the
equation

γA = 2γd − 1 (S49)

which is the dashed black line in Fig S12B.
This relationship can cause displacement biases of target location in the direction of

motion, which is a phenomenon in perception called representational momentum [4–6] . This
displacement, characterized as a memory bias, is directly influenced by velocity and has a
linear relationship for small changes in velocity [7, 8]. Thus, we speculate that this linear
relationship between this deviation from perfect gain (i.e. gain = 1) in memory and velocity
is the derivative equivalent to representational momentum. However, exactly why the
slope of this relationship should be 2 is a mystery to us at this stage.

The other significant (and near significant) correlations also involve γd and γA with the
velocity noise σd and the participant’s estimate of feedback noise sf . Because γd and γA
are so tightly coupled, it is not surprising that their correlations with σd and sf are almost
identical and we focus only on the correlations with γd in Fig S12.

For velocity noise, a positive correlation with γd (Fig S12C) can be understood if the
noise in the velocity estimate occurs before the gain is applied. This is consistent with
modifying the equation for the noisy velocity to be

di = γd(δi + νi) (S50)

where the standard deviation of the noise is k, which relates to the standard deviation of
the noise in the original model as σd = γd × k.

Finally, while asserting the null comes with serious caveats with such a small sample
size, we note one correlation that was not significant. In particular, we note that sd and
σd are only weakly correlated. Perfect Bayesian inference would have these equal, as
participants use their estimate of their own velocity noise to optimally integrate feedback.
If our model is correct, then this suggests that participants may not have a good estimate
of their own path integration noise.
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5 Model fit for all subjects
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Fig S13: Comparison between data and model for all participants. The background color
represents which model was the best fit(Fig 13) for that participant: Hybrid model (white),
path integration (green) and Cue Combination (yellow).
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6 Confidence Rating Correlations

At the end of each trial, participants rated their confidence by adjusting the angle ς in Fig 1D
and E. We found no correlation between any participant’s confidence rating and their angle
error (Fig S14), which is consistent with previous work showing that people are relatively
bad at judging their own errors [9, 10]. Interestingly some participant’s confidence rating
does correlate with target angle Fig S15. In other words, these participants feel less and less
confidant as they continue rotating. One possible explanation that these participants not
only estimating target location but rather they are calculating full posterior distribution [11].
Indeed some of these participants show a significant correlation with the posterior variance
calculated from the Hybrid model Fig S16. However, with the larger individual differences,
it is hard to make an exact conclusion.
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