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Supplementary methods 
Simulated California population 
We simulated the entire population of California (N=39,148,760) with information for each 
individual on:  

• demographic characteristics: age, sex, race, ethnicity and county of residence;  
• unique special population status: healthcare worker (HCW), incarcerated individual 

(state/federal/local/youth prisoner), skilled nursing facility (SNF) resident, assisted 
living facility (ALF) resident, education worker, person experiencing homelessness, 
frontline essential worker, non-frontline essential worker; 

• binary status on each of seven comorbidities: asthma, diabetes, heart disease, heart 
failure, hypertension, obesity, active tobacco use. 

Age-, sex- and race-specific population totals for each of the 58 counties in California from 
the 2018 American Community Survey (ACS) 5-year estimates (1) were used to assign age 
category (0-4, 5-9, 10-14, 15-17, 18-19, 20-24, 25-29, 30-34, 35-44, 45-54, 55-64, 65-74, 75-
84, 85+ years), sex and race for individuals of each county (see Table S1 for variable 
definitions). Integer ages within each age group were simulated by uniform random 
sampling. To incorporate binary ethnicity status ! (Hispanic/Latino, non-Hispanic/Latino), 
we estimated the number of individuals of each ethnicity in each county-age-race group 
(denoted by subscript ", $, %), &!,#,$,%, as: 
 

&!,#,$,% = &!,#,$(%|!,#(%|!,$  

 
where (%|!,# is the estimated proportion of the age group in the county that is of ethnicity ! 

and (%|!,$  is the proportion of the race group in the county that is of ethnicity ! based on 

the ACS data, and randomly assigned this number of individuals in the county-age-race 
group to be of ethnicity !.  
 
Overall population estimates for each of the special populations and their sources are given 
in Table S2. Special population status was assigned by drawing from a categorical 
distribution with probabilities for membership of each of the special populations dependent 
on one or more demographic factors. These probabilities were derived as follows. The 
probabilities of being a HCW and of being an education worker in each county-age-sex 
group, ('!(|!,#,) and (*+,-|!,#,) (subscript ) denoting sex), were estimated as: 

 

(.|!,#,) =
&.,!,)(#|.
&!,#,)

 

 
where * ∈ {-"., /012}, &.,!,) is the number of HCWs/education workers in each county-
sex group according to the ACS data, (#|. is the proportion of HCWs/education workers 

who are of age group $ according to data from the Bureau of Labour Statistics (2), and 
&!,#,) is the number of individuals in the county-age-sex group. The probabilities of being a 



prisoner and of being a SNF resident in each age-sex-race-ethnicity group, (/01234|#,),$,%  and 
()56|#,),$,%, were estimated as: 

 

(7|#,),$,% =
&7,#,)($|7(%|7
&#,)($(%

 

 
where 4 ∈ {(56789, )&:}, &7,#,) is the state-level prisoner/SNF population of age $ and sex 
), &#,)	is the state-level population of age group $ and sex ),	($|7 and (%|7 are the state-

level proportions of prisoners/SNF residents who are of race % and ethnicity ! respectively, 
and ($  and (%  are the corresponding proportions for California residents.  
 
The total ALF population was estimated as approximately 150,000 from the current capacity 
of ALFs in California (185,000) (3) and data on the occupancy of ALFs from the National 
Center for Health Statistics’ (NCHS) National Study of Long-Term Care Providers (NSLTCP) 
2015-16 (4), which suggests 81% occupancy of ALFs in California. The probability of being an 
ALF resident in age group $, (#86|#, was then estimated as: 

 

(#86|# =
&#86(#|#86

&#
 

 
where &#86  is the total ALF population, &# is the population of age group $, and (#|#86  is 

the proportion of ALF residents who are in age group $, taken from the NCHS NSLTCP, 
assuming that all ALF residents are ≥55 years-of-age. 
 
The probability of being a person experiencing homelessness in each county-age-sex-race 
group was calculated as: 
 

(93:*;*22|!,#,),$ =
&93:*;*22,!,#()|93:*;*22($|93:*;*22

&!,#()($
 

 
where &93:*;*22,!,# is the number of people experiencing homelessness in the county-age 
group from the US Department of Housing and Urban Development’s (DHUD) Continuum of 
Care homelessness data (5), &!,# is the county-age group population, ()|93:*;*22 is the 

proportion of people experiencing homelessness in California who are of sex ) from the 
DHUD data, and ($|93:*;*22 is the proportion of the homeless population who are of race % 

based on Los Angeles Almanac homelessness data (6). 
 
The probabilities of being a frontline essential worker and of being a non-frontline essential 
worker in each age group were estimated as follows. The national-level percentages of 
workers in each age group in each of the 5 broad categories of occupations used by the US 
Bureau of Labor Statistics (Management and professional, Service, Sales and Office, Natural 
resources, Production and transportation) (2) who are frontline and non-frontline essential 
workers was calculated using the CDC classification of frontline and non-frontline essential 
workers (7). These percentages were then multiplied by the percentages of each age group 
in California who are employed according to data from the 2018 ACS.  
 



We estimated the probability of an individual in each county-age-sex-race group having 
each of the comorbidities ((-3:30<|!,#,),$) using data from the California Health Interview 
Survey (CHIS) (8) on prevalence of each comorbidity in each county by age ((-3:30<|!,#), and 

that at the state level by sex, by race, and overall ((-3:30<|), (-3:30<|$, and (-3:30<), as:  

 

(-3:30<|!,#,),$ = (-3:30<|!,#
(-3:30<|)
(-3:30<

(-3:30<|$
(-3:30<

. 

 
We used this probability to simulate binary status for each comorbidity for each individual 
in each county-age-sex-race group via a Bernoulli random draw. Obesity was defined as a 
body mass index (BMI) ≥30, where BMI was simulated using CHIS data on the state-level 
mean BMI and standard deviation for each age group, adjusted by sex and race as in the 
above formula. Each individual’s BMI was simulated via a random draw from a truncated 
normal distribution with the age-sex-and-race-adjusted mean and standard deviation, and 
truncation limits of 5 and 50. 
 
COVID-19 case and death data 
De-identified individual-level data on 2,215,972 confirmed COVID-19 cases (individuals who 
tested PCR positive for SARS-CoV-2) in California up to December 30, 2020, was provided by 
the California Department of Public Health (CDPH). Among these cases, 28,175 individuals 
died due to COVID-19. The data included information on county of residence, age category, 
sex, race/ethnicity, date of positive PCR test result, and, where applicable, date of death 
(see Table S3 for variable definitions). Complete demographic data was available for 
1,578,988 (71%) cases and 27,580 (98%) individuals who died. 
 
Overview of COVID-19 simulation model 
We simulated COVID-19 deaths, clinical cases, infections and disability-adjusted life-years 
(DALYs) using the following steps, each of which is described below in further detail: 

1. Simulate COVID-19 deaths using Poisson regression model fitted to COVID-19 death 
data with death hazard rate adjusted by special population status and comorbidity 
status, and calculate associated DALYs. 

2. Estimate infections from predicted deaths using published age- and sex-dependent 
COVID-19 infection fatality rate (IFR). 

3. Estimate clinical cases from predicted infections using published age-dependent 
clinical fraction for COVID-19. 

4. Calculate DALYs associated with infections and clinical cases. 
  



Table S1. Definitions and sources of variables in simulated California population 

 
Table S2. Population estimates for special populations in California 

* Note that population totals reflect values simulated as described in the text, which may not exactly 
match totals given in sources. 

Variable Values Source 
County of 
residence 

Alameda, Alpine, Amador. Butte, Calaveras, 
Colusa, Contra Costa, Del Norte, El Dorado, 
Fresno, Glenn, Humboldt, Imperial, Inyo, Kern, 
Kings, Lake, Lassen, Los Angeles, Madera, Marin, 
Mariposa, Mendocino, Merced, Modoc, Mono, 
Monterey, Napa, Nevada, Orange, Placer, Plumas, 
Riverside, Sacramento, San Benito, San 
Bernardino, San Diego, San Francisco, San Joaquin, 
San Luis Obispo, San Mateo, Santa Barbara, Santa 
Clara, Santa Cruz, Shasta, Sierra, Siskiyou, Solano, 
Sonoma, Stanislaus, Sutter, Tehama, Trinity, 
Tulare, Tuolumne, Ventura, Yolo, Yuba 

(1) 

Age Integer between 0 and 100 (1) 
Sex Male, Female (1) 
Race White, African American, American Indian or 

Alaska Native, Asian Alone, Native Hawaiian or 
Pacific Islander, Some other race alone, Two or 
more races 

(1) 

Ethnicity Hispanic/Latino, non-Hispanic/Latino (1) 
Special 
population 

Healthcare worker, Prisoner, Skilled Nursing 
Facility Resident, Assisted Living Facility Resident, 
Education Worker, Person Experiencing 
Homelessness, Frontline Essential Worker, Non-
Frontline Essential Worker 

See Table S2 

Asthma 0, 1 “AB40” variable in (8) 
Diabetes 0, 1 “DIABETES” variable in (8) 
Heart Disease 0, 1 “AB34” variable in (8) 
Heart Failure 0, 1 “AB52” variable in (8) 
Hypertension 0, 1 “AB29” variable in (8) 
Obesity 0, 1 BMI ≥ 30 where BMI 

simulated using “BMI” 
variable in (8) (see text) 

Active tobacco 
use 

0, 1 “SMKCUR” variable in (8) 

Special population Population estimate* Source 
Healthcare workers 1,559,001 (1) 
Prisoners 227,428 (1) 
Skilled nursing facility residents 136,282 (1) 
Assisted living facility residents 150,340 (3,4) 
Education workers 962,684 (1) 
Persons experiencing homelessness 132,427 (5) 
Frontline essential workers 2,521,235 (1,2,7) 
Non-frontline essential workers 6,994,107 (1,2,7) 



 
 
Table S3. Definitions of variables in COVID-19 case and death data used in analysis 

 
Calibration of infection fatality rate for California 
To account for variation in the IFR across different settings, we recalibrated the age- and 
sex-dependent ensemble IFR estimate from (9) for California, using a combination of data 
on confirmed cases and deaths from CDPH up to late October, 2020; seroprevalence 
estimates for California up to October 8-13, 2020 (from 6 biweekly surveys of approximately 
980 individuals), from the CDC’s database of nationwide commercial laboratory 
seroprevalence surveys (10); and age-stratified data on numbers of COVID-19 deaths in 
California among long-term care facility (LTCF) residents (SNF and ALF residents) and non-
LTCF residents provided by CDPH. The IFR estimate from (9) is for non-LTCF residents and 
LTCF residents account for approximately 30% of COVID-19 deaths in California, so we used 
the age-and-LTCF-stratified death data to estimate the number of deaths in each 
demographic risk group, of 19,501 cumulative deaths up to October 31, 2020, that were 
among non-LTCF residents. We then divided this number by the IFR to estimate the number 
of infections among non-LTCF residents in each demographic risk group, and multiplied by 
the estimated age-dependent clinical case fraction from (11) (which fitted an age-structured 
transmission model to age-stratified clinical case data from 6 countries to the estimate the 
clinical fraction) to estimate the number of clinical cases among non-LTCF residents. We 
calculated an overall multiplier for the IFR of 2.64 to match the cumulative number of 
clinical cases among non-LTCF residents from our model with the cumulative number of 
non-LTCF confirmed cases in the CDPH case line list up to October 22, 2020 (827,867) 

Variable Definition Values Modifications 
county_res County of 

residence of 
case 

Alameda, Central Sierra, Contra Costa, 
Fresno, Greater Sacramento, Imperial, 
Kern, Los Angeles, Marin, Merced, 
Monterey, Napa_Sonoma, Northern 
California, Northern Sacramento Valley, 
Orange, Placer, Riverside, Sacramento, 
San Bernardino, San Diego, San 
Francisco, San Joaquin, San Joaquin 
Valley, San Luis Obispo, San Mateo, 
Santa Barbara, Santa Clara, 
SantaCruz_SanBenito, Solano, Stanislaus, 
Tulare, Ventura 

Counties with 
population 
<250,000 
combined into 
single region 
(except 
Imperial), San 
Benito combined 
with Santa Cruz, 
Napa combined 
with Sonoma 
 

age_cat Age category <10, 10-19, 20-29, 30-39, 40-49, 50-59, 
60-69, 70-79, 80+ 

 

sex Sex Male, Female  
race_ethnicity Combined 

race/ethnicity 
variable 

Hispanic/Latino, non-Hispanic Black, 
non-Hispanic White, Other 

 

first_report_date Date of first 
report 

02/03/2020 - 12/30/2020 Randomly 
moved forward 
or back 1 day 

date_of_death Date of death 02/05/2020 - 12/30/2020 Randomly 
moved forward 
or back 1 day 



(accounting for a mean reporting-to-death time of 9 days calculated from the data). We 
note that this does not account for the fact that some confirmed cases up to October 22, 
2020, were asymptomatic and that symptomatic cases were under-reported early in the 
pandemic. However, these two biases will have acted in opposite directions and information 
on whether confirmed cases were asymptomatic was unavailable, so we assume that the 
cumulative number of confirmed cases up to October 22, 2020, provides a reasonable 
approximation of the cumulative number of clinical cases up to that date. We verified that 
this approach gave a reasonable match between the age distribution of clinical cases from 
the model and that of confirmed cases (Figure 2A in main text), and between the age 
distribution of cumulative infections estimated from the model (2,433,000) and that 
estimated from the mean seroprevalence estimates for California up to October 8-13, 2020 
(1,927,000) (using an approximately 12-day infection-to-reporting delay between the 
seroprevalence data centred on October 10 and case data calculated from the median 
onset-to-reporting delay in the data and incubation period (12)) (Figure 2B in main text). We 
note that the estimate of the number of individuals infected based on the seroprevalence 
data is likely to be an underestimate of the true number as it does not account for waning of 
antibodies (13). 
 
As a further check on this approach, we performed a Poisson regression of cumulative case 
numbers against demographic risk factors (age, sex, race/ethnicity and county of residence) 
for both the estimated clinical case counts and confirmed case counts and compared the 
resulting parameter estimates. Overall, the two sets of parameter estimates agreed closely 
with each other (Figure S1). The hazard ratio estimates from the estimated clinical case 
counts were higher than those from the confirmed case counts for certain counties, possibly 
suggesting greater under-reporting of cases in these counties and/or higher IFRs, e.g., due 
to overburdened hospitals.  
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Figure S1. Model calibration check. Parameter estimates for Poisson regressions of COVID-
19 case risk associated with different demographic risk factors for confirmed cases up to 
October 22, 2020, from the California Department of Public Health (red) and clinical cases 
estimated from our model (turquoise). Logarithm of total exposure time used as an offset 
variable, such that intercept represents COVID-19 case incidence rate (cases/100,000 
person-days) among 50-59-year-old Hispanic/Latino females in Alameda County. Dots show 
maximum likelihood parameter estimates and error bars show 95% CIs. 
 
Poisson regression model for COVID-19 death risk 
We applied a Poisson regression model to the CDPH COVID-19 death data to estimate the 
hazard ratios for COVID-19 death associated with different demographic risk factors, namely 
county of residence, age, sex and race/ethnicity. The outcome variable was the cumulative 
number of deaths for each combination of the risk factors and the logarithm of the 
cumulative survival time for individuals with each combination of the risk factors was used 
as an offset variable to account for differences in time to death between individuals. 
Representing the different risk factors (county, age group, sex, race/ethnicity) by a vector of 
( covariates = = >*=, … , */@ whose value is indexed by the index set (6=, … , 6/), and the 
total number of COVID-19 deaths and total survival time of individuals with covariate levels 
(6=, … , 6/) by C1!…1"  and D1!…1"  respectively (such that C1!…1"/D1!…1"  is the COVID-19 death 

rate among individuals with covariate levels (6=, … , 6/)), the Poisson regression model is: 
 

C1!…1" 	~	Po(I1!…1") 
 
with	

log	(I1!…1") = log LD1!…1"M + log(O?) +=
@P, 

 
where I1!…1"  is the conditional mean of the Poisson distribution for the cumulative number 

of deaths, P = (Q=, … , Q/) is a column vector of the covariate coefficients (such that /A#  is 
the hazard ratio for covariate *1), and O? is the baseline COVID-19 death rate in California 
(assumed constant). This model is equivalent to a proportional hazards model for time to 
COVID-19 death (14,15), with hazard rate: 
 

O1!…1" =
I1!…1"
D1!…1"

= O?/B
$C 

 
Hazard ratios and their standard errors were estimated using the glm function in R (version 
4.0.3) (16). We compared parameter estimates for death data from different periods of time 
(the last 3 months and 6 months of 2020, and time from the first death to the end of 2020) 
to assess their stability over time. 
 
Adjustment of COVID-19 death risk by special population status and comorbidity status 
We adjusted risk of COVID-19 death by special population status and comorbidity status 
using published literature estimates for the relative risk of SARS-CoV-2 infection and death 
from COVID-19 for the special populations and hazard ratios for death given SARS-CoV-2 
infection associated with the comorbidities (Table S4). For LTCF residents, we used 
estimates of age-specific relative risk of COVID-19 death calculated from the CDPH age-and-



LTCF-stratified data. For essential workers, we calculated estimates of the relative risk of 
COVID-19 death for frontline and non-frontline essential workers using estimates of relative 
risk of death by occupation from a recent analysis of excess mortality in California during 
the pandemic (17), categorising employment sectors according to the CDC classification of 
essential workers (7). For each special population R for which data on relative risk of death 
was not available (healthcare workers, prisoners, education workers, and people 
experiencing homelessness), we derived an estimate of the relative risk of death, %%D, by 
multiplying an estimate of relative risk of infection in the special population, %%14E,D  (from 
published literature or calculated from publicly available data on cumulative incidence of 
confirmed cases in the special population), by an estimate of the relative risk of death given 
infection, %%+*FG9|14E,D, derived from the age- and sex-specific IFR, to account for 

differences in age distributions between special populations: 
 

%%D = %%14E,D%%+*FG9|14E,D = %%14E,D
S:%TTTTTD
S:%TTTTT  

 
where S:%TTTTTD  is the population-weighted average IFR for special population R and S:%TTTTT is the 
population-weighted average IFR for the general population. We assumed that 
comorbidities only affected risk of death once infected, and that they had a multiplicative 
effect on risk of death. The death rate	for each demographic risk factor group O1!…1"  was 

multiplied by the following factor to ensure the overall death risk remained the same (i.e. to 
account for the higher death risk for individuals in special populations and with 
comorbidities): 
 

&1!…1"
∑ %%DH!…H%&1!…1"DH!…H%D,H!,…,H%

 

 
where &1!…1"  is the number of individuals with demographic risk factor levels (6=, … , 6/), 
%%DH!…H%  is the relative risk of death associated with special population R (where R = 0 
represents individuals that are not part of one of the 8 special populations) and comorbidity 
status (W=, … , WI) (the particular combination of binary statuses for the 7 comorbidities), 
and &1!…1"DH!…H%  is the number of individuals in each demographic-special-population-

comorbidity-status subgroup. 
 
Estimation of number of individuals already infected 
We estimated the number of individuals already infected in each demographic risk group by 
dividing the observed cumulative number of deaths up to December 30, 2020, in each group 
by the age- and sex-specific recalibrated IFR for that group (see Calibration of infection 
fatality rate for California). For LTCF residents, we first multiplied the IFR by a frailty index 
representing increased risk of death given infection among LTCF residents compared to the 
general population, which we assumed to be 3 based on previous estimates (9,18). The 
probability of past infection in each age-sex-special-population group was calculated by 
dividing the estimated number of infected individuals by the group population size, and 
used to simulate whether or not individuals in the simulated population had been 
previously infected.  
 



Table S4. Estimates of relative risks of SARS-CoV-2 infection and COVID-19 death for 
special populations and hazard ratios for death given infection for different comorbidities 

Parameter Distribution/Value* Source 
Relative risk of SARS-CoV-2 infection for 
special population (Ref. = general 
population)** 

  

  Healthcare worker !"(3.4,0.04,3,4) (19) 
  Prisoner !"(5.5,0.07,5,6) (20) 
  Person experiencing homelessness !"(1.65,0.006,1.5,1.8) (21,22) 
  Education worker !"(1.8,0.09,1.2,2.8) (23) 
Relative risk of COVID-19 death for special 
population (Ref. = general population) 

  

  Skilled nursing facility resident Age-dependent California Department of 
Public Health 

  Assisted living facility resident Age-dependent California Department of 
Public Health 

  Frontline essential worker*** !"(1.2,0.01,1,1.4) (17) 
  Non-frontline essential worker*** !"(1.1,0.003,1,1.2) (17) 
Hazard ratio for COVID-19 death given 
infection for individual with comorbidity 

  

  Asthma 1 (24,25) 
  Diabetes 1.51 (26) 
  Heart disease 1.16 (24–26) 
  Heart failure 1.77 (25) 
  Hypertension 1 (25,26) 
  Obesity 1.33 (24) 
  Smoker 1 (24–26) 

* !"(1, 2!, 3, 4) = truncated normal distribution with mean 1, non-truncated variance 2! and left 
and right truncation limits 3 and 4. Uncertainty bounds for relative risks of infection reflect a 
combination of statistical uncertainty (95% CIs for published estimates) and uncertainty due to 
variation in values from different sources. Death hazard ratios with 95% CI overlapping 1 in original 
source taken to be 1. 
** Further details of the sources and calculations used to derive these values are given in File S1. 
*** Estimated as mean of relative risks of death for workers in different employment sectors from 
(17) categorised into frontline vs non-frontline essential work using the CDC classification (7). 
 
Simulation of COVID-19 deaths 
To simulate COVID-19 deaths, we first calculated the cumulative probability of death for 
individuals in the simulated population over 6 months according to their demographic 
characteristics, special population status, comorbidities, simulated history of infection, and 
whether or not they were vaccinated. The cumulative probability of death over 6 months 
(D = 182	days) for a susceptible unvaccinated individual with covariate levels >6=, … , 6/@ in 
special population R with comorbidity status (W=, … , WI) was: 
 

(1!…1"DH!…H% = 1 − /JK#!…#"$$'(!…(%L . 
 
We assumed that the vaccine is ‘leaky’ and has efficacy *̀(a) ∈ [0,1] against death that 
depends on time since vaccination a, i.e. reduces the relative risk of death at time a after 



vaccination by a factor (1 − *̀(a)). We accounted for waning of vaccine-induced immunity 
against death by assuming that vaccine efficacy decreases exponentially at a rate 5 with 
time since vaccination, i.e. *̀(a) = `*?/J0G, where `*? = 0.95 is the initial vaccine efficacy. 
Based on an estimated reduction in efficacy of the Pfizer vaccine against death from a 
maximum of 98.2% 2-9 weeks post vaccination to 90.4% 20+ weeks post-vaccination (27), 
we used a value of 5 = − !

!)*log>1 −
+).*-+../

+).* @ = 0.00045	dayJ=. The cumulative probability 

of death over 6 months for a vaccinated individual not previously infected was therefore: 
 

(1!…1"DH!…H% = 1 − /J∫ N=JO0(G)R
1
. K#!…#"$$'(!…(%+G 

= 	1 − /
JK#!…#"$$'(!…(%SLJ

O0.
0 N=J*-21RT

 
 
Since a number of studies have shown that immunity acquired from previous infection 
wanes over time (28–31), we also accounted for potential reinfection and subsequent death 
amongst previously infected (6) individuals by modeling their cumulative probability of 
death over 6 months as: 
 

(1!…1"DH!…H%,1 = 	1 − /
JK#!…#"$$'(!…(%ULJ

10.
0 N=J*

-21RV
 

 
where 6*? is the initial protection against death afforded by previous infection. In other 
words, we assumed that previous infection offers protection against death that wanes at 
the same rate as protection from vaccination and made the simplifying assumption that 
immunity from previous infection only began to appreciably wane at the start of 2021. We 
use 6*? = `*? = 0.95, based on evidence of similar levels of protection against symptomatic 
infection from prior natural infection and two doses of a viral vector vaccine or mRNA 
vaccine (32). 
 
The number of past infections, S/F2G,W, and future deaths amongst those not previously 
infected, CW, and those previously infected, CW,1, in each demographic-special-population-
comorbidity risk group g = (6=, … , 6/, R, W=, … , WI) was simulated as 
 

S/F2G,W~h69(&W, (/F2G,W), 
CW~h69(&W − S/F2G,W, (W), 
CW,1~h69(S/F2G,W, (W,1), 

 
where (/F2G,W is the probability of previous infection for individuals in the risk group 
(estimated as described above). We ran 1000 simulations of past infections and future 
deaths for the full California population (& = 39,148,760) to account for stochastic 
uncertainty. We also accounted for uncertainty in the estimated death rate and relative 
risks of infection for the special populations, by drawing values for log	(O1!…1") from 

truncated normal distributions with bounds and standard deviations derived from the 95% 
confidence intervals (CIs) for the regression coefficients (Table S6), and values for the 
relative risks from truncated normal distributions with bounds and standard deviations 
derived from uncertainty in literature estimates (Table S4).  
 



Estimation of infections and clinical cases 
The cumulative number of SARS-CoV-2 infections in each demographic-special-population-
comorbidity risk group was calculated from the simulated number of deaths by dividing by 
the recalibrated age- and sex-dependent IFR, adjusted for vaccinated individuals to account 
for different vaccine efficacies against infection and death: 
 

SW =

⎩
⎪
⎨

⎪
⎧
CW
S:%W

															for	unvaccinated	susceptible	individuals

CW
1 − *̀{ 	
1 − *̀XTTTT

S:%W
														for	vaccinated	individuals

 

 
where *̀{  and *̀XTTTT are the average vaccine efficacies against death and infection over the first 
6 months of the rollout, and S:%W is the IFR for individuals in risk group g given their age 
and sex. As for the vaccine efficacy against death, we assumed that the vaccine efficacy 
against infection decreases exponentially over time, `*1(a) = `*1?	/J0#G, but from initial 
efficacy `*1? at rate 51 = − !

!)*log>1 −
+*./-3+.%

+*./ @ = 0.0015	dayJ= (based on an estimated 

decline in the efficacy of the Pfizer vaccine against symptomatic infection from 92.4% 1 
week after vaccination to 69.7% 20+ weeks after vaccination (27)). The average vaccine 
efficacies are therefore given by: 
  

*̀{ =
`*?
5D

(1 − /J0L) 

*̀XTTTT =
`*1?
51D

(1 − /J0#L) 

 
We used `*1? = 0.85 based on published estimates of two-dose efficacy of the Pfizer 
vaccine against infection (Table S7 in (33)). We assumed that levels of protection against 
infection and death from previous infection are the same as those from vaccination, such 
that the cumulative number of reinfections among previously infected individuals could be 
calculated as: 
 

SW,1 =
CW,1

1 − *̀{ 	
1 − *̀XTTTT

S:%W
. 

 
Numbers of clinical cases were then calculated from estimated numbers of infections by 
multiplying by the estimated age-dependent clinical case fraction from (11), adjusted for 
vaccinated individuals to account for vaccine-induced protection against clinical symptoms 
given infection. In the sensitivity analyses for different vaccine efficacies (see Methods in 
main text), we assumed the same scaling of vaccine efficacy against infection to vaccine 
efficacy against death as in the main analysis, i.e. `*1/ *̀ = 0.85/0.95 = 0.89.  
 
Calculation of DALYs 
DALYs associated with illness and/or death due to a disease are given by the sum of years of 
life lost (YLL) and years lived with disability (YLD): 
 

C$|47	 = 	4||	 + 	4|C 



 
and thus provide a composite measure of mortality and morbidity. Years lived with disability 
depend on the duration of illness 0 and the disability weight } ∈ [0,1] associated with the 
illness (where 0 represents perfect health and 1 represents death): 
 

4|C = }0. 
 
Total DALYs associated with simulated COVID-19 deaths, C$|47+, were calculated as:  
 

C$|47+ =~CW(|WTTT + }202)
W

, 

 
i.e. by adding the average remaining life expectancy |WTTT of individuals in risk group g who 
died, calculated from 2018 US life tables (34) and the age, sex, and race/ethnicity 
distribution within the risk group, to YLD associated with severe illness from COVID-19, 
}202, multiplying by the number of deaths in the risk group, CW, and summing over all risk 
groups. Total DALYs from clinical cases, C$|47-, and subclinical infections, C$|472, were 
calculated as: 

 
C$|47- = S-}:0: 

C$|472 = (S − S-)}:10:1  
 
where S-  and S are the estimated numbers of clinical cases and overall infections 
respectively, and }:0: and }:10:1  are the YLD associated with clinical and subclinical 
infection respectively. We used estimates of disability weights for acute episodes of mild, 
moderate and severe illness from (35) for subclinical infection, clinical infection and death 
from COVID-19 respectively: }:1 = 0.005, }: = 0.053, }2 = 0.210. For the corresponding 
durations of illness 0:1, 0: and 02, we used data on symptom duration stratified by 
symptom severity from a study of 273 COVID-19 outpatients in Atlanta, Georgia (36) and 
data from other studies and systematic reviews (37–39) that suggests median durations of 
symptoms for subclinical infection, clinical infection, and severe illness prior to death are 7 
days, 10 days and 18 days respectively. 
 
Approximate 95% uncertainty intervals (UIs) for predicted outcomes were calculated as the 
2.5%-97.5% quantiles of the distributions of the simulated outcomes. 
 
Calculation of QALYs 
As a sensitivity analysis, we also considered prioritising vaccine allocation under each 
vaccination strategy (see Methods in main text) to maximize quality-adjusted life years 
(QALYs) saved instead of DALYs averted. Total QALY losses due to death, �$|47+, were 
calculated as: 
 

�$|47+ =~CW!W
W

 

 



where !W is the quality-adjusted value of the average remaining life expectancy, |WTTT, of an 
individual in risk group g. The quality-adjusted life expectancy is given by: 
 

!W =~�F4YYYYZ1

84YYYY

1[=

 

 
where �F is the quality of life weight for an individual of age Ä, and ÄWTTT is the average age of 
an individual in risk group g. We used values for the US from Table 3.6 of (40) for �F (Table 
S5). We calculated total QALYs lost due to clinical and subclinical infections, �$|47-  and 
�$|472, as: 
 

�$|47- = S-1 
�$|472 = 0.07(S − S-)1 

 
where 1 is the QALYs lost per clinical case, which we took to be 0.007 (based on values of 
0.007 in (41) and 0.0075	in (42)), and the disutility of subclinical infection has been assumed 
to be approximately 7% of that of clinical infection, in line with its relative disability weight 
and duration in our DALY calculations. 
 
Table S5. Age-specific quality of life weights for US population derived from (40) and (43) 
Age group (years) Quality of life weight, Å\ 
0-9 0.948 
10-19 0.948 
20-29 (0.924 + 0.912)/2 = 0.918 
30-39 (0.912 + 0.889)/2 = 0.906 
40-49 (0.889 + 0.855)/2 = 0.872 
50-59 (0.855 + 0.830)/2 = 0.843 
60-69 (0.830 + 0.817)/2 = 0.824 
70-79 (0.817 + 0.755)/2 = 0.786 
80+ 0.755 

 
Vaccine prioritization 
For all vaccine prioritization strategies, we assumed that all HCWs and LTCF residents were 
vaccinated first as per the CDC guidelines for the first phase of the vaccine rollout (44). For 
the remainder of the population, we calculated the expected average risk of DALYs per 
person per day for all subgroups under the prioritization strategy, and then ranked 
subgroups in descending order of DALY risk. Vaccines were then allocated to these 
subgroups in this order and randomly within each subgroup until the total number of 
vaccines available, 9O, was reached. So, e.g., for age targeting, after vaccination of HCWs 
and LTCF residents, vaccinations were allocated to the age group with the highest average 
DALY risk and then to age groups with progressively decreasing DALY risk until the vaccine 
quota was reached. The random allocation of vaccinations within subgroups was varied in 
each of the 1000 simulations to account for uncertainty from variation in the individuals 
vaccinated before the vaccine quota was met. Three different initial vaccine quotas were 
considered (9O = 2	million, 5	million,	10	million), reflecting variation in initial vaccine 
availability. 



 
Under special population targeting, essential workers (frontline and non-frontline) were 
grouped with the section of the population not belonging to any special population. Under 
essential worker targeting, frontline and non-frontline essential workers were grouped 
together and the rest of the non-HCW, non-LTCF-resident population was treated as one 
group, and allocation was assumed to be random within these two groups. For comorbidity 
targeting, we grouped individuals into those with any comorbidities and those with no 
comorbidities, and assumed allocation was random within these groups, on the basis that 
targeting by number of comorbidities would be practically and economically infeasible. 
Under age-and-special-population targeting, essential workers were included among the 
special populations targeted for vaccination. In all strategies, excess vaccines remaining 
after complete target group coverage were randomly allocated amongst the remaining 
population.  
 
Data and code availability 
All analysis code was developed in R version 4.0.3 (16) and is available online at 
https://github.com/LloydChapman/COVIDVaccineModelling. The CDPH case data required 
for fitting the Poisson regression model contain personally identifiable information and 
therefore cannot be made freely available. Individuals interested in accessing the data 
should contact CDPH. All the data required to run the vaccine prioritization simulations is 
available at http://doi.org/10.5281/zenodo.4516526. 
 
Supplementary results 
Regression model parameter estimates 
Parameter estimates for the Poisson regression model (Table S6 and Figure S2) show 
significant variation in COVID-19 death risk across counties, with hazard ratios (HRs) relative 
to Alameda County varying from 0.38 for Northern California to 3.7 for Imperial County 
(when fitting to all data since the first recorded death on February 5, 2020). The hazard ratio 
estimates for age, sex and race/ethnicity reflect the increase in death risk with increasing 
age, higher death risk for males, and higher death risk for Hispanic/Latino individuals 
described in the main text. There was some variation in parameter estimates when fitting to 
different periods of past data (the last 3, 6, and 11 months of 2020), e.g., a few counties 
went from being lower risk than Alameda County to higher and vice versa, and there was a 
slight downward shift in the age distribution of deaths over time, but overall parameter 
estimates were highly consistent (Table S6). 
 
Vaccine availability 
The order of impact of the different prioritization strategies on DALYs, deaths and cases was 
robust to variation in the vaccine availability. However, with 2 million vaccinations instead 
of 5 million, i.e. only sufficient doses to vaccinate 5% of California’s population rather than 
13%, none of the prioritization strategies targeting by a single risk factor averted 
significantly more DALYs than random allocation over 6 months since the vast majority of 
the 2 million vaccinations were used up in vaccinating HCWs and LTCF residents (~1.85 
million individuals in California) in the first phase of the rollout, and prioritization of the 
remaining 150,000 vaccinations made only a small difference to the numbers of DALYs 
averted. Prioritizing older individuals averted 18% (95% UI 18-19%) of the overall DALY 
burden under no vaccination, while prioritizing special populations, individuals with 



comorbidities, essential workers and random allocation all averted 17-18% (Table S7 and 
Figure S3E). However, targeting across all risk factors simultaneously averted a higher 
proportion of DALYs (23%, 95% UI 22-23%). There was little difference in impact on cases 
between the different strategies – the percentage of cases averted was between 6% for all 
strategies (Table S7 and Figure S3A) – but allocating the vaccinations remaining after the 
first phase to older individuals averted more deaths (31%) than allocating them to special 
populations, individuals with comorbidities, or essential workers (all 28%). 
 
With double the vaccine availability – 10 million vaccinations instead of 5 million, i.e., 
enough vaccine to vaccinate just over a quarter of California’s population – age targeting 
averted by far and away the most DALYs of the strategies targeting by a single risk factor 
and 62% (95% UI 61-63%) of the simulated overall burden over 6 months (Table S8 and 
Figure S3F). This was principally due to averting a much higher proportion of deaths than 
any of the other strategies – 79% (95% UI 79-80%) compared to 54% (95% UI 53-56%) for 
comorbidity targeting as the next best performing strategy (Table S8 and Figure S3D). 
Special population targeting and essential worker targeting averted only 38% (95% UI 37-
40%) and 35% (95% UI 34-36%) of the DALY burden respectively, due to only averting 46% 
(95% UI 44-47%) and 37% (95% UI 37-38%) of deaths. As for 5 million individuals vaccinated, 
age-and-county targeting and targeting simultaneously across all risk factors averted a 
higher proportion of DALYs (68% and 72% respectively) than any of the strategies targeting 
by a single risk factor. Of strategies targeting by a single risk factor, essential worker 
targeting averted the highest proportion of clinical cases (26%, 95% UI 22-29%), and age 
targeting averted the lowest proportion (22%, 95% UI 19-24%). 
  



 
Figure S2. Estimates of hazard ratios for risk of death from COVID-19 for demographic risk 
factors. Hazard ratios (HR) for (A) county of residence, (B) age, (C) sex, and (D) 
race/ethnicity. Estimates from Poisson regression model fitted to data on 28,175 COVID-19 
deaths in California from February 5, 2020 to December 30, 2020, from the California 
Department of Public Health. Counties with population <250,000 (except Imperial) were 
combined into a single region by their economic region, San Benito County was combined 
with Santa Cruz County, and Napa County was combined with Sonoma County. Plotted 
hazard ratios for these counties represent the hazard ratio of the combined region. 
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Table S6. Sensitivity of COVID-19 death risk model parameter estimates to time period of 
data used.  

 Maximum likelihood estimate (95% CI) 
Parameter Feb 5, 2020 - Dec 

30,2020 
Jun 30, 2020 - Dec 
30,2020 

Sep 30, 2020 - Dec 30, 
2020 

Baseline COVID-19 death 
hazard rate (deaths/million 
person-days) 0.0023 (0.001-0.0051) 0.0042 (0.0019-0.0094) 0.0036 (0.0012-0.011) 
HRs for counties    

  Alameda 1 (Ref.) 1 (Ref.) 1 (Ref.) 

  Central Sierra 0.8 (0.63-1) 1 (0.82-1.3) 0.61 (0.39-0.95) 
  Contra Costa 0.85 (0.75-0.96) 0.9 (0.78-1) 0.85 (0.69-1.1) 
  Fresno 1.9 (1.7-2.1) 2.2 (1.9-2.4) 2.2 (1.8-2.6) 
  Greater Sacramento 0.93 (0.79-1.1) 1.1 (0.89-1.2) 1.7 (1.4-2.2) 
  Imperial 3.7 (3.3-4.2) 2.8 (2.4-3.3) 2.2 (1.7-2.8) 
  Kern 2 (1.8-2.2) 2.2 (2-2.5) 1.9 (1.6-2.3) 
  Los Angeles 2.4 (2.2-2.5) 2.1 (1.9-2.3) 2.7 (2.3-3.1) 
  Marin 1.2 (0.98-1.4) 1.3 (1.1-1.6) 0.51 (0.33-0.8) 
  Merced 1.9 (1.7-2.3) 2.4 (2-2.8) 2.3 (1.8-3) 
  Monterey 0.97 (0.82-1.1) 1.2 (0.98-1.4) 1.8 (1.4-2.3) 
  Napa-Sonoma 0.79 (0.68-0.92) 0.98 (0.84-1.2) 0.83 (0.64-1.1) 
  Northern California 0.38 (0.3-0.47) 0.47 (0.38-0.6) 0.56 (0.41-0.78) 
  Northern Sacramento Valley 0.95 (0.81-1.1) 1.2 (1-1.4) 1.7 (1.3-2.1) 
  Orange 1.6 (1.4-1.7) 1.6 (1.4-1.7) 1.4 (1.2-1.6) 
  Placer 0.83 (0.69-1) 1 (0.83-1.2) 1.4 (1.1-1.9) 
  Riverside 1.8 (1.6-2) 1.7 (1.6-1.9) 1.9 (1.7-2.3) 
  Sacramento 1.7 (1.5-1.8) 2 (1.8-2.2) 2.3 (2-2.8) 
  San Bernardino 2.1 (1.9-2.2) 2.1 (1.9-2.4) 1.8 (1.6-2.2) 
  San Diego 1.2 (1.1-1.3) 1.2 (1.1-1.3) 1.8 (1.5-2.1) 
  San Francisco 0.55 (0.47-0.65) 0.54 (0.45-0.65) 0.57 (0.44-0.75) 
  San Joaquin 2.7 (2.4-3) 3.2 (2.8-3.6) 2.1 (1.7-2.6) 
  San Joaquin Valley 1.4 (1.2-1.7) 1.4 (1.2-1.7) 1 (0.72-1.4) 
  San Luis Obispo 0.53 (0.41-0.68) 0.68 (0.52-0.88) 1 (0.72-1.4) 
  San Mateo 0.53 (0.45-0.63) 0.25 (0.19-0.32) 0.24 (0.16-0.36) 
  Santa Barbara 0.89 (0.75-1.1) 0.95 (0.78-1.1) 0.77 (0.57-1.1) 
  Santa Clara 0.93 (0.83-1) 0.92 (0.81-1) 1.4 (1.1-1.6) 
  SantaCruz-SanBenito 0.84 (0.69-1) 1 (0.84-1.3) 2 (1.6-2.6) 
  Solano 0.52 (0.42-0.64) 0.51 (0.4-0.65) 0.3 (0.19-0.49) 
  Stanislaus 2.6 (2.4-2.9) 3.1 (2.7-3.5) 2.4 (2-3) 
  Tulare 2.5 (2.2-2.8) 2.3 (2-2.7) 2.8 (2.3-3.5) 
  Ventura 0.73 (0.63-0.84) 0.77 (0.66-0.9) 0.84 (0.66-1.1) 
HRs for age    

  <10 1 (Ref.) 1 (Ref.) 1 (Ref.) 

  10-19 6.5 (2.8-15) 5.9 (2.5-14) 5.5 (1.6-19) 



  20-29 30 (13-67) 25 (11-57) 17 (5.5-56) 
  30-39 88 (39-200) 65 (29-140) 55 (17-170) 
  40-49 210 (94-470) 160 (74-370) 140 (45-430) 
  50-59 580 (260-1300) 450 (200-1000) 390 (120-1200) 
  60-69 1500 (660-3300) 1200 (520-2600) 1000 (320-3100) 
  70-79 3400 (1500-7500) 2600 (1200-5700) 2500 (790-7600) 
  80+ 10000 (4600-23000) 7700 (3400-17000) 7300 (2400-23000) 
HR for male sex  1.7 (1.6-1.7) 1.7 (1.6-1.7) 1.7 (1.6-1.8) 
HRs for race/ethnicity    

  Hispanic/Latino 1 (Ref.) 1 (Ref.) 1 (Ref.) 

  non-Hispanic Black 0.68 (0.65-0.71) 0.61 (0.57-0.64) 0.58 (0.53-0.63) 
  non-Hispanic White 0.35 (0.34-0.36) 0.34 (0.32-0.35) 0.38 (0.36-0.4) 
  Other 0.42 (0.4-0.43) 0.4 (0.39-0.42) 0.47 (0.45-0.5) 

Parameter estimates for COVID-19 death risk regression model for different past periods of data on 
deaths (~11 months from date of first recorded COVID-19 death to end of data, 6 months, and 3 
months) from the California Department of Public Health. The estimates derived from ~11 months of 
data were used in the simulation of the different vaccine prioritization strategies. 
 



Table S7. Simulated impact of different COVID-19 vaccine prioritization strategies in California on numbers of averted COVID-19 clinical 
cases, deaths and DALYs for 2 million individuals vaccinated. 

Strategy Cases averted, 
mean (95% UI) 

Percentage of cases 
averted, mean (95% 
UI) 

Deaths 
averted, mean 
(95% UI) 

Percentage of deaths 
averted, mean (95% 
UI) 

DALYs averted, 
mean (95% UI) 

Percentage of DALYs 
averted, mean (95% 
UI) 

i) Random allocation 38000 (28000-
48000) 

6 (5-8) 3900 (3800-
4100) 

28 (27-29) 37000 (35000-
38000) 

17 (17-18) 

ii) Special population 
targeting  

40000 (29000-
50000) 

6 (5-8) 3900 (3800-
4000) 

28 (27-28) 37000 (35000-
39000) 

18 (17-18) 

iii) Age targeting 37000 (28000-
46000) 

6 (4-8) 4300 (4100-
4500) 

31 (30-32) 39000 (37000-
40000) 

18 (18-19) 

iv) Essential worker 
targeting  

38000 (29000-
48000) 

6 (5-8) 3900 (3700-
4000) 

28 (27-28) 36000 (35000-
38000) 

17 (17-18) 

v) Comorbidity 
targeting 

38000 (29000-
47000) 

6 (5-8) 3900 (3800-
4100) 

28 (27-29) 37000 (35000-
39000) 

18 (17-18) 

vi) Age-and-county 
targeting 

38000 (29000-
47000) 

6 (5-8) 4600 (4400-
4800) 

33 (32-34) 41000 (39000-
43000) 

19 (19-20) 

vii) Age-and-special-
population targeting 

37000 (28000-
47000) 

6 (4-8) 4300 (4100-
4400) 

30 (29-31) 39000 (37000-
40000) 

18 (18-19) 

viii) Optimal 
allocation 

43000 (34000-
52000) 

7 (5-9) 5000 (4900-
5200) 

35 (35-36) 48000 (46000-
49000) 

23 (22-23) 

Vaccine impact simulated over 6 months. All strategies assumed that all healthcare workers and long-term care facility residents were vaccinated first 
as per the CDC recommendation (44). 



Table S8. Simulated impact of different COVID-19 vaccination prioritization strategies in California on numbers of averted COVID-19 clinical 
cases, deaths and DALYs for 10 million individuals vaccinated 

Strategy Cases averted, 
mean (95% UI) 

Percentage of 
cases averted, 
mean (95% UI) 

Deaths 
averted, mean 
(95% UI) 

Percentage of deaths 
averted, mean (95% 
UI) 

DALYs averted, 
mean (95% UI) 

Percentage of DALYs 
averted, mean (95% 
UI) 

i) Random allocation 150000 (130000-
170000) 

24 (20-27) 6500 (6300-
6800) 

46 (45-48) 82000 (77000-
85000) 

39 (37-40) 

ii) Special population 
targeting  

140000 (130000-
170000) 

24 (20-27) 6400 (6100-
6700) 

46 (44-47) 80000 (77000-
84000) 

38 (37-40) 

iii) Age targeting 130000 (120000-
150000) 

22 (19-24) 11000 (11000-
11000) 

79 (79-80) 130000 
(130000-
130000) 

62 (61-63) 

iv) Essential worker 
targeting  

160000 (140000-
180000) 

26 (22-29) 5300 (5100-
5400) 

37 (37-38) 74000 (71000-
77000) 

35 (34-36) 

v) Comorbidity 
targeting 

150000 (140000-
170000) 

25 (22-29) 7600 (7400-
7900) 

54 (53-56) 96000 (93000-
1e+05) 

46 (44-47) 

vi) Age-and-county 
targeting 

170000 (150000-
180000) 

27 (24-30) 11000 (11000-
12000) 

81 (80-82) 140000 
(140000-
150000) 

68 (67-69) 

vii) Age-and-special-
population targeting 

140000 (120000-
150000) 

22 (20-25) 11000 (11000-
11000) 

80 (79-80) 130000 
(130000-
140000) 

63 (62-64) 

viii) Optimal 
allocation 

2e+05 (190000-
220000) 

33 (30-36) 11000 (11000-
12000) 

81 (81-82) 150000 
(150000-
150000) 

72 (71-73) 

Vaccine impact simulated over 6 months. All strategies assumed that all healthcare workers and long-term care facility residents were vaccinated first as 
per the CDC recommendation (44). 



 
Figure S3. Simulated impact of different COVID-19 vaccine prioritization strategies in 
California on numbers of COVID-19 clinical cases, deaths and DALYs for 2 million (left 
column) and 10 million (right column) individuals vaccinated. Simulated (A-B) clinical cases, 
(C-D) deaths and (E-F) DALYs in California in the first 6 months of 2021. Vaccine efficacies 
against clinical disease and death were assumed to be initially 90% and 95% across all ages 
and to wane gradually over time (see Simulation of COVD-19 deaths and Estimation of 
infections and clinical cases). Error bars show 95% uncertainty intervals from stochastic 
uncertainty and parameter uncertainty. 
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Figure S4. Model checking. Observed COVID-19 deaths in California Department of Public 
Health data and predicted COVID-19 deaths from the model for September 30 - December 
30, 2020, by (A) age, (B) sex, (C) race/ethnicity and (D) county of residence. Model was fitted 
to data on 17,671 COVID-19 deaths from February 5 - September 30, 2020, and then 
simulated 1000 times to predict deaths from October 1 - December 30, 2020. Bars for 
predicted deaths represent mean of 1000 simulations, and error bars show 95% uncertainty 
intervals of the model predictions. 
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Figure S5. Optimal vaccine allocation under simultaneous targeting by multiple risk 
factors. Plots show proportion of individuals of each (A) age group, (B) county, (C) sex, (D) 
race/ethnicity, (E) comorbidity status, and (F) special population vaccinated under optimal 
distribution of the first 5 million vaccinations in California to avert DALYs. Comorbidity 
status treated as binary (0 = no comorbidities, 1 = any comorbidities). 
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Figure S6. Sensitivity of impact of COVID-19 vaccine prioritization strategies to vaccine efficacy. Simulated impact of different prioritization 
strategies on total DALYs in California over 6 months for different vaccine efficacies (95%, 60%, and 20% across all ages) for (A) 2 million, (B) 5 
million and (C) 10 million vaccinations. Error bars show 95% uncertainty intervals from stochastic uncertainty and parameter uncertainty. 
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Figure S7. Simulated impact of COVID-19 vaccine prioritization strategies in California on 
numbers of clinical cases, deaths and QALYs when vaccinations are allocated within each 
strategy according to risk of QALY loss rather than risk of DALY burden. Simulated (A) 
clinical cases, (B) deaths and (C) QALYs in California in the first 6 months of 2021 with 5 
million vaccinations. Vaccine efficacies against clinical disease and death as in Figure 3 in the 
main text. Bars show mean estimates across 1000 simulations, error bars show 95% 
uncertainty intervals from stochastic uncertainty and parameter uncertainty. 
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Table S9. Simulated impact of different COVID-19 vaccination prioritization strategies in California on numbers of averted COVID-19 clinical 
cases, deaths and QALYs for 5 million individuals vaccinated when vaccinations are allocated within each strategy according to risk of QALY 
loss rather than risk of DALY burden 

Strategy Cases averted, 
mean (95% UI) 

Percentage of 
cases averted, 
mean (95% UI) 

Deaths 
averted, mean 
(95% UI) 

Percentage of deaths 
averted, mean (95% 
UI) 

QALYs averted, 
mean (95% UI) 

Percentage of QALYs 
averted, mean (95% 
UI) 

i) Random allocation 78000 (64000-
94000) 

13 (10-15) 4900 (4700-
5100) 

35 (33-36) 46000 (44000-
48000) 

25 (24-27) 

ii) Special population 
targeting  

78000 (64000-
93000) 

13 (10-15) 4700 (4500-
4900) 

34 (32-35) 45000 (43000-
47000) 

25 (24-26) 

iii) Age targeting 62000 (53000-
72000) 

10 (8-12) 8800 (8500-
9000) 

62 (61-63) 69000 (67000-
71000) 

38 (37-39) 

iv) Essential worker 
targeting  

84000 (68000-
100000) 

14 (11-16) 4400 (4200-
4600) 

31 (30-32) 43000 (41000-
45000) 

24 (23-25) 

v) Comorbidity 
targeting 

82000 (69000-
96000) 

13 (11-16) 5300 (5100-
5500) 

38 (37-39) 51000 (48000-
53000) 

28 (27-29) 

vi) Age-and-county 
targeting 

89000 (79000-
99000) 

15 (13-17) 9100 (8900-
9300) 

64 (63-65) 82000 (80000-
84000) 

45 (44-46) 

vii) Age-and-special-
population targeting 

63000 (53000-
72000) 

10 (9-12) 8800 (8600-
9000) 

62 (61-63) 69000 (67000-
71000) 

38 (37-39) 

viii) Optimal 
allocation 

120000 (110000-
130000) 

20 (17-22) 9200 (9000-
9400) 

65 (64-66) 94000 (92000-
97000) 

52 (51-53) 

Vaccine impact simulated over 6 months. All strategies assumed that all healthcare workers and long-term care facility residents were vaccinated first as 
per the CDC recommendation (44).



Table S10. Infection fatality rate estimates from (9) recalibrated to California 
 Infection fatality rate (%) 
Age group (years) Female Male 
<10 0.005 0.005 
10-19 0.004 0.005 
20-29 0.01 0.03 
30-39 0.04 0.12 
40-49 0.15 0.36 
50-59 0.42 0.98 
60-69 1.34 2.70 
70-79 4.21 8.67 
80+ 15.2 28.6 

Median ensemble infection fatality rate estimates from (9) recalibrated for California to 
match cumulative number of observed cases in California Department of Public Health data 
(see Calibration of infection fatality rate for California). 
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